硅衬底氮化镓基蓝光LED发光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化镓(GaN)基发光二极管(LED)以其发光效率高、使用寿命长等优点现已在普通照明应用中推广,而单晶硅是目前工艺最成熟,价格最便宜,能获尺寸最大的半导体材料,因此在Si衬底上外延生长GaN薄膜已经成为了当前的研究热点,并逐步走向成熟。GaN基LED工作在较高的注入电流密度下时,发光的量子效率会随着电流密度的增大而下降(droop效应),如何解决droop效应,降低LED在普通照明应用中的成本,已成为目前国内、外亟待攻克的难关。本论文利用MOCVD在Si衬底上制备GaN基LED样品,主要在以下五个方面研究了LED的发光特性:
     1、研究了压电极化对LED发光峰的影响。由在Si衬底生长的GaN基单阱和多阱蓝光样品发光的变温电致发光(EL)谱显示:在压电极化不会被屏蔽的低电流密度注入下,LED的发光波长随着工作温度下降出现红移,表明压电极化对LED发光主波长的影响超过了量子阱的禁带带隙随温度下降而增大的影响幅度。结果还显示单量了阱(单阱)LED阱中受到的压电极化强度比多量了阱(多阱)中的更大。
     2、droop效应的主因不是俄歇复合而是载流子溢出。将样品LED实验测量结果的曲线用ABC模型拟合后发现,即使是俄歇复合系数取值比理论结果大几个数量级,在高电流密度注入时,拟合结果曲线还是高于实验曲线,且差距随注入电流密度的增大而变大,但实验曲线能与假定载流子泄漏为droop效应的主因而拟合的曲线相吻合。
     3、研究了载流子填充与LED发光量子效率的关系。由不同温度下单阱LED发光的内量子效率与主波长注入电流密度的变化对比、多阱与单阱LED之间发光的量子效率和主波长随注入电流密度变化的对比显示:电子在阱中被填充在高能态后造成泄漏是载流子溢出的主要方式。
     4、以变温EL光谱研究了载流子在LED量子阱中的分布不均衡对LED发光效率的影响,分析了低温下droop效应严重的原因。高质量外延层的多量子阱LED变温EL光谱结果显示:温度的降低会阻碍电流扩展和降低空穴浓度,使电子在阱中局部区域的浓度很高,这些区域中的电子由于填充效应容易越过LED中的势垒而溢出,从而使LED产生严重droop效应。这些结果表明引起droop效应关键是由于载流子在阱中的分布不均衡而溢出。
     5、研究了LED出射光谱的主要发光阱位置随温度、注入电流密度的变化而发生移动的现象。由不同位置垒中掺杂Si样品发光主峰随温度下降、注入电流密度增大而发生变化的结果表明:在工作温度较高且电流密度较小的条件下多阱LED的发光由较多个阱贡献,而随着温度的降低或注入电流密度的增大,多阱LED发光的主要贡献阱个数逐渐减少,且更靠近p-GaN层。
Gallium nitride (GaN) based light-emitting diodes (LEDs) are now starting to enter general lighting applications for their advantages of high energy efficiency and long service life. Single-crystal silicon has the most mature technology, the cheapest price and the largest size among the semiconductor materials at present, thus the epitaxial growth of GaN films on Si substrate has currently become a hot researching area and gradually been improved. However, the quantum efficiency will decrease with the increasing current density at high forward injection (efficiency droop), so how to eliminate the efficiency droop and lower the cost in general lighting applications is the most difficult problem to be urgently solved at present. In this paper, GaN-based LED samples were fabricated on Si substrate by MOCVD, and five aspects of luminous characteristics were studied as following:
     1. The LEDs emission spectrum is affected by piezoelectric polarization. With the EL spectrum of GaN-based single quantum well (SQW) and multiple quantum wells (MQW) LED on Si substrate, it is found that the dominant wavelength (WLD) will red shift with the decreasing operating temperature under low forward current density which the piezoelectric polarization has not been screen, and this means that the effect of piezoelectric polarization on WLD is higher than increasing bandgap energy by decreasing temperature. The results also show that the intensity of piezoelectric polarization in SQW is higher than that in MQWs.
     2. The main factor for efficiency droop is not Auger recombination but electron leakage. The simulation results based on simple ABC model are higher than the measuring experiment results even if Auger coefficient here is several order of magnitude higher than calculated InGaN values at high forward current density, and the difference between the simulation results and the experiment results increases with increasing current density at high forward injection. But the measuring experiment results fit in well with simulation results based on simple ABC model where carrier leakage is supposed the main factor for efficiency droop.
     3. The electrons filling up in the wells will affect LED quantum efficiency. Judging the WLD curve and IQE curve of SQW LED as a function of forward current density in the temperature range from100to350K and the differences of those curves between SQW and MQW LEDs, it is found that the electrons will overflow from the well after filling up in higher and higher state with the increasing current density, and electron overflow is the main factor for carrier leakage.
     4. With the EL spectrum under different temperature the effect of carrier localized states on quantum efficiency is discussed, and the cause for severe efficiency droop at low operating temperature is analyzed. The EL spectrums at different temperature of high quality MQW LED sample show that the LEDs have worse electron spreading and less hole concentration with decreasing temperature and the electrons will overflow from the well after filled up in higher and higher state for their inhomogeneous distribution, thus efficiency droop will happen at a lower injection more severely for electron leakage under lower temperature. These results confirm that the genuine cause for electron leakage is the severe carrier localized states.
     5. The wells which contribute the main output power will shift in the series wells of MQW LEDs under different forward current density or varying operating temperature. With the EL spectrum under different operating temperature of series Si doped barrier LED samples, the results show that the output power is contributed by less wells with the decreasing operating temperature or the increasing forward current density, and the main light-emitting wells will be closer to p-GaN.
引文
[1]Amano H., Sawaki N., Akasaki I., et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an A1N buffer layer [J]. Applied Physics Letters,1986,48 (5):353-355.
    [2]Nakamura S., Mukai T., Senoh M., et al. Thermal Annealing Effects on P-type Mg-doped GaN Films [J].Jpn.J.Appl. Phys.,1991,31:139-142.
    [3]Nakamura S., Mukai T. and Senoh M. High-power GaN pn junction blue-light-emitting diodes [J]. Japanese journal of applied physics,1991,30 (12A):L1998-L2001.
    [4]Nakamura S., Senoh M. and Mukai T. P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 2 LETTERS,1993,328-8.
    [5]Tsao J. Y. in:Solid-State Lighting:Science, Technology and Economic Perspectives, OPTO Plenary Presentation [J].2010,
    [6]Amano H., Kito M., Hiramatsu K., et al. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI) [J]. Jpn. J. Appl. Phys,1989,28 (12): L2112-L2114.
    [7]Cao XA, Pearton SJ, Zhang AP, et al. Electrical effects of plasma damage in p-GaN [J]. Applied Physics Letters,1999,75 2569.
    [8]Ye H., Wicks GW and Fauchet PM. Hot hole relaxation dynamics in p-GaN [J]. Applied Physics Letters,2000,77 1185.
    [9]Kaufmann U., Schlotter P., Obloh H., et al. Hole conductivity and compensation in epitaxial GaN: Mg layers [J]. Physical Review B,2000,62 (16):10867.
    [10]Nakayama H., Hacke P., Khan M.R.H., et al. Electrical transport properties of p-GaN [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 2 LETTERS,1996,35282-284.
    [11]Kwak J.S., Nam O.H. and Park Y. Abnormal dependence of contact resistivity on hole concentration in nonalloyed ohmic contacts to p-GaN [J]. Applied Physics Letters,2002,80 3554.
    [12]Leroux M. and Gil B. Gallium nitride and related semiconductors [J]. Emis DATAREVIEWS SERIES,1999,23 45.
    [13]Marquestaut N., Talaga D., Servant L., et al. Imaging of single GaN nanowires by tip - enhanced Raman spectroscopy [J]. Journal of Raman Spectroscopy,2009,40 (10):1441-1445.
    [14]Davydov V.Y., Kitaev Y.E., Goncharuk IN, et al. Phonon dispersion and Raman scattering in hexagonal GaN and A1N [J]. Physical Review B,1998,58 (19):12899.
    [15]Kuball M. Raman spectroscopy of GaN, AlGaN and AlN for process and growth monitoring/control [J]. Surface and interface analysis,2001,31 (10):987-999.
    [16]Coquillat D., Vecchi G., Comaschi C., et al. Enhanced second-and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal [J]. Applied Physics Letters,2005,87 101106.
    [17]Kaufmann U., Kunzer M., Maier M., et al. Nature of the 2.8 eV photoluminescence band in Mg doped GaN [J]. Applied Physics Letters,1998,72(11):1326-1328.
    [18]Lee M.K., Ho C.L. and Chen P.C. Light extraction efficiency enhancement of GaN blue LED by liquid-phase-deposited ZnO rods [J]. Photonics Technology Letters, IEEE,2008,20 (4): 252-254.
    [19]Hwang S.M., Seo Y.G., Baik K.H., et al. Demonstration of nonpolar a-plane InGaN/GaN light emitting diode on r-plane sapphire substrate [J]. Applied Physics Letters,2009,95 071101.
    [20]Delage SL and Dua C. Wide band gap semiconductor reliability:Status and trends [J]. Microelectronics Reliability,2003,43 (9-11):1705-1712.
    [21]Jang T., Kwak JS, Sung YJ, et al. Improved thermal stability of GaN blue laser diode by Ti/Pt/Au, W/Au and Cu bonding layers [J]. Thin Solid Films,2008,516 (6):1093-1096.
    [22]邝海,刘军林,程海英,等.转移基板材质对Si衬底GaN基LED芯片性能的影响[J].物理学报,2008,28(1):143-145.
    [23]Kim H., Yang H., Huh C., et al. Electromigration-induced failure of GaN multi-quantum well light emitting diode [J]. Electronics Letters,2000,36 (10):908-910.
    [24]Jeong S.M., Kissinger S., Kim D.W., et al. Characteristic enhancement of the blue LED chip by the growth and fabrication on patterned sapphire (0001) substrate [J]. Journal of crystal growth, 2010,312 (2):258-262.
    [25]Huang X.H., Liu J.P., Fan Y.M., et al. Improving InGaN-LED performance by optimizing the patterned sapphire substrate shape [J]. Chinese Physics B,2012,21 037105.
    [26]Kawai R., Kondo T., Suzuki A., et al. Realization of extreme light extraction efficiency for moth-eye LEDs on SiC substrate using high - reflection electrode [J]. physica status solidi (c), 2010,7 (7-8):2180-2182.
    [27]Mo C., Fang W., Pu Y., et al. Growth and characterization of InGaN blue LED structure on Si (111) by MOCVD [J]. Journal of crystal growth,2005,285 (3):312-317.
    [28]Tran C.A., Osinski A., Karlicek Jr RF, et al. Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy [J]. Applied Physics Letters, 1999,75 1494.
    [29]Dadgar A., Poschenrieder M., Blasing J., et al. MOVPE growth of GaN on Si (111) substrates [J]. Journal of crystal growth,2003,248556-562.
    [30]Ishikawa H., Zhao GY, Nakada N., et al. High-Quality GaN on Si Substrate Using AlGaN/AIN Intermediate Layer [J]. physica status solidi (a),1999,176 (1):599-603.
    [31]Chen P., Zhang R., Zhao ZM, et al. Growth of high quality GaN layers with A1N buffer on Si (111) substrates [J]. Journal of crystal growth,2001,225 (2):150-154.
    [32]Wu C.L., Wang J.C., Chan M.H., et al. Heteroepitaxy of GaN on Si (111) realized with a coincident-interface AIN/β-SiN (0001) double-buffer structure [J]. Applied Physics Letters,2003, 834530.
    [33]Kim M.H., Do Y.G., Kang H.C., et al. Effects of step-graded AlGaN interlayer on properties of GaN grown on Si (111) using ultrahigh vacuum chemical vapor deposition [J]. Applied Physics Letters,2001,792713.
    [34]Murase T., Tanikawa T., Honda Y., et al. Optical properties of (1-101) InGaN/GaN MQW stripe laser structure on Si substrate [J]. physica status solidi (c),2011,
    [35]Lau K.M., Wong K.M., Zou X., et al. Performance improvement of GaN-based light-emitting diodes grown on patterned Si substrate transferred to copper [J]. Optics Express,2011,19 (104): A956-A961.
    [36]Sobanska M., Klosek K., Zytkiewicz ZR, et al. Plasma-assisted MBE growth of GaN on Si (111) substrates [J]. Crystal Research and Technology,2011,
    [37]Wong K.M. Transfer of GaN-based devices grown on silicon substrate to other substrates [J]. 2011,
    [38]刘卫华,李有群,方文卿,等.si衬底GaN基LED的结温特性[J].发光学报,2006,27(2):211-214.
    [39]Koslow I.L., Sonoda J., Chung R.B., et al. High Power and High Efficiency Blue InGaN Light Emitting Diodes on Free-Standing Semipolar (30\bar{3}\bar{1}) Bulk GaN Substrate [J]. Japanese journal of applied physics,2010,49 (8):0203.
    [40]Chang S.P., Lu T.C., Zhuo L.F., et al. Low Droop Nonpolar GaN/IinGaN Light Emitting Diode Grown on m-Plane GaN Substrate [J]. Journal of The Electrochemical Society,2010,157 H501.
    [41]Fu Y., Lu Y., Xuan R., et al. Optical Simulation and Fabrication of near-ultraviolet LEDs on a Roughened Backside GaN Substrate [J]. Photonics Technology Letters, IEEE,2011, (99):1-1.
    [42]Xu J., Thakur JS, Hu G., et al. Angular dependence of surface acoustic wave characteristics in AlN thin films on a-plane sapphire substrates [J]. Applied Physics A:Materials Science & Processing,2006,83 (3):411-415.
    [43]Hironaka K., Nagashima T., Ikeda S., et al. Characterization of AlN single crystal fabricated by a novel growth technique,"pyrolytic transportation method" [J]. Journal of crystal growth,2010, 312 (18):2527-2529.
    [44]Nomura T., Okumura K., Miyake H., et al. A1N homoepitaxial growth on sublimation-AIN substrate by low-pressure HVPE [J]. Journal of crystal growth,2011,
    [45]Mukai T., Yamada M. and Nakamura S. Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes [J]. Japanese journal of applied physics,1999,38 (part 1):3976-3981.
    [46]Yang Y., Cao X.A. and Yan C. Investigation of the nonthermal mechanism of efficiency rolloff in InGaN light-emitting diodes [J]. Electron Devices, IEEE Transactions on,2008,55 (7): 1771-1775.
    [47]Sun W., Shatalov M., Deng J., et al. Efficiency droop in 245-247 nm AlGaN light-emitting diodes with continuous wave 2 mW output power [J]. Applied Physics Letters,2010,96 061102.
    [48]Hirayama H., Fujikawa S., Noguchi N., et al.222-282 nm AlGaN and InAlGaN - based deep-UV LEDs fabricated on high - quality A1N on sapphire [J]. physica status solidi (a),2009,206 (6):1176-1182.
    [49]Monemar B. and Sernelius BE. Defect related issues in the "current roll-off'in InGaN based light emitting diodes [J]. Applied Physics Letters,2007,91 (18):181103-3.
    [50]Ryu Han-Youl, Kim Hyun-Sung and Shim Jong-In. Rate equation analysis of efficiency droop in InGaN light-emitting diodes [J]. Applied Physics Letters,2009,95 (8):081114-3.
    [51]Schubert Martin F., Chhajed Sameer, Kim Jong Kyu, et al. Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes [J]. Applied Physics Letters,2007,91 (23): 231114-3.
    [52]Chernyakov AE, Sobolev MM, Ratnikov VV, et al. Nonradiative recombination dynamics in InGaN/GaN LED defect system [J]. Superlattices and Microstructures,2009,45 (4-5):301-307.
    [53]Cao XA, Yang Y. and Guo H. On the origin of efficiency roll-off in InGaN-based light-emitting diodes [J]. Journal of Applied Physics,2008,104 (9):093108-4.
    [54]Yang CL, Ding L., Wang JN, et al. Thermally activated carrier transfer processes in InGaN/GaN multi-quantum-well light-emitting devices [J]. Journal of Applied Physics,2005,98 023703.
    [55]Laubsch A., Sabathil M., Bergbauer W., et al. On the origin of IQE-'droop'in InGaN LEDs [J]. physica status solidi (c),2009,6 (S2):S913-S916.
    [56]Shen YC, Mueller GO, Watanabe S., et al. Auger recombination in InGaN measured by photoluminescence [J]. Applied Physics Letters,2007,91141101.
    [57]Gardner NF, Miiller GO, Shen YC, et al. Blue-emitting InGaN-GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm [J]. Applied Physics Letters,2007,91 243506.
    [58]Li X., Liu H., Ni X., et al. Effect of carrier spillover and Auger recombination on the efficiency droop in InGaN-based blue LEDs [J]. Superlattices and Microstructures,2010,47 (1):118-122.
    [59]Kaeding JF, Asamizu H., Sato H., et al. Realization of high hole concentrations in Mg doped semipolar (1011) GaN [J]. Applied Physics Letters,2006,89 202104.
    [60]Iso K., Yamada H., Hirasawa H., et al. High brightness blue InGaN/GaN light emitting diode on nonpolar m-plane bulk GaN substrate [J]. Japanese journal of applied physics,2007,46 L960-L962.
    [61]Kim M.H., Schubert M.F., Dai Q., et al. Origin of efficiency droop in GaN-based light-emitting diodes [J]. Applied Physics Letters,2007,91 (18):183507-3.
    [62]Vampola K.J., Iza M., Keller S., et al. Measurement of electron overflow in 450 nm InGaN light-emitting diode structures [J]. Applied Physics Letters,2009,94 061116.
    [63]Piprek J. Efficiency droop in nitride-based light-emitting diodes [J]. physica status solidi (a), 2010,207 (10):2217-2225.
    [64]Hsueh T.H., Sheu J.K., Lai W.C., et al. Improvement of the Efficiency of InGaN-GaN Quantum-Well Light-Emitting Diodes Grown With a Pulsed-Trimethylindium Flow Process [J]. Photonics Technology Letters, IEEE,2009,21 (7):414-416.
    [65]Zhang J.Y., Cai L.E., Zhang B.P., et al. Efficient hole transport in asymmetric coupled InGaN multiple quantum wells [J]. Applied Physics Letters,2009,95161110.
    [66]Yen S.H., Tsai M.C., Tsai M.L., et al. Effect of N-Type AlGaN Layer on Carrier Transportation and Efficiency Droop of Blue InGaN Light-Emitting Diodes [J]. Photonics Technology Letters, IEEE,2009,21 (14):975-977.
    [67]Ni X., Fan Q., Shimada R., et al. Reduction of efficiency droop in InGaN light emitting diodes by coupled quantum wells [J]. Applied Physics Letters,2008,93 171113.
    [68]Piprek J., Farrell R., DenBaars S., et al. Effects of built-in polarization on InGaN-GaN vertical-cavity surface-emitting lasers [J]. Photonics Technology Letters, IEEE,2006,18 (1): 7-9.
    [69]Fiorentini V., Bernardini F. and Ambacher O. Evidence for nonlinear macroscopic polarization in Ⅲ-Ⅴ nitride alloy heterostructures [J]. Applied Physics Letters,2002,80 1204.
    [70]Chichibu SF, Abare AC, Minsky MS, et al. Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures [J]. Applied Physics Letters,1998,73 2006.
    [71]Renner F., Kiesel P., Dohler GH, et al. Quantitative analysis of the polarization fields and absorption changes in InGaN/GaN quantum wells with electroabsorption spectroscopy [J]. Applied Physics Letters,2002,81490.
    [72]Zhang H., Miller EJ, Yu ET, et al. Measurement of polarization charge and conduction-band offset at InGaN/GaN heterojunction interfaces [J]. Applied Physics Letters,2004,84 4644.
    [73]Ibbetson JP, Fini PT, Ness KD, et al. Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors [J]. Applied Physics Letters,2000, 77 (2):250-252.
    [74]Ling S.C., Lu T.C., Chang S.P., et al. Low efficiency droop in blue-green m-plane InGaN/GaN light emitting diodes [J]. Applied Physics Letters,2010,96 231101.
    [75]Son J.H. and Lee J.L. Strain engineering for the solution of efficiency droop in InGaN/GaN light-emitting diodes [J]. Optics Express,2010,18 (6):5466-5471.
    [76]Xie J., Ni X., Fan Q., et al. On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers [J]. Applied Physics Letters,2008,93 121107.
    [77]Hwang S., Jin Ha W., Kyu Kim J., et al. Promotion of hole injection enabled by GalnN/GaN light-emitting triodes and its effect on the efficiency droop [J]. Applied Physics Letters,2011,99 (18):181115-3.
    [78]Wang CH, Chang SP, Ku PH, et al. Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers [J]. Applied Physics Letters,2011,99 171106.
    [79]Lee S.J., Han S.H., Cho C.Y., et al. Improvement of GaN-based light-emitting diodes using p-type AlGaN/GaN superlattices with a graded Al composition [J]. Journal of Physics D:Applied Physics,2011,44 105101.
    [80]Han S.H., Lee D.Y., Lee S.J., et al. Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes [J]. Applied Physics Letters,2009,94 231123.
    [81]Kim H.J., Choi S., Kim S.S., et al. Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAIN electron blocking layer in green light-emitting diodes [J]. Applied Physics Letters,2010,96 101102.
    [82]Wang CH, Ke CC, Lee CY, et al. Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer [J]. Applied Physics Letters, 2010,97(26):261103-3.
    [83]Choi S., Kim H.J., Kim S.S., et al. Improvement of peak quantum efficiency and efficiency droop in Ⅲ-nitride visible light-emitting diodes with an InAIN electron-blocking layer [J]. Applied Physics Letters,2010,96 221105.
    [84]毛清华,江风益,程海英,等p-AlGaN电子阻挡层Al组分对Si衬底绿光LED性能影响的研究[J].物理学报,2010,59(12):8078-8083.
    [85]Schubert E.F., Gessmann T. and Kim J.K., Light emitting diodes Wiley Online Library,2003.
    [86]Ozgur U., Liu H., Li X., et al. GaN-based light-emitting diodes:Efficiency at high injection levels [J]. Proceedings of the IEEE,2010,98 (7):1180-1196.
    [87]Piprek J., Semiconductor Optoelectronic Devices:Introduction to Physics and Simulation [M].San Diego:Academic Press,2003.
    [88]Schubert M.F., Chhajed S., Kim J.K., et al. Effect of dislocation density on efficiency droop in GalnN/GaN light-emitting diodes [J]. Applied Physics Letters,2007,91 (23):231114-231114-3.
    [89]Dai Q., Schubert M.F., Kim M.H., et al. Internal quantum efficiency and nonradiative recombination coefficient of GalnN/GaN multiple quantum wells with different dislocation densities [J]. Applied Physics Letters,2009,94 111109.
    [90]Kim H.M., Cho Y.H., Lee H., et al. High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays [J]. Nano letters,2004, 4(6):1059-1062.
    [91]Shao X., Lu H., Chen D., et al. Efficiency droop behavior of direct current aged GaN-based blue light-emitting diodes [J]. Applied Physics Letters,2009,95 163504.
    [92]肖友鹏,莫春兰,冲邱,等.Si衬底GaN基蓝光LED老化性能[J].发光学报,2010,31(3):364-368.
    [93]乐淑萍,郑畅达,江风益.静电对Si衬底GaN基蓝光LED老化寿命的影响[J].南昌大学学报(理科版),2007,31(3):246-249.
    [94]Chichibu S.F., Uedono A., Onuma T., et al. Origin of defect-insensitive emission probability in In-containing (Al, In, Ga) N alloy semiconductors [J]. Nature Materials,2006,5 (10):810-816.
    [95]David A. and Grundmann M.J. Droop in InGaN light-emitting diodes:A differential carrier lifetime analysis [J]. Applied Physics Letters,2010,96 103504.
    [96]Zhang M., Bhattacharya P., Singh J., et al. Direct measurement of auger recombination in InO. IGa0.9N/GaN quantum wells and its impact on the efficiency of In0. IGa0.9N/GaN multiple quantum well light emitting diodes [J]. Applied Physics Letters,2009,95 (20): 201108-201108-3.
    [97]Meneghini M., Trivellin N., Meneghesso G., et al. A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes [J]. Journal of Applied Physics,2009,106(11):114508.
    [98]Laubsch A., Sabathil M., Baur J., et al. High-power and high-efficiency InGaN-based light emitters [J]. Electron Devices, IEEE Transactions on,2010,57 (1):79-87.
    [99]Hader J., Moloney JV, Pasenow B., et al. On the importance of radiative and Auger losses in GaN-based quantum wells [J]. Applied Physics Letters,2008,92 261103.
    [100]Delaney K.T., Rinke P. and Van de Walle C.G. Auger recombination rates in nitrides from first principles [J]. Applied Physics Letters,2009,94 191109.
    [101]Rozhansky IV and Zakheim DA. Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping [J]. physica status solidi (a),2007,204 (1):227-230.
    [102]Reiher F., Dadgar A., Biasing J., et al. InGaN/GaN light-emitting diodes on Si (110) substrates grown by metal-organic vapour phase epitaxy [J]. Journal of Physics D:Applied Physics,2009, 42055107.
    [103]Wei J., Zhang B., Wang G., et al. Vertical GaN-Based Light-Emitting Diodes Structure on Si (111) Substrate with Through-Holes [J]. Japanese journal of applied physics,2010,49 (7):2104.
    [104]Lee J.H., Kim N.S. and Lee D.Y. Effect of residual stress and sidewall emission of InGaN-based LED by varying sapphire substrate thickness [J]. Photonics Technology Letters, IEEE,2009,21 (16):1151-1153.
    [105]Lee J.H., Lee D.Y. and Oh B.W. Comparison of InGaN-based LEDs grown on conventional sapphire and cone-shape-patterned sapphire substrate [J]. Electron Devices, IEEE Transactions on,2010,57(1):157-163.
    [106]Kobayashi JT, Kobayashi NP and Dapkus PD. Nucleation and growth behavior for GaN grown on (0001) sapphire via multistep growth approach [J]. Journal of electronic materials,1997,26 (10):1114-1117.
    [107]Ng YF, Cao YG, Xie MH, et al. Growth mode and strain evolution during InN growth on GaN (0001) by molecular-beam epitaxy [J]. Applied Physics Letters,2002,81 3960.
    [108]Krukowski S., Kempisty P. and Strak P. Review:GaN growth by ammonia based methods-density functional theory study [J]. Crystal Research and Technology,2009,44 (10):1038-1046.
    [109]Ishikawa H., Zhao G.Y., Nakada N., et al. GaN on Si substrate with AlGaN/AIN intermediate layer [J]. Japanese journal of applied physics,1999,38 L492-L494.
    [110]Watanabe A., Takeuchi T., Hirosawa K., et al. The growth of single crystalline GaN on a Si substrate using AIN as an intermediate layer [J]. Journal of crystal growth,1993,128 (1): 391-396.
    [111]Dadgar A., Poschenrieder M., Biasing J., et al. Thick, crack-free blue light-emitting diodes on Si (111) using low-temperature AIN interlayers and in situ SiN masking [J]. Applied Physics Letters,2002,80 3670.
    [112]Pan X., Wei M., Yang C., et al. Growth of GaN film on Si (111) substrate using AIN sandwich structure as buffer [J]. Journal of crystal growth,2011,318 (1):464-467.
    [113]肖宗湖,萌张,熊传兵,等.裂纹对Si衬底GaN基LED薄膜应力状态的影响[J].人工晶体学报,2010,39(4):895-899.
    [114]Dadgar A., Hums C., Diez A., et al. Growth of blue GaN LED structures on 150-mm Si (111) [J]. Journal of crystal growth,2006,297 (2):279-282.
    [115]Lee J.H., Oh JT and Kim YC. Stress reduction and enhanced extraction efficiency of GaN-based LED grown on cone-shape-patterned sapphire [J]. Photonics Technology Letters, IEEE,2008,20 (18):1563-1565.
    [116]Krost A., Dadgar A., Strassburger G., et al. GaN-based epitaxy on silicon:stress measurements [J]. physica status solidi (a),2003,200 (1):26-35.
    [117]Schubert M.F., Xu J., Kim J.K., et al. Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop [J]. Applied Physics Letters,2008,93 (4): 041102-3.
    [118]Reed ML, Readinger ED, Moe CG, et al. Benefits of negative polarization charge in n-InGaN on p-GaN single heterostructure light emitting diode with p-side down [J]. physica status solidi (c),2009,6 (2):585-588.
    [119]Kunzer M., Leancu C.C., Maier M., et al. Well width dependent luminescence characteristics of UV-violet emitting GaInN QW LED structures [J]. physica status solidi (c),2008,5 (6): 2170-2172.
    [120]Wang Q., Bai J., Gong YP, et al. Influence of strain relaxation on the optical properties of InGaN/GaN multiple quantum well nanorods [J]. Journal of Physics D:Applied Physics,2011, 44 395102.
    [121]Nakamura S., Senoh M., Iwasa N., et al. High - power InGaN single - quantum - well -structure blue and violet light - emitting diodes [J]. Applied Physics Letters,1995,671868.
    [122]Yamamoto S., Zhao Y., Pan C.C., et al. High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar (2021) GaN Substrates [J]. Applied physics express,2010,3 (12):122102.
    [123]Yeh D.M., Huang C.F., Chen C.Y., et al. Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode [J]. Applied Physics Letters,2007,91171103.
    [124]Chang J.Y., Kuo Y.K. and Tsai M.C. Correlation of barrier material and quantum - well number for InGaN/(In) GaN blue light-emitting diodes [J]. physica status solidi (a),2011,208 (3): 729-734.
    [125]熊传兵,江风益,方文卿,等.硅衬底GaN蓝色发光材料转移前后应力变化研究[J].物理学报,2008,57(05):3176-3181.
    [126]Schubert E.Fred, Light-emitting diodes. Cambridge University Press,2003.
    [127]Caetano C., Teles L. K., Marques M., et al. Phase stability, chemical bonds, and gap bowing of In_{x}Ga_{1-x}N alloys:Comparison between cubic and wurtzite structures [J]. Physical Review B,2006,74 (4):045215.
    [128]Wu J., Walukiewicz W., Yu KM, et al. Unusual properties of the fundamental band gap of InN [J]. Applied Physics Letters,2002,80 3967.
    [129]Tablero C, Marti A. and Luque A. Ionization energy levels in Mn-doped InxGal-xN alloys [J]. Journal of Applied Physics,2009,105 (3):033704-4.
    [130]Li Y.H., Walsh A., Chen S., et al. Revised ab initio natural band offsets of all group Ⅳ, Ⅱ-Ⅵ, and Ⅲ-Ⅴ semiconductors [J]. Applied Physics Letters,2009,94 212109.
    [131]Wang CH, Chen JR, Chiu CH, et al. Temperature-Dependent Electroluminescence Efficiency in Blue InGaN-GaN Light-Emitting Diodes With Different Well Widths [J]. Photonics Technology Letters, IEEE,2010,22 (4):236-238.
    [132]Masui H., Kroemer H., Schmidt M.C., et al. Electroluminescence efficiency of-oriented InGaN-based light-emitting diodes at low temperature [J]. Journal of Physics D:Applied Physics, 2008,41 082001.
    [133]Cho J., Yoon E., Park Y., et al. Characteristics of blue and ultraviolet light-emitting diodes with current density and temperature [J]. Electronic Materials Letters,2010,6 (2):51-53.
    [134]Li Y.L., Huang Y.R. and Lai Y.H. Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness [J]. Applied Physics Letters,2007,91 (18):181113-3.
    [135]Li X., Ni X., Lee J., et al. Efficiency retention at high current injection levels in m-plane InGaN light emitting diodes [J]. Applied Physics Letters,2009,95 121107.
    [136]Son J.H. and Lee J.L. Numerical analysis of efficiency droop induced by piezoelectric polarization in InGaN/GaN light-emitting diodes [J]. Applied Physics Letters,2010,97 032109.
    [137]Ryou J.H., Yoder P.D., Liu J., et al. Control of quantum-confined stark effect in InGaN-based quantum wells [J]. Selected Topics in Quantum Electronics, IEEE Journal of,2009,15 (4): 1080-1091.
    [138]Hsu SC, Pong BJ, Li WH, et al. Stress relaxation in GaN by transfer bonding on Si substrates [J]. Applied Physics Letters,2007,91251114.
    [139]Xiong C., Jiang F., Fang W., et al. Different properties of GaN-based LED grown on Si (111) and transferred onto new substrate [J]. Science in China Series E:Technological Sciences,2006,49 (3):313-321.
    [140]Zhang B., Liang H., Wang Y., et al. High-performance Ⅲ-nitride blue LEDs grown and fabricated on patterned Si substrates [J]. Journal of crystal growth,2007,298 725-730.
    [141]Kioupakis E., Rinke P., Delaney K.T., et al. Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes [J]. Applied Physics Letters,2011,98 161107.
    [142]Bochkareva NI, Voronenkov VV, Gorbunov RI, et al. Defect-related tunneling mechanism of efficiency droop in Ⅲ-nitride light-emitting diodes [J]. Applied Physics Letters,2010,96 133502.
    [143]Pavesi M., Manfredi M, Rossi F., et al. Implications of changes in the injection mechanisms on the low temperature electroluminescence in InGaN/GaN light emitting diodes [J]. Journal of Applied Physics,2008,103 (2):024503-5.
    [144]Grzanka S., Franssen G., Targowski G., et al. Role of the electron blocking layer in the low-temperature collapse of electroluminescence in nitride light-emitting diodes [J]. Applied Physics Letters,2007,90 (10):103507.
    [145]Yamane Y., Fujiwara K. and Sheu J.K. Largely variable electroluminescence efficiency with current and temperature in a blue (In, Ga) N multiple-quantum-well diode [J]. Applied Physics Letters,2007,91 (7):073501-3.
    [146]Koike M., Shibata N., Kato H., et al. Development of high efficiency GaN-based multiquantum-well light-emitting diodes and their applications [J]. Selected Topics in Quantum Electronics, IEEE Journal of,2002,8 (2):271-277.
    [147]Wuu DS, Wang WK, Wen KS, et al. Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template [J]. Applied Physics Letters,2006,89161105.
    [148]Lee J.W., Tak Y., Kim J.Y., et al. Growth of high-quality InGaN/GaN LED structures on (111) Si substrates with internal quantum efficiency exceeding 50%[J]. Journal of crystal growth, 2011,315(1):263-266.
    [149]Xu J., Schubert M.F., Zhu D., et al. Effects of polarization-field tuning in GalnN light-emitting diodes [J]. Applied Physics Letters,2011,99 041105.
    [150]Franssen G., Suski T., Perlin P., et al. Investigation of polarization-induced electric field screening in InGaN light emitting diodes by means of hydrostatic pressure [J]. physica status solidi(b),2007,244(1):32-37.
    [151]Zhang M., Bhattacharya P. and Guo W. InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop [J]. Applied Physics Letters,2010,97011103.
    [152]Guo W., Banerjee A., Bhattacharya P., et al. InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon [J]. Applied Physics Letters,2011,98 193102.
    [153]Kudryk Y.Y. and Zinovchuk AV. Efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes with nonuniform current spreading [J]. Semiconductor Science and Technology,2011,26 095007.
    [154]Jang C.H., Sheu J.K., Tsai CM, et al. Effect of thickness of the p-AlGaN electron blocking layer on the improvement of ESD characteristics in GaN-based LEDs [J]. Photonics Technology Letters, IEEE,2008,20 (13):1142-1144.
    [155]Kuo Y.K., Chang J.Y., Tsai M.C., et al. Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers [J]. Applied Physics Letters,2009,95 011116.
    [156]Li C.K. and Wu Y.R. Study on the Current Spreading Effect and Light Extraction Enhancement of Vertical GaN/InGaN LEDs [J]. Electron Devices, IEEE Transactions on,2012, (99):1-8.
    [157]Edmond J., Abare A., Bergman M., et al. High efficiency GaN-based LEDs and lasers on SiC [J]. Journal of crystal growth,2004,272 (1):242-250.
    [158]Wetzel C, Salagaj T., Detchprohm T., et al. GaInN/GaN growth optimization for high-power green light-emitting diodes [J]. Applied Physics Letters,2004,85 (6):866-868.
    [159]Kim K.S., Kim J.H., Jung S.J., et al. Stable temperature characteristics of InGaN blue light emitting diodes using AlGaN/GaN/InGaN superlattices as electron blocking layer [J]. Applied Physics Letters,2010,96 091104.
    [160]Horng RH, Chiang CC, Hsiao HY, et al. Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders [J]. Applied Physics Letters,2008, 93 111907.
    [161]Li S., Fang Z., Chen H., et al. Defect influence on luminescence efficiency of GaN-based LEDs [J]. Materials science in semiconductor processing,2006,9 (1):371-374.
    [162]Hangleiter A., Hitzel F., Netzel C, et al. Suppression of Nonradiative Recombination by V-Shaped Pits in GaInN/GaN Quantum Wells Produces a Large Increase in the Light Emission Efficiency [J]. Physical Review Letters,2005,95 (12):127402.
    [163]Lester S. D., Ponce F. A., Craford M. G., et al. High dislocation densities in high efficiency GaN-based light-emitting diodes [J]. Applied Physics Letters,1995,66 (10):1249-1251.
    [164]Nakamura Shuji, Senoh Masayuki, Iwasa Naruhito, et al. High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes [J]. Applied Physics Letters, 1995,67(13):1868-1870.
    [165]Abell J. and Moustakas TD. The role of dislocations as nonradiative recombination centers in InGaN quantum wells [J]. Applied Physics Letters,2008,92 (9):091901-3.
    [166]Lin F., Xiang N., Chen P., et al. Investigation of the V-pit related morphological and optical properties of InGaN/GaN multiple quantum wells [J]. Journal of Applied Physics,2008,103 043508.
    [167]Yang JR, Li WC, Tsai HL, et al. Electron microscopy investigations of V defects in multiple InGaN/GaN quantum wells and InGaN quantum dots [J]. Journal of Microscopy,2010,237 (3): 275-281.
    [168]Sonderegger S., Feltin E., Merano M., et al. High spatial resolution picosecond cathodoluminescence of InGaN quantum wells [J]. Applied Physics Letters,2006,89 232109.
    [169]van der Laak Nicole K.., Oliver Rachel A., Kappers Menno J., et al. Role of gross well-width fluctuations in bright, green-emitting single InGaN/GaN quantum well structures [J]. Applied Physics Letters,2007,90(12):121911-3.
    [170]Kaneta A., Funato M. and Kawakami Y. Nanoscopic recombination processes in InGaN/GaN quantum wells emitting violet, blue, and green spectra [J]. Physical Review B,2008,78 (12): 125317.
    [171]Narukawa Y., Sano M., Ichikawa M., et al. Improvement of luminous efficiency in white light emitting diodes by reducing a forward-bias voltage [J]. Japanese journal of applied physics, 2007,46 L963-L965.
    [172]Krames M. R., Shchekin O. B., Mueller-Mach R., et al. Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting [J]. Display Technology, Journal of,2007,3 (2): 160-175.
    [173]Kamiyama S., Iwaya M., Takanami S., et al. UV Light-Emitting Diode Fabricated on Hetero-ELO-Grown A10.22Ga0.78N with Low Dislocation Density [J]. physica status solidi (a), 2002,192 (2):296-300.
    [174]Kamiyama S., Iwaya M., Amano H., et al, presented at the Lasers and Electro-Optics Society, 2005. LEOS 2005. The 18th Annual Meeting of the IEEE,2005 (unpublished).
    [175]Kamiyama S., lida K., Kawashima T., et al. UV laser diode with 350.9-nm-lasing wavelength grown by hetero-epitaxial-lateral overgrowth technology [J]. Selected Topics in Quantum Electronics, IEEE Journal of,2005,11 (5):1069-1073.
    [176]Wu F., Tyagi A., Young E. C., et al. Misfit dislocation formation at heterointerfaces in (Al,In)GaN heteroepitaxial layers grown on semipolar free-standing GaN substrates [J]. Journal of Applied Physics,2011,109 (3):033505-7.
    [177]Motoki K., Hirota R., Okahisa T., et al, (EP Patent 1,995,796,2010).
    [178]Tojyo T., Asano T., Takeya M., et al. GaN-based high power blue-violet laser diodes [J]. Japanese journal of applied physics,2001,40 (part 1):3206-3210.
    [179]Wang CH, Ke CC, Chiu CH, et al. Study of the internal quantum efficiency of InGaN/GaN UV LEDs on patterned sapphire substrate using the electroluminescence method [J]. Journal of crystal growth,2011,315 (1):242-245.
    [180]Wuu DS, Wang WK, Shih WC, et al. Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates [J]. Photonics Technology Letters, IEEE,2005,17 (2):288-290.
    [181]Akita K., Kyono T., Yoshizumi Y., et al. Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates [J]. Journal of Applied Physics,2007,101 (3):033104-5.
    [182]Liu Z., Wei T., Guo E., et al. Efficiency droop in InGaN/GaN multiple-quantum-well blue light-emitting diodes grown on free-standing GaN substrate [J]. Applied Physics Letters,2011, 99 (9):091104-091104-3.
    [183]Zhu D., McAleese C., Haberlen M., et al. InGaN/GaN LEDs grown on Si (111):dependence of device performance on threading dislocation density and emission wavelength [J]. physica status solidi(c),2010,7(7-8):2168-2170.
    [184]Lu I.L., Wu Y.R. and Singh J. A study of the role of dislocation density, indium composition on the radiative efficiency in InGaN/GaN polar and nonpolar light-emitting diodes using drift-diffusion coupled with a Monte Carlo method [J]. Journal of Applied Physics,2010,108 124508.
    [185]Fang Y.H., Xuan R. and Chao C.L. Improvement of the droop efficiency in InGaN-based light-emitting diodes by growing on GaN substrate [J]. physica status solidi (c),2011,
    [186]Ding K., Zeng YP, Wei XC, et al. A wide-narrow well design for understanding the efficiency droop in InGaN/GaN light-emitting diodes [J]. Applied Physics B:Lasers and Optics,2009,97 (2):465-468.
    [187]Lin R.M., Lai M.J., Chang L.B., et al. Effect of an asymmetry AlGaN barrier on efficiency droop in wide-well InGaN double-heterostructure light-emitting diodes [J]. Applied Physics Letters, 2010,97(18):181108-3.
    [188]Han S.H., Cho C.Y., Lee S.J., et al. Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes [J]. Applied Physics Letters,2010,96 051113.
    [189]Wang CH, Chang SP, Chang WT, et al. Efficiency droop alleviation in InGaN/GaN light-emitting diodes by graded-thickness multiple quantum wells [J]. Applied Physics Letters,2010,97 (18): 181101-3.
    [190]Wang J., Wang L., Zhao W., et al. Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization [J]. Applied Physics Letters,2010,97201112.
    [191]Ryu H.Y. Electroluminescence Study of Inhomogeneous Carrier Distribution in InGaN Multiple-quantum-well Light-emitting Diode Structures [J]. Journal of the Korean Physical Society,2010,56 (4):1256-1260.
    [192]Zhu D., Noemaun A.N., Schubert M.F., et al. Enhanced electron capture and symmetrized carrier distribution in GalnN light-emitting diodes having tailored barrier doping [J]. Applied Physics Letters,2010,96121110.
    [193]Yan D., Lu H., Chen D., et al. Forward tunneling current in GaN-based blue light-emitting diodes [J]. Applied Physics Letters,2010,96083504.
    [194]Wang YJ, Xu SJ, Li Q., et al. Band gap renormalization and carrier localization effects in InGaN/ GaN quantum-wells light emitting diodes with Si doped barriers [J]. Applied Physics Letters, 2006,88 041903.
    [195]Schubert M.F. and Schubert E.F. Effect of heterointerface polarization charges and well width upon capture and dwell time for electrons and holes above GalnN/GaN quantum wells [J]. Applied Physics Letters,2010,96 131102.
    [196]Ni X., Lee J., Wu M., et al. Internal quantum efficiency of c-plane InGaN and m-plane InGaN on Si and GaN [J]. Applied Physics Letters,2009,95 101106.
    [197]Senawiratne J., Chatterjee A., Detchprohm T., et al. Junction temperature, spectral shift, and efficiency in GalnN-based blue and green light emitting diodes [J]. Thin Solid Films,2010,518 (6):1732-1736.
    [198]Kwon M.K., Park I.K., Baek S.H., et al. Si delta doping in a GaN barrier layer of InGaN/GaN multiquantum well for an efficient ultraviolet light-emitting diode [J]. Journal of Applied Physics,2005,97 106109.
    [199]Soh CB, Chow SY, Tripathy S., et al. Reduction of V-pit and threading dislocation density in InGaN/GaN heterostructures grown on cracked AlGaN templates [J]. Journal of Physics: Condensed Matter,2008,20 095210.
    [200]Kamber D.S., Wu Y, Letts E., et al. Lateral epitaxial overgrowth of aluminum nitride on patterned silicon carbide substrates by hydride vapor phase epitaxy [J]. Applied Physics Letters, 2007,90(12):122116-3.
    [201]Lymperakis L., Neugebauer J., Albrecht M., et al. Strain induced deep electronic states around threading dislocations in GaN [J]. Physical Review Letters,2004,93 (19):196401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700