新型硅基高效太阳电池的输运性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球性的能源危机和环境恶化正威胁着人类的长期稳定发展,能源与环境问题成了21世纪人类面临的两大主要问题。太阳能光伏发电是解决能源与环境问题,实现人类社会可持续发展的有效途径。然而,和传统发电方式相比,太阳电池光伏发电的成本仍然非常高,这就限制了太阳能光伏发电的大规模应用。因此,寻找太阳电池新材料、开发太阳电池新技术以进一步提高转换效率、降低生产成本是摆在面前的迫切任务。
     本文正是在上述背景下,结合本课题组承担的国家“863”计划等项目开展了一系列研究工作。本文主要通过数值模拟和理论分析,深入地研究了β-FeSi_2太阳电池和μc-3C-SiC发射极HIT太阳电池以及杂质光伏新概念太阳电池的输运性能,预先为实验制备相关高效太阳电池提供了理论基础和技术支持。主要研究内容和研究结果包括以下几个方面:
     (1)构建了β-FeSi_2太阳电池的数值模型,并对β-FeSi_2薄膜同质结太阳电池进行了数值研究。得到β-FeSi_2薄膜同质结太阳电池的最优结构参数为:发射区厚度20nm,浓度2×1018cm~(-3);基区厚度500nm,浓度1×1016cm~(-3)。参数优化后的电池性能为:η=16.32%,Jsc=45.88mA/cm~2,FF=78.8%,Voc=0.451V。通过计算得到该薄膜电池的理论极限转换效率可以达到21.11%。
     (2)研究了发射区参数、光入射面、界面态和各种复合机制等因素对β-FeSi_2/c-Si异质结太阳电池性能的影响。结果表明:采用p型β-FeSi_2与n型c-Si配置的异质结电池性能更佳,且太阳光从β-FeSi_2面入射要好于从Si面入射。高的界面态密度会导致很多光生载流子的复合以及产生大的反向饱和电流。由于β-FeSi_2的光吸收系数非常大,使得β-FeSi_2太阳电池性能对表面复合速度非常敏感,因而钝化β-FeSi_2表面是制备高效β-FeSi_2太阳电池的关键。同时,俄歇复合和辐射复合对器件性能影响较小,而当体SRH复合寿命大于1μs时则SRH复合对电池转换效率影响很小。β-FeSi_2/c-Si异质结太阳电池的发射区优化参数为:p型发射区β-FeSi_2薄膜厚度350nm,掺杂浓度为2×10~(17)cm~(-3),转换效率可以达到19.49%。β-FeSi_2/c-Si异质结太阳电池的理论极限效率可以达到28.12%。
     (3)提出把β-FeSi_2电池用作叠层电池的底电池,使太阳光谱利用范围扩宽到近红外区1400nm以上,并从理论上详细探讨了各种因素对a-Si/μc-Si/β-FeSi_2叠层薄膜电池性能的影响。结果表明:a-Si/μc-Si/β-FeSi_2叠层电池的子电池光吸收层的最优厚度分别为260nm/900nm/40nm,此时各子电池的电流比较匹配,电池转换效率可以达到19.80%。μc-Si子电池的优化带隙为1.30eV,可使a-Si/μc-Si/β-FeSi_2叠层薄膜电池的转换效率最高。对于a-Si/μc-Si/β-FeSi_2叠层电池,AM0光谱辐照时转换效率最高,其次是AM1.0,最小的是AM1.5G。该叠层薄膜电池的转换效率温度系数为-0.308%/K,比μc-Si单结电池要小,仅大于a-Si单结电池,因此具有很好的温度系数,适合于热带地区的使用。当改善a-Si和μc-Si材料的品质后,a-Si/μc-Si/β-FeSi_2叠层薄膜电池的短路电流密度可以达到16mA/cm2左右,且电池转换效率可能达到24.50%。
     (4)提出用μc-3C-SiC材料取代a-Si作为HIT电池的发射极。结果表明:用μc-3C-SiC材料作HIT太阳电池的发射极,可以有效地减少短波区光吸收损失,改善蓝光光谱响应,使得电池的短路电流密度增大,进而提高电池的转换效率。
     (5)针对杂质光伏新概念太阳电池,研究了分别掺入单能级IPV杂质Te和In对晶体硅电池性能的影响。结果表明:掺入单能级IPV杂质Te,电池的短路电流密度可以增加5.38mA/cm~2,电池转换效率净增量为2.79%。IPV效应使电池的近红外光谱响应产生了延展,且当电池内部陷光越好时,近红外光谱响应延展越宽。对于靠近价(导)带边的受(施)主型IPV杂质,电子(空穴)热俘获截面大小对提高IPV电池转换效率有关键作用,可以根据IPV杂质的热俘获截面来判断它们用于IPV电池对提高电池转换效率的潜能。
     (6)研究了IPV杂质能级位置和双能级IPV杂质Mg对晶体硅电池性能的影响,以及同时掺入In和Tl两种不同IPV杂质时对电池性能的影响。结果表明:对于施主型IPV杂质,当杂质能级位于导带下0.20~0.25eV区间时,所掺入的杂质将使IPV电池的转换效率净增量最大化。当有两个能级起作用时,能级位置不是较优的能级将分流部分入射的子带光子,使得电池转换效率低于单能级在较优位置起作用时的转换效率。对于掺两种不同的IPV杂质,可以改变其中一种杂质的浓度使电池效率提高。
The long-term stable development of humans is under threat due to the global energy crisis andenvironmental degradation. Energy and environment are two major issues in the world during the21stcentury. Solar photovoltaic technology is an effective way of resolving the energy exhaustion andenvironmental pollution and realizing the sustainable development of human society. However,compared to the traditional power generation, the cost of solar photovoltaic technology is still veryhigh, which limits the large-scale application of solar photovoltaic technology. Therefore, it is anurgent task to search for new materials and to develop new technologies for further improving cellefficiency and reducing cell cost.
     This work has been carried out under the above-mentioned background and by the support of thenational “863” project. The transport properties of β-FeSi_2solar cells and impurity photovoltaic (IPV)solar cells have been investigated by numerical simulation and theory analysis. These research resultscan provide a theory guide for preparing the relating high-efficiency solar cells. Main contents andresults of this study are as follows.
     (1)The numerical model of β-FeSi_2solar cell has been constructed and β-FeSi_2homojunctionsolar cell has been simulated. The optimal structure parameters of β-FeSi_2homojunction solar cell areas following: emitter thickness20nm, emitter concentration2×1018cm~(-3), base thickness500nm, baseconcentration1×1016cm~(-3). The corresponding cell performance is η=16.32%, Jsc=45.88mA/cm2,FF=78.8%, and Voc=0.451V. The maximum theoretical efficiency of the cell can reach21.11%.
     (2)The influences of emitter parameters, light incidence surface, interface states andrecombination mechanism on the β-FeSi_2/c-Si heterojunction solar cell performance have beenstudied. The results show that p-β-FeSi_2/n-c-Si is a good structure configuration and the lightincidence from β-FeSi_2surface is better than that from Si surface. Interface states should beminimized since large interface states can cause more recombination of photocarriers and largereverse saturation current. The very large light absorption coefficient of β-FeSi_2results in the fact thatβ-FeSi_2solar cell performance is very sensitive to surface recombination velocity. Moreover, theAuger recombination and radiative recombination have less impact on device performance. When theSRH recombination lifetime is greater than1μs, the SRH recombination has little effect on cellefficiency. The optimal thickness and concentration for the emitter of p-β-FeSi_2/n-c-Si are350nm and2×10~(17)cm~(-3), respectively. The conversion efficiency of the optimized cell can achieve19.49%. The theoretical limit of efficiency for β-FeSi_2/c-Si heterojunction solar cells can attain28.12%.
     (3)β-FeSi_2has been applied to the bottom absorber of the tandem solar cell for widening thespectrum response above1400nm. The effects of sub-cell parameters, μc-Si bandgap, spectralirradiance and operating temperature on the a-Si/μc-Si/β-FeSi_2triple-junction solar cell performancehave been investigated. The optimal absorber thickness of sub-cell for a-Si/μc-Si/β-FeSi_2is260,900and40nm, respectively. The efficiency of the optimized cell can achieve19.80%. The optimalbandgap of μc-Si cell is1.30eV. For a-Si/μc-Si/β-FeSi_2tandem cell, when spectral irradiance is AM0,the conversion efficiency is highest, then AM1.0, and the smallest one AM1.5G. Moreover, thetemperature coefficient of conversion efficiency for the tandem cell is-0.308%/K. This value is lowerthan that of μc-Si single-junction cell, and it is only higher than that of a-Si single-junction cell. Whenmaterial quality of a-Si and μc-Si is improved, the short-circuit current density of a-Si/μc-Si/β-FeSi_2can reach around16mA/cm2, and the conversion efficiency may achieve24.50%.
     (4)μc-3C-SiC material has been proposed as the emitter of the HIT solar cell. The resultindicates that the cell efficiency is improved by using a μc-3C-SiC emitter. The origin of theimprovement is the lower absorption loss of μc-3C-SiC emitter in short-wavelength region.
     (5)The influences of the Te and In IPV impurities on the crystalline silicon (c-Si) cellperformance have been studied. The short-circuit current density can be increased by5.38mA/cm2and the efficiency can be increased by2.79%due to the incorporation of IPV impurity Te. In addition,IPV effect can extend near-infrared spectral response, and a good light trapping can result in the widerextension of the near-infrared spectral response. Furthermore, the thermal capture cross-section ofelectron (hole) is crucial to the device performance and that of hole (electron) has few influences onthe cell property for acceptor-type (donor-type) impurity level near the valence (conduction) bandedge. These results may help to evaluate the potential of the IPV effect for improving cell efficiencyaccording to the thermal capture cross-sections of the impurity in host semiconductor.
     (6)The effects of the energy level, and Mg, In, Tl impurity on the IPV c-Si cell performancehave been studied. The optimal energy level for donor-type IPV impurity is at0.20-0.25eV below theconduction band edge. When two levels work, the energy level, which is not at optimal location,would divert some incident sub-band photons, making efficiency less than those with an optimalsingle-level. When two different IPV impurities are introduced into cells, the concentration of oneimpurity can be changed for increasing cell efficiency.
引文
[1] H. Termuehlen, W. Emsperger. Clean and Efficient Coal-Fired Power Plants: DevelopmentToward Advanced Technologies[M]. New York: ASME,2003.
    [2]《中国新能源和可再生能源》1999年白皮书.北京:中国计量出版社,2000.
    [3] A.E. Becquerel. Recherches sur les effets de la radiation chimique de la lumiere solaire aumoyen des courants electriques[J]. Comptes Rendus de L'Academie des Sciences,1839,9:145~149.
    [4] A.E. Becquerel. Memoire sur les effects d'electriques produits sous l'influence des rayonssolaireses sciences[J]. Comptes Rendus de L'Academie des Sciences,1839,9:561~567.
    [5] C.E. Fritts. On a new form of selenium photocell[J]. American Journal of Science,1883,26:465~472.
    [6] D.M. Chapin, C.S. Fuller, G.L. Pearson. A new silicon p-n Junction photocell for convertingsolar radiation into electrical power[J]. Journal of Applied Physics,1954,25(5):676~677.
    [7]童忠良,张淑谦,杨京京.新能源材料与应用[M].北京:国防工业出版社,2008.
    [8] J. Zhao, A. Wang, M.A. Green, et al. Novel19.8%efficient “honeycomb” textured multi-crystalline and24.4%monocrystalline silicon solar cells[J]. Applied Physics Letters,1998,73(14):1991~1993.
    [9] REN21, Renewables Global Status Report:2011,(REN21, Renewable Energy Policy Networkfor the21st Century, Paris,2011), http://www.ren21.net/Portals/97/documents/GSR/REN21_GSR2011.pdf
    [10] M.A. Green, K. Emery, Y. Hishikawa, et al. Solar cell efficiency tables (Version38)[J].Progress in Photovoltaics: Research and Applications,2011,19(5):565~572.
    [11] R. Kuroda. Studies on the fabrication of high-quality β-FeSi2thin film and the control ofconduction type[D]. Nippon Institute of Technology,2004.
    [12] M.C. Bost, J.E. Mahan. Optical properties of semiconducting iron disilicide thin films[J].Journal of Applied Physics,1985,58(7):2696~2703.
    [13] Z.Yang, K.P. Homewood, M.S. Finney, et al. Optical absorption study of ion beam synthesizedpolycrystalline semiconducting FeSi2[J]. Journal of Applied Physics,1995,78(3):1958~1963.
    [14] D. Leong, M.A. Harry, K.J. Reeson, et al. A silicon/iron-disilicide light-emitting diodeoperating at a wavelength of1.5μm[J]. Nature,1997,387(6634):686~688.
    [15] T. Suemasu, Y. Negishi, K. Takakura, et al. Room temperature1.6μm electro-luminescencefrom a Si-based light emitting diode with β-FeSi2active region[J]. Japanese Journal of AppliedPhysics, Part2,2000,39: L1013~L1015.
    [16] D.H. Tassis, C.L. Mitsas, T.T. Zorba, et al. Infrared spectroscopic and electronic transportproperties of polycrystalline semiconducting FeSi2thin films[J]. Journal of Applied Physics,1996,80(2):962~968.
    [17] H.L. Shen, L.F. Lu, L.H. Zhou. A novel β-FeSi2thin film prepared by sputtering for solar cellapplication[C]. Proceedings of Ises Solar World Congress, Japan,2007:1224~1227.
    [18]侯国付,郁操,赵颖,等.直流磁控溅射法制备单一相高质量β-FeSi2薄膜[J].太阳能学报,2009,30(7):861~865.
    [19] H. Katsumata, Y. Makita, N. Kobayashi, et al. Effect of multiple-step annealing on theformation of semiconducting β-FeSi2and α-Fe2Si5on Si(100) by ion beam synthesis[J].Japanese Journal of Applied Physics,1997,36:2802~2812.
    [20] S.N. Wang, N. Otogawa, Y. Fukuzawa, et al. Prototype infrared optical sensor and solar cellmade of β-FeSi2thin films[C]. Growth Techniques Proceedings of SPIE,2003,5065:188~195.
    [21] N. Vouroutzis, T.T. Zorba, C. A. Dimitriadis, et al. Growth of β-FeSi2particles on silicon byreactive deposition epitaxy[J]. Jounal of Alloys and Compounds,2008,448(1-2):202~205.
    [22] K. Takakura, T. Suemasu, N. Hiroi, et al. Improvement of the electrical properties of β-FeSi2films on Si(100) by high-temperature annealling[J]. Japanese Journal of Applied Physics, part2,2000,39(3A/B): L233~L236.
    [23] K. Takaura, T. Suemasu, Y. Ikura, et al. Control of the conduction type of nondoped highmobility β-FeSi2Films grown from Si/Fe multilayers by change of Si/Fe ratios[J]. JapaneseJournal of Applied Physics, part2,2000,39(8A): L789-L791.
    [24] L. Luo, C.E. Zybill, H.G. Ang, et al. Substrate influence on the formation of FeSi and FeSi2films from cis-Fe(SiCl3)2(CO)4by LPCVD[J]. Thin Solid Films,1998,325(1-2):87~91.
    [25] K.H. Tan, D.Z. Chi, K.L. Pey. Optical and electrical characterization of sputter deposited FeSi2and its evolution with annealing temperature[J]. Journal of Applied Physics,2008,104(6):064117.
    [26] H. Kakemoto, Y. Makita, Y. Kino, et al. Small polaron of β-FeSi2obtained from opticalmeasurement[J].Thin Solid Films,2001,381(2):251~255.
    [27] M.C. Bost, J.E. Mahan. Semiconducting silicides as potential materials for electro-optic verylarge scale integrated circuit interconnects[J]. Journal of Vacuum Science and Technology B,1986,4(6):1336~1338.
    [28] M. Powalla, K. Herz. Co-evaporated thin films of semiconducting β-FeSi2[J]. Applied SurfaceScience,1993,65/66:482~488.
    [29] A. Datta, S. Kal, S. Basu. Current-voltage studies on β-FeSi2/Si heterojunction[J]. Bulletin ofMaterials Science,2000,23(4):331~334.
    [30] E. Arushanov. Possible new material candidate for solar cell application[J]. Moldavian Journalof the Physical Sciences,2002,1(4):96~101.
    [31] B. Tatar, K. Kutlu, M. Urgen. Synthesis of β-FeSi2/Si heterojunctions for photovoltaicapplications by unbalanced magnetron sputtering[J]. Thin Solid Films,2007,516(1):13~16.
    [32] G.K. Dalapati, S.L. Liew, A.S.W. Wong, et al. Photovoltaic characteristics of p-β-FeSi2(Al)/n-Si(100) heterojunction solar cells and the effects of interfacial engineering[J]. AppliedPhysics Letters,2011,98(1):013507.
    [33] Y. Maeda, K. Umezawa, K. Miyake, et al. Infrared-photovoltaic response of ion-beamsynthesized β-FeSi2/n-Si heterojunctions[J]. Materials Research Society Symposia Proceedings,2000,607:315~320.
    [34] Y. Maeda, K. Umezawa, Y. Hayashi, et al. Photovoltaic properties of ion-beam synthesizedβ-FeSi2/n-Si heterojunctions[J]. Thin Solid Films,2001,381(2):256~261.
    [35] Y. Maeda, Y. Terai, M. Itakura. Enhancement of photoresponse properties of β-FeSi2/Siheterojunctions by Al doping[J]. Optical Materials,2005,27(5):920~924.
    [36] Z.X. Liu, M. Watanabe, M. Hanabusa. Electrical and photovoltaic properties of iron-silicide/silicon heterostructures formed by pulsed laser deposition[J]. Thin Solid Films,2001,381(2):262~266.
    [37] Z.X. Liu, S.N. Wang, N. Otogawa, et al. A thin-film solar cell of high-quality β-FeSi2/Siheterojunction prepared by sputtering[J]. Solar Energy Materials and Solar Cells,2006,90(3):276~282.
    [38] Z.X. Liu, S.N. Wang, N. Otogawa et al. A novel β-FeSi2thin film solar cell fabricated bysputtering[C]. Proceedings of the3rd World Conference on Photovoltaic Energy Conversion,Osaka, Japan,2003:126~129.
    [39] Z.X. Liu, M. Osamura, T. Ootsuka, et al. Doping of β-FeSi2films with boron and arsenic bysputtering and its application for optoelectronic devices[J]. Optical Materials,2005,27(5):942~947.
    [40] Z.X. Liu, M. Osamura, T. Ootsuka, et al. Formation of β-FeSi2thin films on non-siliconsubstrates[J]. Thin Solid Films,2006,515(4):1532~1538.
    [41] Z.X. Liu, M. Osamura, T. Ootsuka, et al. Effect of a Fe3Si buffer layer for the growth ofsemiconducting β-FeSi2thin film on stainless steel substrate[J]. Journal of Crystal Growth,2007,307(1):82~86.
    [42] N. Uchitomi, N. Nishino, A. Mori, et al. Characterization of a β-FeSi2p–n junction formed bythe PECS method[J]. Thin Solid Films,2004,461(1):174~178.
    [43] N. Momose, J. Shirai, H. Tahara, et al. Toward the β-FeSi2p-n homo-junction structure[J]. ThinSolid Films,2007,515(22):8210~8215.
    [44] M. Shaban, K. Nakashima, W. Yokoyama, et al. Photovoltaic properties of n-type β-FeSi2/p-type Si heterojunctions[J]. Japanese Journal of Applied Physics,2007,46: L667~L669.
    [45] M. Shaban, K. Nakashima, T. Yoshitake. Substrate temperature dependence of photovoltaicproperties of β-FeSi2/Si heterojunctions prepared by facing-target DC sputtering[J]. JapaneseJournal of Applied Physics,2007,46:7708~7710.
    [46] M. Shaban, H. Kondo, K. Nakashima, et al. Electrical and photovoltaic properties of n-typenanocrystalline-FeSi2/p-type Si heterojunctions prepared by facing-targets direct-currentsputtering at room temperature, Japanese Journal of Applied Physics,2008,47:5420~5422.
    [47] M. Shaban, K. Nomoto, S. Izumi, et al. Characterization of near-infrared n-type β-FeSi2/p-typeSi heterojunction photodiodes at room temperature[J]. Applied Physics Letter,2009,94(22):222113-1~222113-3.
    [48] M. Shaban, S. Izumi, K. Nomoto, et al. N-Type β-FeSi2/intrinsic-Si/p-type Si heterojunctionphotodiodes for near-infrared light detection at room temperature[J]. Applied Physics Letter,2009,95(16):162102-1~162102-3.
    [49]姚振钰,任治璋,王向明,等.用质量分离的低能离子束外延法生长β-FeSi2半导体外延膜的初步研究[J].半导体学报,1992,13(8):518~521.
    [50]陈向东,王连卫,林贤,等.退火条件对β-FeSi2形成的影响[J].半导体学报,1995,16(10):794~797.
    [51]李晓娜,聂冬,董闯,等.离子注入合成β-FeSi2薄膜的显微结构[J].物理学报,2002,5l(1):115~124.
    [52]聂冬,李晓娜,董闯. β-FeSi2半导体薄膜与Si基体取向关系的研究[J].材料热处理学报,2002,23(3):59~64.
    [53]李晓娜,聂冬,董闯.碳掺杂β-FeSi2薄膜的电子显微学研究[J].电子显微学报,2002,21(1):43~51.
    [54]罗胜耘,谢泉,张晋敏,等.热处理对环境半导体材料β-FeSi2形成的影响[J].贵州大学学报(自然科学版),2006,23(1):81~85.
    [55] Y.H Zhou, G. Yang, Z.H Zhang, et al. Optical characterization of β-FeSi2thin films prepared byfemtosecond laser ablation[J]. Chinese Physics Letters,2007,24(2):563~566.
    [56]周幼华,陆培祥,杨光,等.飞秒脉冲激光沉积β-FeSi2/Si(111)薄膜及其光学性质研究[J].无机材料学报,2007,22(3):544~549.
    [57]沈鸿烈,高超,黄海宾.真空热处理制备β-FeSi2光电薄膜的研究[J].功能材料,2007,38:370~372.
    [58]郭艳,沈鸿烈,张娟,等. Fe/Si多层膜经快速热退火合成β-FeSi2薄膜的研究[J].真空科学与技术学报,2010,30(2):167~170.
    [59]张娟,沈鸿烈,鲁林峰,等.离子束溅射沉积Fe/Si多层膜法合成β-FeSi2薄膜的研究[J].功能材料,2010,41(5):886~888.
    [60]鲁林峰,沈鸿烈,张娟,等. Fe/Si多层膜亚层厚度比对β-FeSi2薄膜结构和表面形貌的影响[J].人工晶体学报,2010,39(4):539~543.
    [61]郁操,侯国付,刘芳,等.退火温度和β-FeSi2薄膜厚度对n-β-FeSi2/p-Si异质结太阳电池的影响[J].人工晶体学报,2009,38(3):662~666.
    [62] G.F. Hou, C. Yu, F. Liu, et al. Low-temperature deposition of high quality β-FeSi2films byco-sputtering of Fe and Si for β-FeSi2/Si heterojunction solar cell[J]. Physica Status Solidi C,2010,7(3-4):1081~1084.
    [63] J.X. Xu, R.H. Yao, Y.R. Liu. Growth of β-FeSi2thin film on textured silicon substrate for solarcell application[J]. Applied Surface Science,2011,257(23):10168~10171.
    [64] Y. Gao, H.W. Liu, Y. Lin, et al. Computational design of high efficiency FeSi2thin-film solarcells[J]. Thin Solid Films,2011,519(24):8490~8495.
    [65] T. Sawada, N. Terada, S. Tsuge, et al. High-efficiency a-Si/c-Si heterojunction solar cell[C].Proceedings of the24th IEEE Photovoltaic Specialists Conference, Hawaii,1994:1219~1226.
    [66] M. Taguchi, K. Kawamoto, S. Tsuge, et al. HITTMcells—high-efficiency crystalline Si cellswith novel structure[J]. Progress in Photovoltaics: Research and Applications,2000,8(5):503~513.
    [67] H. Sakata, T. Nakai, T. Baba, et al.20.7%highest efficiency large area (100.5cm2) HIT cell[C].Proceedings of the28th IEEE Photovoltaic Specialists Conference, Anchorage,2000:7~12.
    [68] Y. Tsunomura, Y. Yoshimine, M. Taguchi, et al. Twenty-two percent efficiency HIT solar cell[J].Solar Energy Materials and Solar Cells,2009,93(6/7):670~673.
    [69] T. Mishima, M. Taguchi, H. Sakata, et al. Development status of high-efficiency HIT solarcells[J]. Solar Energy Materials and Solar Cells,2011,95(1):18~21.
    [70] T. Kinoshita, D. Fujishima, A. Yano, et al. The approaches for high efficiency HIT solar cellwith very thin (<100μm) silicon wafer over23%[C]. Proceedings of the26th EU PVSEC,Hamburg,2011.
    [71]韩兵,周炳卿,郝丽媛,等.微晶硅/晶体硅HIT结构异质结太阳电池的模拟计算与分析[J].内蒙古师范大学学报(自然科学汉文版),2010,39(3):257~262.
    [72]张心强,张维佳,武美伶,等.纳米硅薄膜制备及HIT太阳能电池[J].功能材料,2007,38(10):1741~1744.
    [73] M.A. Green. Third Generation Photovoltaics: Advanced Solar Energy Conversion[M]. Berlin,Heidelberg: Springer,2003.
    [74] G. Conibeer, R. Patterson, L. Huang, et al. Modelling of hot carrier solar cell absorbers[J].Solar Energy Materials and Solar Cells,2010,94(9):1516~1521.
    [75] S.K. Shrestha, P. Aliberti, G.J. Conibeer. Energy selective contacts for hot carrier solar cells[J].Solar Energy Materials and Solar Cells,2010,94(9):1546~1550.
    [76] B.A. Danilchenko, A.P. Budnyk, L.I. Shpinar, et al. Radiation resistance of GaAs solar cellsand hot carriers[J]. Solar Energy Materials and Solar Cells,2011,95(9):2551~2556.
    [77] C. Tablero, A. Martí, A. Luque. Analyses of the intermediate energy levels in ZnTe:O alloys[J].Applied Physics Letters,2010,96(12):121104.
    [78] R. Strandberg, T.W. Reenaas. Limiting efficiency of intermediate band solar cells withspectrally selective reflectors[J]. Applied Physics Letters,2010,97(3):031910.
    [79] T. Nozawa, Y. Arakawa. Detailed balance limit of the efficiency of multilevel intermediateband solar cells[J]. Applied Physics Letters,2011,98(17):171108.
    [80] Y. Wang, N.F. Chen, X.W. Zhang, et al. Evaluation of thermal radiation dependent performanceof GaSb thermophotovoltaic cell based on an analytical absorption coefficient model[J]. SolarEnergy Materials and Solar Cells,2010,94(10):1704~1710.
    [81] K.J. Cheetham, P.J. Carrington, N.B. Cook, et al. Low bandgap GaInAsSbP pentanary thermo-photovoltaic diodes[J]. Solar Energy Materials and Solar Cells,2011,95(2):534~537.
    [82] F. Lahoz, C. Pérez-Rodríguez, S.E. Hernández, et al. Upconversion mechanisms in rare-earthdoped glasses to improve the efficiency of silicon solar cells[J]. Solar Energy Materials andSolar Cells,2011,95(7):1671~1677.
    [83] J.C. Goldschmidt, S. Fischer, P. L per, et al. Experimental analysis of upconversion with bothcoherent monochromatic irradiation and broad spectrum illumination[J]. Solar EnergyMaterials and Solar Cells,2011,95(7):1960~1963.
    [84] A.S. Brown, M.A. Green. Limiting efficiency for current-constrained two-terminal tandem cellstacks[J]. Progress in Photovoltaics: Research and Applications,2002,10(5):299~307.
    [85] I. Tobias, A. Luque. Ideal efficiency of monolithic, series-connected multijunction solar cells[J].Progress in Photovoltaics: Research and Applications.2002,10(5):323~329.
    [86] R.T. Ross, A.J. Nozik. Efficiency of hot-carrier solar energy converters[J]. Journal of AppliedPhysics,1982,53(5):3813~3818.
    [87] H.J. Queisser. Multiple carrier generation in solar cells[J]. Solar Energy Materials and SolarCells,2010,94(11):1927~1930.
    [88] S. Deb, H. Saha. Secondary ionisation and its possible bearing on the performance of a solarcell[J]. Solid-State Electronics,1972,15(12):1389~1391.
    [89] S. Kolodinski, J.H. Werner, T. Wittchen, et al. Quantum efficiencies exceeding unity due toimpact ionization in silicon solar cells[J]. Applied Physics Letters,1993,63(17):2405~2407.
    [90] T. Trupke, M.A. Green, P. Wurfel. Improving solar cell efficiencies by down-conversion ofhigh-energy photons[J]. Journal of Applied Physics,2002,92(3):1668~1674.
    [91] T. Trupke, M.A. Green, P. Wurfel. Improving solar cell efficiencies by up-conversion of sub-band-gap light[J]. Journal of Applied Physics,2002,92(7):4117~4121.
    [92] P. Wurfel, W. Ruppel. Upper limit of thermophotovoltaic solar-energy conversion[J]. IEEETransactions on Electron Devices,1980,27(4):745~750.
    [93] M. Wolf. Limitations and possibilities for improvement of photovoltaic solar energy converters,Part I: Considerations for earth’s surface operation[J]. Proceedings of the IRE,1960,48(7):1246~1263.
    [94] W. Shockley, H.J. Quiesser. Detailed balance limit of efficiency of p-n junction solar cells[J].Journal of Applied Physics,1961,32(3):510~519.
    [95] G. Guttler, H.J. Queisser. Impurity photovoltaic effect in silicon[J]. Energy Conversion,1970,10(2):51~55.
    [96] P. Wurfel. Limiting efficiency for solar cells with defects from a three-level model[J]. SolarEnergy Materials and Solar Cells,1993,29(4):403~413.
    [97] M.J. Keevers, M.A. Green. Efficiency improvements of silicon solar cells by the impurityphotovoltaic effect[J]. Journal of Applied Physics,1994,75(8):4022~4031.
    [98] M. Schmeits, A.A. Mani. Impurity photovoltaic effect in c-Si solar cells. A numerical study[J].Journal of Applied Physics,1999,85(4):2207~2212.
    [99] G. Beaucarne, A.S. Brown, M.J. Keevers, et al. The impurity photovoltaic (IPV) effect inwide-bandgap semiconductors: an opportunity for very-high-efficiency solar cells?[J].Progress in Photovoltaics: Research and Applications,2002,10(5):345~353.
    [100] S. Khelifi, J. Verschraegen, M. Burgelman, et al. Numerical simulation of the impurityphotovoltaic effect in silicon solar cells[J]. Renewable Energy,2008,33(2),293~298.
    [101] S. Khelifi, M. Burgelman, J. Verschraegen, et al. Impurity photovoltaic effect in GaAs solarcell with two deep impurity levels[J]. Solar Energy Materials and Solar Cells,2008,92(12):1559~1565.
    [102] G. Azzouzi, M. Chegaar. Impurity photovoltaic effect in silicon solar cell doped with sulphur: Anumerical simulation[J]. Physica B: Condensed Matter,2011,406(9):1773~1777.
    [103] N.F. Mott. Metal-insulator transition. Reviews of Modern Physics,1968,40(4):677~683.
    [104] A. Luque, A. Marti. Increasing the efficiency of ideal solar cells by photon induced transitionsat intermediate levels[J]. Physical Review Letters,1997,78(26):5014~5017.
    [105] E. Antolin, A. Marti, J. Olea, et al. Lifetime recovery in ultrahighly titanium-doped silicon forthe implementation of an intermediate band material[J]. Applied Physics Letters,2009,94(4):042115.
    [106] A. Luque, A. Marti. The intermediate band solar cell: progress toward the realization of anattractive concept[J]. Advanced Materials,2010,22(2):160~174.
    [107] A. Luque, A. Marti. Photovoltaics: towards the intermediate band[J]. Nature Photonics,2011,5(3):137~138.
    [108] B. Lee, L.W. Wang. Electronic structure of ZnTe:O and its usability for intermediate band solarcell[J]. Applied Physics Letters,2010,96(7):071903.
    [109] C.G. Bailey, D.V. Forbes, R.P. Raffaelle, et al. Near1V open circuit voltage InAs/GaAsquantum dot solar cells[J]. Applied Physics Letters,2011,98(16):163105.
    [110] J. Olea, M. Toledano-Luque, D. Pastor, et al. High quality Ti-implanted Si layers above theMott limit[J]. Journal of Applied Physics,2010,107(10):103524.
    [111] P.G. Linares, A. Marti, E. Antolin, et al. III-V compound semiconductor screening forimplementing quantum dot intermediate band solar cells[J]. Journal of Applied Physics,2011,109(1):014313.
    [112] E. Antolin, A. Marti, C. Farmer, et al. Reducing carrier scape in the InAs/GaAs quantum dotintermediate band solar cell[J]. Journal of Applied Physics,2010,108(6):064513.
    [113] A. Luque, A. Marti, E. Antolín, et al. New hamiltonian for a better understanding of thequantum dot intermediate band solar cells[J]. Solar Energy Materials and Solar cells,2011,95(8):2095~2101.
    [114] S. Tomic. Intermediate-band solar cells: Influence of band formation on dynamical processes inInAs/GaAs quantum dot arrays[J]. Physical Review B,2010,82(19):195321-1~195321-15.
    [115] T. Sugaya, O. Numakami, S. Furue, et al. Tunnel current through a miniband in InGaAsquantum dot superlattice solar cells[J]. Solar Energy Materials and Solar cells,2011,95(10):2920~2923.
    [116] K.A. Sablon, J.W. Little, V. Mitin, et al. Strong enhancement of solar cell efficiency due toquantum dots with built-in charge[J]. Nano Letters,2011,11(6):2311~2317.
    [117] R.W. Peng, M. Mazzer, K.W.J. Barnham. Efficiency enhancement of ideal photovoltaic solarcells by photonic excitations in multi-intermediate band structures[J]. Applied Physics Letters,2003,83(4):770~772.
    [118] B.X. Zhao, J.C. Zhou, Y.M. Chen. Numerical simulation of the impurity photovoltaic effect insilicon solar cells doped with thallium[J]. Physica B: Condensed Matter,2011,405(18):3834~3837.
    [119] Q.W. Deng, X.L. Wang, C.B. Yang, et al. Computational investigation of InxGa1-xN/InNquantum-dot intermediate-band solar cell[J]. Chinese Physics Letters,2010,28(1):018401~018404.
    [120] Q.W. Deng, X.L. Wang, C.B. Yang, et al. Theoretical study on InxGa1-xN/GaN quantum dotssolar cell[J]. Physica B: Condensed Matter,2011,406(1):73~76.
    [121]刘恩科.光电池及其应用[M].北京:科学出版社,1989.
    [122]杨德仁.太阳电池材料[M].北京:化学工业出版社,2009.
    [123]刘恩科,朱秉升,罗晋生.半导体物理学[M](第7版),北京:电子工业出版社,2009.
    [124] W. Shockley, W.T. Read. Statistics of the recombinations of holes and electrons[J]. PhysicalRevew,1952,87(5):835~842.
    [125] R.N. Hall. Electron-hole recombination in germanium[J]. Physical Review,1952,87(2):387~387.
    [126] M.A. Green. Solar Cells: Operating Principles, Technology and System Applications[M]. NewJersey: Prentice-Hall, Inc.,1982.
    [127]熊绍珍,朱美芳.太阳能电池基础与应用[M].北京:科学出版社,2009.
    [128] S.J. Fonash. Solar Cell Device Physics[M](2nd Ed.). Burlington: Academic Press,2010.
    [129] S. Selberherr. Analysis and Simulation of Semiconductor Devices[M]. Wien: Springer,1984.
    [130] M. Zeman, J. Krc. Optical and electrical modeling of thin-film silicon solar cells[J]. Journal ofMaterials Research,2008,23(4):889~898.
    [131] D.A. Clugston, P.A. Basore. PC1D version5:32-bit solar cell modeling on personalcomputers[C]. Proceedings of the26th IEEE Photovoltaic Specialists Conference, Anaheim,1997:207~210. http://www.pv.unsw.edu.au/info-about/our-school/products-services/pc1d
    [132] J.K. Arch, F.A. Rubinelli, J.Y. Hou, et al. Computer analysis of the role of p-layer quality,thickness, transport mechanisms, and contact barrier height in the performance of hydrogenatedamorphous silicon p-i-n solar cells[J]. Journal of Applied Physics,1991,69(10):7057~7066.Also see: http://www.ampsmodeling.org
    [133] M. Burgelman, P. Nollet, S. Degrave. Modeling polycrystalline semiconductor solar cells[J].Thin Solid Films,2000,361/362:527~532. Also see: http://www.elis.ugent.be/ELISgroups/solar/projects/scaps.html
    [134] A. Froitzheim, R. Stangl, L. Elstner, et al. AFORS-HET: A computer program for thesimulation of heterojunction solar cells to be distributed for public use[C]. Proceedings of the3rd World Conference on Photovoltaic Energy Conversion, Osaka,2003:279~282.http://www.helmholtz-berlin.de/forschung/enma/si-pv/projekte/asicsi/afors-het/index_en.html
    [135] M. Zeman, J.A. Willemen, L.L.A. Vosteen, et al. Computer modelling of current matching ina-Si:H/a-Si:H tandem solar cells on textured TCO substrates[J]. Solar Energy Materials andSolar Cells,1997,46(2):81~99.
    [136] M. Topic, F. Smole, J. Furlan. Band-gap engineering in CdS/Cu(In,Ga)Se2solar cells[J].Journal of Applied Physics,1996,79(11):8537~8541.
    [137] J.L. Gray. ADEPT: A general purpose device simulator for modeling solar cells in one-two andthree dimensions[C]. Proceedings of the22nd IEEE Photovoltaic Specialists Conference, LasVegas, NV,1991:436~438.
    [138] N.G. Galkin, A.M. Maslov, A.O. Talanov. Electronic structure and simulation of the dielectricfunction of β-FeSi2epitaxial films on Si(111)[J]. Physics of the Solid State,2002,44(4):714~719.
    [139] N. Jedrecy, Y. Zheng, A. Waldhauer, et al. Epitaxy of β-FeSi2on Si(111)[J]. Physical Revew B,1993,48(12):8801~8808.
    [140] M.C. Bost, J.E. Mahan. A clarification of the index of refraction of beta-iron disilicide[J].Journal of Applied Physics,1988,64(4):2034~2037.
    [141] A.B. Filonov, D.B. Migas, V.L. Shaposhnikov, et al. Theoretical and experimental study ofinterband optical transitions in semiconducting iron disilicide[J]. Journal of Applied Physics,1998,83(8):4410~4414.
    [142] N.E. Christensen. Electronic structure of β-FeSi2[J]. Physical Review B,1990,42(11):7148~7153.
    [143] E. Arushanov, Ch. Kloc, E. Bucher. Impurity band in p-type β-FeSi2[J]. Physical Review B,1994,50(4):2653~2656.
    [144] S. Brehme, G. Behr, A. Heinrich. Electrical properties of Co-doped β-FeSi2crystals[J]. Journalof Applied Physics,2001,89(7):3798~3803.
    [145] H. Udono, I. Kikuma. Electrical properties of p-type β-FeSi2single crystals grown from Ga andZn solvents[J]. Thin Solid Films,2004,461(1):188~192.
    [146] K. Lefki, P. Muret, N. Cherief, et al. Optical and electrical characterization of β-FeSi2epitaxialthin films on silicon substrates[J]. Journal of Applied Physics,1991,69(1):352~357.
    [147] L.W. Wang, L.H. Qin, Y.X. Zheng, et al. Optical transition properties of β-FeSi2film[J].Applied Physics Letter,1994,65(24):3105~3107.
    [148] D.R. Gong, D.S. Li, Z.Z. Yuan, et al. Optical properties of single-phase β-FeSi2films fabricatedby electron beam evaporation[J]. Applied Surface Science,2008,254(15):4875~4878.
    [149] D.M. Caughey, R.E. Thomas. Carrier mobilities in silicon empirically related to doping andfield[C]. Proceedings of the IEEE,1967,55(12):2192~2193.
    [150] D.H. Tassis, C.L. Mitsas, T.T. Zorba, et al. Optical and electrical characterization of highquality β-FeSi2thin films grown by solid phase epitaxy[J]. Applied Surface Science,1996,102:178~183.
    [151] D.H Tassis, C.A. Dimitriadis, E.K. Polychroniadis, et al. Structural and trap properties ofpolycrystalline semiconducting FeSi2thin films[J]. Semiconductor Science and Technology,1999,14(11):967~974.
    [152] K. Takakura, H. Ohyama, K. Takarabe, et al. Hole mobility of p-type β-FeSi2thin films grownfrom Si/Fe multilayers[J]. Journal of Applied Physics,2005,97(9):093716.
    [153] A. Marti, J.L. Balenzategui, R.F. Reyna. Photon recycling and Shockley’s diode equation[J].Journal of Applied Physics,1997,82(8):4067~4075.
    [154] J. Piprek. Semiconductor Optoelectronic Devices[M]. Oxford: Academic Press,2003.
    [155] T. Ootsuka, T. Suemasu, J. Chen, et al. Lifetime and diffusion length of photogeneratedminority carriers in single-crystalline n-type β-FeSi2bulk[J]. Applied Physics Letter,2008,92(19):192114-1~192114-3.
    [156] A.L. Fahrenbruch, R.H. Bube. Fundamentals of Solar Cells[M]. New York: Academic Press,1983.
    [157] H. Lange. Electronic properties of semiconducting silicides[J]. Physica Status Solidi B,1997,201(1):3~65.
    [158] Y. Murakami, A. Kenjo, T. Sadoh, et al. Solid-phase crystallization of β-FeSi2thin film in Fe/Sistructure[J]. Thin Solid Films,2004,461(1):68~71.
    [159] Z.X. Liu, Y. Suzuki, M Osamura, et al. Reduction of iron diffusion in silicon during theepitaxial growth of β-FeSi2films by use of thin template buffer layers[J]. Journal of AppliedPhysics,2004,95(8):4019~4024.
    [160] T. Yoshitake, Y. Inokuchi, A. Yuri. Direct epitaxial growth of semiconducting β-FeSi2thin filmson Si(111) by facing targets direct-current sputtering[J]. Applied Physics Letter,2006,88(18):182104-1~182104-3.
    [161] M. Mauk, P. Sims, J. Rand, et al. In: T. Markvart, L. Castaner (Eds.), Practical Handbook ofPhotovoltaics: Fundamentals and Applications[M]. Oxford: Elsevier Science, Inc.,2003:185~225.
    [162] A. Luque, S. Hegedus. Handbook of Photovoltaic Science and Engineering[M]. Chichester:Wiley,2003.
    [163] F.A. Rubinelli, J.K. Arch, S.J. Fonash. Effect of contact barrier heights on a-Si:H p-i-n detectorand solar-cell performance[J]. Journal of Applied Physics,1992,72(4):1621~1630.
    [164] U. Dutta, P. Chatterjee. The open circuit voltage in amorphous silicon p-i-n solar cells and itsrelationship to material, device and dark diode parameters[J]. Journal of Applied Physics,2004,96(4):2261~2271.
    [165] http://www.ampsmodeling.org/materialData_ov.html.
    [166] R.E.I. Schropp, M. Zeman. Amorphous and Microcrystalline Silicon Solar Cells: Modeling,Materials and Device Technology[M]. New York: Springer,1998.
    [167] M. Vanecek. Optical properties of microcrystalline materials[J]. Journal of Non-CrystallineSolids,1998,227-230:967~972.
    [168] T. Searle. Properties of Amorphous Silicon and Its Alloys[M]. London: Institution of ElectricalEngineers,1998.
    [169] J.Y. Hou, J.K. Arch, S.J. Fonash. An examination of the “tunnel junctions” in triple junctiona-Si:H based solar cells: modeling and effects on performance[C]. Proceedings of the22ndIEEE Photovoltaic Specialist Conference, Las Vegas,1991:1260~1264.
    [170] M. Zeman, J.A. Willemen, L.L.A. Vosteen, et al. Computer modelling of current matching ina-Si:H/a-Si:H tandem solar cells on textured TCO substrates[J]. Solar Energy Materials andSolar Cells,1997,46(2):81~99.
    [171] I.A. Yunaz, K. Sriprapha, S. Hiza, et al. Effects of temperature and spectral irradiance onperformance of silicon-based thin film multijunction solar cells[J]. Japanese Journal of AppliedPhysics,2007,46(4A):1398~1403.
    [172] G.D. Cody, T. Tiedje, B. Abeles, et al. Disorder and the optical-absorption edge ofhydrogenated amorphous silicon[J]. Physical Review Letters,1981,47(20):1480~1483.
    [173] T. Kunii, N. Yoshida, Y. Hori, et al. Optical absorption spectra of hydrogenatedmicrocrystalline silicon films by resonant photothermal bending spectroscopy[J]. JapaneseJournal of Applied Physics,2006,45(5A):3913~3921.
    [174] A.V. Shah, H. Schade, M. Vanecek, et al. Thin-film silicon solar cell technology[J]. Progress inPhotovoltaics: Research and Applications,2004,12(23):113~142.
    [175] E. Vallat-Sauvain, A. Shah, J. Bailat. In: J. Poortmans, V. Arkhipov (Eds.), Thin Film SolarCells: Fabrication, Characterization and Applications[M]. Chichester: Wiley,2006:133~171.
    [176] M.M. Isomura, K. Wakisaka, K. Murata, et al. The influence of operation temperature on theoutput properties of amorphous silicon-related solar cells[J]. Solar Energy Materials and SolarCells,2005,85(2):167~175.
    [177] S. Miyajima. Study of Low Temperature Deposition of Silicon Carbide Thin Films and ItsApplication to Solar Cells[D]. Tokyo Institute of Technology,2005.
    [178] J. Pelletier, D. Gervais, C. Pomot. Application of wide-gap semiconductors to surfaceionization: Work functions of AlN and SiC single crystals[J]. Journal of Applied Physics,1984,55(4),994~1002.
    [179] N. Hernández-Como, A. Morales-Acevedo. Simulation of hetero-junction silicon solar cellswith AMPS-1D[J]. Solar Energy Materials and Solar Cells,2010,94(1):62~67.
    [180] S. Miyajima, A. Yamada1, M. Konagai. Properties of hydrogenated microcrystalline cubicsilicon carbide films deposited by hot wire chemical vapor deposition at a low substratetemperature[J]. Japanese Journal of Applied Physics,2004,43: L1190~L1192.
    [181] Y.K. Hsieh, H.C. Card. Limitations to Shockley-Read-Hall model due to direct photo-ionisation of the defect states[J]. Journal of Applied physics,1989,65(6):2409~2415.
    [182] M.A. Green. High Efficiency Silicon Solar Cells[M]. Aedermannsdorf: Trans Tech Publications,1987.
    [183] D.K. Schroder, R.N. Thomas, J.C. Swartz. Free carrier absorption in silicon[J]. IEEETransactions on Electron Devices,1978,25(2):254~261.
    [184] M.A. Green, M.J. Keevers. Optical properties of intrinsic silicon at300K[J]. Progress inPhotovoltaics: Research and Applications,1995,3(3):189~195.
    [185] S.M. Sze. Semiconductor Devices: Physics and Technology[M](2nd Edition). New York:Wiley,2002.
    [186] G. Lucovsky. On the photoionization of deep impurity centers[J]. Solid State Communications,1965,3(9):299~302.
    [187] D.L. Dexter. Theory of the optical properties of imperfections in nonmetals[J]. Solid StatePhysics,1958,6:353~411.
    [188] A.G. Milnes. Deep Impurities in Semiconductors[M]. New York: Wiley,1973.
    [189] H.G. Grimmeiss. Deep level impurities in semiconductors. Annual Review of Materials Science,1977,7:341~376.
    [190] L.D. Partain, Solar Cells and Their Applications[M]. New York: Wiley,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700