Ⅱ-Ⅵ族无机半导体量子点敏化太阳电池的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机半导体量子点和半导体薄膜是量子点敏化太阳电池(QDSSCs)重要组成部分,直接影响其光伏性能。本文从探索量子点制备的新方法、改变半导体薄膜性质以及量子点在半导体薄膜上的组装方式等方面展开实验研究,以期改善QDSSCs的光伏性能。
     本文通过在TiO2中掺入SiO2获得纳米TiO2-SiO2复合薄膜,并应用于QDSSCs。SiO2的掺入既可有效调控纳米TiO2薄膜比表面积、孔容和孔径,增加量子点的吸附量,又可形成SiO2阻挡层能有效抑制电池中电荷复合,提高光电流。利用胶状CdSe量子点敏化TiO2-SiO2复合薄膜制备光阳极,并组装太阳电池。通过交换CdSe量子点表面配体,CdSe量子点可更好地吸附到TiO2-SiO2薄膜里,促进光生电子传输,减少电荷复合机率,提高光电子转换效率。实验结果表明,掺入SiO2和配体交换能改善QDSSCs的光伏性能,MPA包覆的CdSe量子点敏化TiO2-SiO2光阳极制备的太阳电池效率达到1.74%。
     本文探索一种新的气—热液(hot-bubbling)方法制备CdSe量子点,从反应时间、Cd:Se浓度比和反应温度三个方面探讨hot-bubbling方法合成的CdSe量子点性能。实验结果表明,该方法能合成光学性能良好、尺寸较均匀和分散性好的闪锌矿型CdSe量子点。
     本文利用hot-bubbling方法合成的CdSe量子点敏化TiO2-SiO2复合薄膜,制备太阳电池,探讨其对QDSSCs光伏性能的影响。实验结果表明,太阳电池的光电转化效率达到1.94%,高于经典的热—液注射法(hot-injection)制备CdSe量子点敏化太阳电池效率,完全可与其相媲美,能作为新的量子点制备方法推广使用。
     在量子点组装方式上,结合连续离子层吸附(SILAR)技术和自组装单层膜(SAM)技术的各自优点,CdS和CdSe分别采用SILAR法和SAM法组装方式,获得CdS/CdSe量子点共敏化TiO2-SiO2光阳极,并组装电池,组装过程采用水代替有机试剂做溶剂,实现绿色组装路线。新的组装方式既实现高效地利用TiO2-SiO2复合薄膜的微孔和介孔,增加量子点的吸附量,并降低多层沉积带来的层与层之间产生的缺陷态,又实现很好地控制量子点的尺寸,同时,可有效抑制光电子与电解质的复合。详细讨论CdS沉积工艺与CdSe共敏化对TiO2-SiO2/CdS/CdSe光阳极光学性能及其组装电池光伏性能的影响,确定CdS沉积次数和CdSe的最优组合,从微观层面解释该组装方式对太阳电池性能的影响。对其它种类和组合的量子点敏化剂研究有着一定借鉴意义。
Inorganic Semiconductor Quantum Dots (QDs) and porous film are two important parts of quantum dots sensitized solar cell (QDSSCs). And they play decisive roles in the performance of solar cells. In order to improve the performance, three aspects that are the property of porous film, the new method of preparing QDs and the assembly way of QDs in the porous film are studies in this paper.
     TiO2-SiO2composite films are prepared through a simple process, and applied in quantum dot sensitized solar cell in this paper. The surface area, pore volume, and aperture of TiO2film are controlled effectively duo to the incorporation of SiO2. Such the adsorption capacity of quantum dots is increased. SiO2forms barrier, which inhibits interface charge recombination. Then photocurrent is increased. Solar cells are assembled by the anode which is prepared using colloidal CdSe QDs sensitized TiO2-nano-SiO2composite films. CdSe QDs can be adsorbed onto the TiO2-SiO2film better through the exchange of ligand. Then the photogenerated electrons transfer can be promoted, the charge recombination can be reduced, and the efficiency of solar cell can be improved. The result shows that Solar cell which is assembled by the CdSe QDs sensitized TiO2-nano-SiO2photoanode has an efficiency of1.74%.
     A new gas-thermal liquid (hot-bubbling) method is explored to prepare CdSe QDs in the paper. Its effect on the photovoltaic properties of QDSSCs was investigated. The performance of CdSe QDs is studied by the reaction time, the Cd:Se concentration, and the reaction temperature. The result shows this method can synthesize zinc blende CdSe QDs with the uniform size and good dispersion under the proper reaction conditions.
     QDSSCs are assembled through the anodes which are sensitized by CdSe quantum dots prepared by the hot-bubbling method. The photovoltaic performance of QDSSCs is investigated. The experiment shows that the solar cell which is sensitized by CdSe quantum dots has an efficiency of1.94%. It can be used as a new preparation method to extend.
     The successive ionic layer adsorption and reaction (SILAR) and the self-assembled monolayer (SAM) methods are combined to obtain the CdS/CdSe co-sensitization TiO2-nano-SiO2composite films. Namely, CdS and CdSe QDs are assembled onto TiO2-nano-SiO2film by the SILAR and SAM respectively. Meanwhile, the assembling routes are green duo to using aqueous solvent in the whole process. The new assembly mode can achieve a high coverage of the TiO2-nano-SiO2surface, get a good control of the size distribution, and lower the defect state that has produced by the multilayer deposition. At the same time, the charge recombination between the photoelectron and electrolyte can be inhibited effectively. The effect on the properties of solar cells is discussed through CdS deposition process. The CdS optimal deposition cycles are determined. The effect is studied on a micro level. The assembly method offers a certain reference meaning to other types of quantum dots in the co-sensitized solar cells.
引文
[1]Green M.A., Emery K., Hishikawa Y., Warta W., Dunlop E.D. Solar cell efficiency tables (version 43) [J], Prog. Photovolt:Res. Appl.,2014,22:1-9.
    [2]熊绍珍,朱美芳.太阳能基础与应用[M].北京:科学出版社,2009.
    [3]Regan B.O., Gratzel M. A Low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991, (353):737-739.
    [4]Yella A., Lee H.W., Tsao H.N., Yi C.Y, Chandiran A.K., Nazeeruddin M.K., et al. Porphyrin-sensitized solar cells with cobalt (Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency [J]. Science,2011,334(6056):629-634.
    [5]Ip A.H., Thon S.M., Hoogland S., Voznyy O., Zhitomirsky D., Debnath R., et al. Hybrid passivated colloidal quantum dot solids [J], Nature Nanotechnology,2012,7,577-582.
    [6]J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature,499,316-319,2013.
    [7]K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, H. J. Snaith, Sub-150℃ processed meso-superstructured perovskite solar cells with enhanced efficiency, Energy Environ. Sci.,7,1142-1147,2014.
    [8]Repins I., Contreras M.A., Egaas B., DeHart C, Scharf J., Perkins, C.L., et al.19.9% efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor [J]. Progress in Photovoltaics:Research and Applications,2008,16(3):235-239.
    [9]Dou L., You J., Yang J., Chen C.-C., He Y., Murase S., et al. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer [J]. Nat. Photonics.,2012,6(3): 180-185.
    [10]Aroutiounian V., Petrosyan S., Khachatryan A., Touryan K. Quantum dot solar cells [J]. Journal of Applied Physics,2001,89(4):2268-2271.
    [11]Kamat P.V., Tvrdy K., Baker D.R., Radich J.G. Beyond Photovoltaics:Semiconductor Nanoarchitectures for Liquid-Junction Solar Cells [J]. Chemical Reviews,2010,110(11): 6664-6688.
    [12]Bang J.H., Kamat P.V. Quantum Dot Sensitized Solar Cells. A Tale of Two Semiconductor Nanocrystals:CdSe and CdTe [J]. Acs Nano.,2009,3(6):1467-1476.
    [13]Kamat P.V. Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters [J]. The Journal of Physical Chemistry C,2008,112(48):18737-18753.
    [14]Micic O.I., Jones K.M. Cahill, A. Nozik, A.J. Optical, Electronic, and Structural Properties of Uncoupled and Close-Packed Arrays of InP Quantum Dots [J]. The Journal of Physical Chemistry B,1998,102(49):9791-9796.
    [15]Lee J.-W., Son D.-Y., Ahn T.K., Shin H.-W., Kim I.Y., Hwang S.-J. Quantum-Dot-Sensitized Solar Cell with Unprecedentedly High Photocurrent [J]. SCIENTIFIC REPORTS, DOI:10.1038/srep01050.
    [16]Bang J.H., Kamat P.V. Quantum Dot Sensitized Solar Cells. A Tale of Two Semiconductor Nanocrystals; CdSe and CdTe [J]. Acsnano,2009,3(6):1467-1476.
    [17]Santra P.K., Kamat P.V. Mn-Doped Quantum Dot Sensitized Solar Cells:A Strategy to Boost Efficiency over 5%, J. Am. Chem.Soc.2012,134(5):2508-2511.
    [18]Santra P.K., Nair P.V., Thomas K.G., Kamat P.V. CuInS2-Sensitized Quantum Dot Solar Cell. Electrophoretic Deposition, Excited-State Dynamics, and Photovoltaic Performance [J]. J. Phys. Chem. Lett.,2013,4 (5):722-729.
    [19]Im J.-H., Lee C.-R., Lee J.-W., Park S.-W., Park N.-G.6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale,2011,3,4088-4093.
    [20]Yu X.C., Zhu J., Zhang Y.H., Weng J., Hu L.H., Dai S.Y. SnSe2 quantum dot sensitized solar cells prepared employing molecular metal chalcogenide as precursors [J]. Chem. Commun., 2012,48,3324-3326.
    [21]Sun W.T., Yu Y., Pan H.-Y., Gao X.-F., Chen Q., Peng L.-M. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes [J]. J Am Chem Soc.,2008,130(4):1124-1125.
    [22]Yu X.Y., Liao J.Y., Qiu K.Q., Kuang D.B., Su C.Y. Dynamic Study of Highly Effcient CdS/CdSe Quantum Dot-Sensitized Solar Cells Fabricated by Electrodeposition [J]. Acsnano, 2011,5(12):9494-9500.
    [23]Lee Y.L., Chi C.F., Liau S.Y. CdS/CdSe Co-Sensitized TiO2 Photoelectrode for Efficient Hydrogen Generation in a Photoelectrochemical Cell [J]. Chem. Mater.,2010,22(3):922-927.
    [24]Diguna L.J., Shen Q., Kobayashi J., Toyoda T. High efficiency of CdSe quantum dot sensitized TiO2 inverse opal solar cells [J]. Appl. Phys. Lett.,2007,91,2(3):023116-023118.
    [25]Shen Q., Arae D., Toyoda T. Photosensitization of nanostructured TiO2 with CdSe quantum dots:effects of microstructure and electron transport in TiO2 substrates [J]. Photochemistry and Photobiology A:Chemistry,2004,164(1-3):75-80.
    [26]Lin S.C., Lee Y.L., Chang C.H., Shen Y.J., Yang Y.M. Quantum dot sensitized solar sells: Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition [J]. Appl. Phys. Lett.,2007,90(14):143517-143519.
    [27]Chang C.H., Lee Y.L. Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum dot sensitized solar cells [J]. Appl. Phys. Lett.,2007,91(5): 053503-053505.
    [28]Shen Y.J., Lee Y.L. Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot sensitized solar cell applications [J]. Nanotechnology,2008,19(4):045602-045608.
    [29]Plass R,, Pelet S., Krueger J., Gratzel M. Quantum Dot Sensitization of Organic Inorganic Hybrid Solar Cells [J]. J. Phys. Chem. B,2002,106(31):7578-7580.
    [30]Schaller R.D., Klimov V.I. High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion [J]. Phys. Rev. Lett.,2004,92(18):186601-186601.
    [31]Yu P.R., Zhu K., Norman A.G., Suzanne F., Frank A.J., Nozik A.J. Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots [J]. J. Phys. Chem. B,2006,110(50):25451-25454.
    [32]Tena-Zaera R., Katty A., Bastide S., Levy-Clement C. Annealing Effects on the Physical Properties of Electrodeposited ZnO/CdSe Core Shell Nanowire Arrays [J]. Chem. Mater.2007, 19(7):1626-1632.
    [33]Lesehkies K.S., Divakar R., Basu J., Pommer E.E., Boercker J.E., Carter C.B. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices [J]. Nano lett.,2007,7(6):1793-1798.
    [34]Shen Q., Yanai M., Katayama K., Sawada T., Toyoda T. Optical absorption, photosensitization, and ultrafast carrier dynamic investigations of CdSe quantum dots grafted onto nanostructured SnO2 electrode and fluorine-doped tin oxide (FTO) glass [J]. Chemical Physics Letters,2007,442(1-3):89-96.
    [1]Heath J.R. Covalency in semiconductor quantum dots [J]. Chemical Society Reviews, 1998,27(1):65-71.
    [2]Nozik A.J. Quantum dot solar cells [J]. Physica E:Low-dimensional Systems and Nanostructures,2002,14(1-2):115-120.
    [3]Sambur J.B., Novet T., Parkinson B.A. Multiple Exciton Collection in a Sensitized Photovoltaic System [J]. Science,2010,330(6000):63-66.
    [4]Binks D.J. Multiple exciton generation in nanocrystal quantum dots-controversy, current status and future prospects [J]. Physical Chemistry Chemical Physics,2011,13(28): 12693-12704.
    [5]Semonin O.E., Luther J.M., Choi S., Chen H.-Y., Gao J., Nozik A.J., et al. Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell [J]. Science,2011,334(6062):1530-1533.
    [6]Sukhovatkin V, Hinds S., Brzozowski L., Sargent E.H. Colloidal Quantum-Dot Photodetectors Exploiting Multiexciton Generation [J]. Science,2009,324(5934): 1542-1544.
    [7]Shockley W., Queisser H.J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells [J]. Jurnal of Applied Physics,1961,32(3):510-519.
    [8]Murray C.B, Norris D.J, Bawendi M.G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. Journal of the American Chemical Society,1993,115(19):8706-8715.
    [9]Peng Z.A., Peng X.G. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor [J]. Journal of the American Chemical Society,2001,123(1): 183-184.
    [10]Yu S.H., Wu Y.S., Yang J., Han Z.H., Qian Y.T., Liu X.M. A Novel Solventothermal Synthetic Route to Nanocrystalline CdE (E= S, Se, Te) and Morphological Control [J]. Chemistry of Materials,1998,10(9):2309-2312.
    [11]Gorer S., Hodes G. Quantum size effects in the study of chemical solution deposition mechanisms of semiconductor films [J]. The Journal of Physical Chemistry,1994, 98(20):5338-5346.
    [12]Niitsoo O., Sarkar S.K., Pejoux C., Ruhle S., Cahen D., Hodes G. Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells [J]. Journal of Photochemistry and Photobiology A:Chemistry,2006,181(2-3):306-313.
    [13]Lee H., Wang M., Chen P., Gamelin D.R. Zakeeruddin S.M., Gratzel M., et al. Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process [J]. Nano Letters,2009,9(12):4221-4227.
    [14]Niitsoo O., Sarkar S.K., Pejoux C., Ruhle S., Cahen D., Hodes G., Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells [J]. Journal of Photochemistry and Photobiology A:Chemistry,2006,181(2-3):306-313.
    [15]Yang Z., Chen C.-Y., Roy P., Chang H.-T. Quantum dot-sensitized solar cells incorporating nanomaterials [J]. Chemical Communications,2011,47:9561-9571.
    [16]Park Y.-C., Kong E.-H., Chang Y.-J., Kum B.-G, Jang H.M. Tertiary hierarchically structured TiO2 for CdS quantum-dot-sensitized solar cells [J]. Electrochimica Acta, 2011,56(21):7371-7376.
    [17]Miao Q., Wu L., Cui J., Huang M., Ma T. A New Type of Dye-Sensitized Solar Cell with a Multilayered Photoanode Prepared by a Film-Transfer Technique [J]. Advanced Materials,2011,23(24):2764-2768.
    [18]Chen H., Fu W., Yang H., Sun P., Zhang Y, Wang L., et al. Photosensitization of TiO2 nanorods with CdS quantum dots for photovoltaic devices [J]. Electrochimica Acta, 2010,56(2):919-924.
    [19]Thambidurai M., Muthukumarasamy N., Arul N.S., Agilan S., Balasundaraprabhu R., CdS quantum dot-sensitized ZnO nanorod-based photoelectrochemical solar cells [J]. Journal of Nanoparticle Research,2011,13(8):3267-3273.
    [20]Seol M., Kim H., Tak Y, Yong K. Novel nanowire array based highly efficient quantum dot sensitized solar cell [J]. Chemical Communications,2010,46(30):5521-5523.
    [21]Hossain M.A., Jennings J.R., Koh Z.Y., Wang Q. Carrier Generation and Collection in CdS/CdSe-Sensitized SnO2 Solar Cells Exhibiting Unprecedented Photocurrent Densities [J]. Acs Nano,2011,5(4):3172-3181.
    [22]Kang S.H., Zhu K., Neale N.R., Frank A.J. Hole transport in sensitized CdS-NiO nanoparticle photocathodes [J]. Chemical Communications,2011,47(37):10419-10421.
    [23]Farrow B., Kamat P.V. CdSe Quantum Dot Sensitized Solar Cells. Shuttling Electrons Through Stacked Carbon Nanocups [J]. Journal of the American Chemical Society,2009, 131(31):11124-11131.
    [24]Guijarro N.s., Lana-illarreal T., Mora-Ser I., Bisquert J., Gratzel M. CdSe Quantum Dot-Sensitized TiO2 Electrodes:Effect of Quantum Dot Coverage and Mode of Attachment [J]. The Journal of Physical Chemistry C,2009,113(10):4208-4214.
    [25]Chen J., Zhao D.W., Song J.L., Sun X.W., Deng W.Q., Liu X.W., et al. Directly assembled CdSe quantum dots on TiO2 in aqueous solution by adjusting pH value for quantum dot sensitized solar cells [J]. Electrochemistry Communications,2009,11(12): 2265-2267.
    [26]Lin S.C., Lee Y.L., Chang C.H., Shen Y.J., Yang Y.M. Quantum-dot sensitized solar cells: Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition [J]. Applied Physics Letters,2007,90(14):143517-143519.
    [27]Jung S.W., Kim J.H., Kim H., Choi C.J., Ahn K.S. CdS quantum dots grown by in situ chemical bath deposition for quantum dot-sensitized solar cells [J]. Journal of Applied Physics,2011,110(4):044113-044116.
    [28]Li L., Yang X., Gao J., Tian H., Zhao J., Hagfeldt A., et al. Highly Efficient CdS Quantum Dot-Sensitized Solar Cells Based on a Modified Polysulfide Electrolyte [J]. Journal of the American Chemical Society,2011,133(22):8458-8460.
    [29]Hwang J.Y., Lee S.A., Lee Y.H., Seok S.-I. Improved Photovoltaic Response of Nanocrystalline CdS-Sensitized Solar Cells through Interface Control [J]. ACS Applied Materials & Interfaces,2010,2(5):1343-1348.
    [30]Shalom M., Hod I., Tachan Z., Buhbut S., Tirosh S., Zaban A. Quantum dot based anode and cathode for high voltage tandem photo-electrochemical solar cell [J]. Energy & Environmental Science,2011,4(5):1874-1878.
    [31]Samadpour M., Irajizad A., Taghavinia N., Molaei M. A new structure to increase the photostability of CdTe quantum dot sensitized solar cells [J]. Journal of Physics D: Applied Physics,2011,44(4):045103-045108.
    [32]Dasgupta N.P., Jung H.J., Trejo O., McDowell M.T., Hryciw A. Brongersma, M., et al. Atomic Layer Deposition of Lead Sulfide Quantum Dots on Nanowire Surfaces [J]. Nano Letters,2011,11(3):934-940.
    [33]Braga A., Gimenez S., Concina I., Vomiero A., Mora-Ser I. Panchromatic Sensitized Solar Cells Based on Metal Sulfide Quantum Dots Grown Directly on Nanostructured TiO2 Electrodes [J]. The Journal of Physical Chemistry Letters,2011,2(5):454-460.
    [34]Acharya K.P., Hewa-Kasakarage N.N., Alabi T.R., Nemitz I., Khon E., Ullrich B., et al. Synthesis of PbS/TiO2 Colloidal Heterostructures for Photovoltaic Applications [J]. The Journal of Physical Chemistry C,2010,114(29):12496-12504.
    [35]Zaban A., Micic O.I., Gregg B.A., Nozik A.J. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots [J]. Langmuir,1998,14:3153-3156.
    [36]Sarkar S.K., Kim J.Y., Goldstein D.N., Neale N.R. Zhu K., Elliott C.M., et al. In2S3 Atomic Layer Deposition and Its Application as a Sensitizer on TiO2 Nanotube Arrays for Solar Energy Conversion [J]. The Journal of Physical Chemistry C,2010,114(17): 8032-8039.
    [37]Pijpers J.J.H., Koole R., Evers H., Houtepen A.J., Boehme S., et al. Spectroscopic Studies of Electron Injection in Quantum Dot Sensitized Mesoporous Oxide Films [J]. The Journal of Physical Chemistry C,2010,114(44):18866-18873.
    [38]Wang Y., Gong H., Fan B., Hu G. Photovoltaic Behavior of Nanocrystalline SnS/TiO2 [J]. The Journal of Physical Chemistry C,2010,114(7):3256-3259.
    [39]Im S.H., Lim C.-S., Chang J.A., Lee Y.H., Maiti N., Kim H.-J., et al. Toward Interaction of Sensitizer and Functional Moieties in Hole-Transporting Materials for Efficient Semiconductor-Sensitized Solar Cells [J]. Nano Letters,2011,11(11):4789-4793.
    [40]Im J.-H., Lee C.-R., Lee J.-W., Park S.-W., Park N.-G.6.5% efficient perovskite quantum-dot-sensitized solar cell [J]. Nanoscale,2011,3(10):4088-4093.
    [41]Guijarro N., Campina J.M., Shen Q., Toyoda T., Lana V.T., Gomez R. Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells [J]. Physical Chemistry Chemical Physics,2011,13(25):12024-12032.
    [42]Lee Y.-L., Chi C.-F., Liau S.-Y. CdS/CdSe Co-Sensitized TiO2 Photoelectrode for Efficient Hydrogen Generation in a Photoelectrochemical Cell [J]. Chemistry of Materials,2009,22(3):922-927.
    [43]Zhang Q., Guo X., Huang X., Huang S., Li D., Luo Y, et al. Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes [J]. Physical Chemistry Chemical Physics,2011,13(10): 4659-4667.
    [44]Yu X.-Y, Lei B.-X., Kuang D.-B., Su C.-Y. Highly efficient CdTe/CdS quantum dot sensitized solar cells fabricated by a one-step linker assisted chemical bath deposition [J]. Chemical Science,2011,2(7):1396-1400.
    [45]Lee Y.-L., Lo Y.-S. Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe [J]. Advanced Functional Materials,2009,19(4): 604-609.
    [46]Chakrapani V, Baker D., Kamat P.V. Understanding the Role of the Sulfide Redox Couple (S2"/Sn2-) in Quantum Dot-Sensitized Solar Cells [J]. Journal of the American Chemical Society,2011,133(24):9607-9615.
    [47]Hodes G., Manassen J., Cahen D. ELECTROCATALYTIC ELECTRODES FOR THE POLYSULFIDE REDOX SYSTEM [J]. Journal of the Electrochemical Society,1980, 127(3):544-549.
    [48]Lee Y.-L., Chang C.-H. Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells [J]. Journal of Power Sources,2008,185(1):584-588.
    [49]Lee H.J., Yum J.-H., Leventis H.C., Rakeeruddin S.M., Haque S.A., Chen P., et al. CdSe Quantum Dot-Sensitized Solar Cells Exceeding Efficiency 1% at Full-Sun Intensity[J]. The Journal of Physical Chemistry C,2008,112(30):11600-11608.
    [50]Dollimore L.S., Gillard R.D. Optically active co-ordination compounds. Part ⅩⅩⅫ. Potassium (+)tris-[L-cysteinesulphinato(2-)-SN]cobaltate(Ⅲ):a versatile agent for resolution of 3+species [J]. Journal of the Chemical Society, Dalton Transactions,1973, 3(9):933-940.
    [51]Lee H.J., Chen P., Moon S.J., Sauvage F., Sivula K., Bessho T., et al. Regenerative PbS and CdS Quantum Dot Sensitized Solar Cells with a Cobalt Complex as Hole Mediator [J]. Langmuir,2009,25(13):7602-7608.
    [52]Moon S.J., Itzhaik Y, Yum J.H., Zakeeruddin S.M., Hodes G., Gratzel M. Sb2S3-based mesoscopic solar cell using an organic hole conductor [J]. Journal of Physical Chemistry Letters,2010,1:1524-1527.
    [53]Gonzalez-Pedro V., Xu X., Mora-Ser I., Bisquert J. Modeling High-Efficiency Quantum Dot Sensitized Solar Cells [J]. ACS Nano,2010,4(10):5783-5790.
    [54]Gimenez S., Lana-Villarreal T., Gomez R., Agouram S., Munoz-Sanjose V., Mora-Sero I. Determination of limiting factors of photovoltaic efficiency in quantum dot sensitized solar cells:Correlation between cell performance and structural properties [J]. Journal of Applied Physics,2010,108(6):064310-064317.
    [55]Seol M., Ramasamy E., Lee J., Yong K. Highly Efficient and Durable Quantum Dot Sensitized ZnO Nanowire Solar Cell Using Noble-Metal-Free Counter Electrode [J]. The Journal of Physical Chemistry C,2011,115(44):22018-22024.
    [56]Gimenez S., Mora-Sero I., Macor L., Guijarro N., Lana-Villarreal T, Gomez R., et al. Improving the performance of colloidal quantum-dot-sensitized solar cells [J]. Nanotechnology,2009,20(29):295204-295209.
    [57]Deng M.H., Huang S.Q., Zhang Q.X., Li D.M., Luo Y.H., Shen Q., et al. Screen-printed Cu2S-based Counter Electrode for Quantum-dot-sensitized Solar Cell [J]. Chemistry Letters,2010,39(11):1168-1170.
    [58]Yang Z.S., Chen C.Y., Liu C.W., Chang H.T. Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells [J]. Chemical Communications,2010, 46(30):5485-5487.
    [59]Radich J.G., Dwyer R., Kamat P.V. Cu2S Reduced Graphene Oxide Composite for High-Efficiency Quantum Dot Solar Cells. Overcoming the Redox Limitations of S2-7Sn2-at the Counter Electrode [J]. The Journal of Physical Chemistry Letters,2011, 2(19):2453-2460.
    [60]Yaocihuatl M.-G. CdS and CdTeS quantum dot decorated TiO2 nanowires. Synthesis and photoefficiency [J]. Nanotechnology,2011,22(6):065603-065610.
    [61]Robel I., Subramanian V., Kuno M., Kamat P.V. Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films [J] J. AM. CHEM. SOC.,2006,128(7),2385-2393.
    [62]Ardalan P., Brennan T.P., Lee H.B., Bakke J.R., Ding I.K., McGehee M.D., Bent S.F. Effects of Self-Assembled Monolayers on Solid-State CdS Quantum Dot Sensitized Solar Cells [J]. ACS Nano,2011,5(2):1495-1504.
    [63]Chen J., Song J.L., Sun X.W., Deng W.Q., Jiang C.Y., Lei, W., et al. An oleic acid-capped CdSe quantum-dot sensitized solar cell [J]. Applied Physics Letters,2009, 94(15):153115-153117.
    [64]Zhang H., Hu B., Sun L., Hovden R., Wise F.W., Muller D.A., Robinson R.D., Surfactant Ligand Removal and Rational Fabrication of Inorganically Connected Quantum Dots [J]. Nano Letters,2011,11(12):5356-5361.
    [65]Nevins J.S., Coughlin K.M., Watson D.F. Attachment of CdSe Nanoparticles to TiO2 via Aqueous Linker-Assisted Assembly:Influence of Molecular Linkers on Electronic Properties and Interfacial Electron Transfer [J]. ACS Applied Materials & Interfaces, 2011,3(11):4242-4253.
    [66]Wang R.B., Wan L., Niu H.H., Ma Q., Miao S.D., Xu J.Z. Quantum Dots Co-Sensitized Solar Cells:a New Assembly Process of CdS/CdSe Linked to Mesoscopic TiO2-nano-SiO2 Hybrid Film, Journal of Sol-Gel Science and Technology,67(3),458-463,2013.
    [67]Sarkar S.K., Kim J.Y., Goldstein D.N., Neale N.R., Zhu K., Elliott C.M., et al. In2S3 Atomic Layer Deposition and Its Application as a Sensitizer on TiO2 Nanotube Arrays for Solar Energy Conversion [J]. The Journal of Physical Chemistry C,2010,114(17): 8032-8039.
    [68]Brown G.F., Wu J.Q. Third generation photovoltaics [J]. Laser & Photonics Reviews, 2009,3(4):394-405.
    [69]Gratzel M. Photoelectrochemical cells [J]. Nature,2001,414(6861):338-344.
    [1]Mansur H.S. Quantum dots and nanocomposites [J]. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology,2010,2(2):113-129.
    [2]Murray C.B., Norris D.J., Bawendi M.G. Synthesis and Characterization of Nearly Monodisperse CdE(E= sulfur, selenium, tellurium) Semiconductor Nanocrystallites [J]. Journal of the American Chemical Society,1993,115(19):8706-8715.
    [3]Bowen K.J.E., Colvin V.L., Alivisatos A.P. X-ray Photoelectron Spectroscopy of CdSe Nanocrystals with Applications to Studies of the Nanocrystal Surface [J]. The Journal of Physical Chemistry,1994,98(15):4109-4117.
    [4]Peng Z.A, Peng X.G Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor [J]. Journal of the American Chemical Society,2001,123:183-184.
    [5]Peng X.G. Green chemical approaches toward high-quality semiconductor nanocrystals [J]. CHEMISTRY-A EUROPEAN JOURNAL,2002,8(2):334-339.
    [6]Pradhan N., Xu H.F., Peng X.G. Colloidal CdSe Quantum Wires by Oriented Attachment [J]. Nano letters,2006,6(4):720-724.
    [7]Biju V., Itoh T., Anas A. Semiconductor quantum dots and metal nanoparticles:syntheses, optical properties, and biological applications [J]. Analytical and Bioanalytical Chemistry,2008,391:2469-2495
    [8]Qu L.H., Peng X.G. Control of photoluminescence properties of CdSe nanocrystals in growth [J]. Journal of the American Chemical Society,2002,124(9):2049-2055.
    [9]Vossmeyer T., Katsikas L., Giersig M. CdS nanoclusters:synthesis, characterizations, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift [J]. The Journal of Physical Chemistry,1994,98(31): 7665-7673.
    [10]Rogach A.L., Kornowski A., Gao M.Y. Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals [J]. Journal of Physical Chemistry B, 1999,103(16):3065-3069.
    [11]Zhu J.J., Palchik O., Chen S.G. Microwave assisted preparation of CdSe, PbSe, and Cu2-xSe nanoparticles [J]. Journal of Physical Chemistry B,2000,104:7344-7347.
    [12]Das B.C., Batabyal S.K., Pal A.J. A bit per particle:Electrostatic assembly of CdSe quantum dots as memory elements [J]. Advanced Materials,2007,19(23):4172-4176.
    [13]Gao Y.H., Zhang Q., Gao Q. Synthesis of high quality CdSe through a mild solution-phase synthetic route [J]. Mate. Chem. Phy.,2009,115(2-3):724-727.
    [14]Yu W.W., Qu L.H., Guo W.Z., Peng X.G. Experimental determination of the extinction coefficient to CdTe, CdSe, and CdS nanoerystals [J].Chem. Mater.,2003,15:2854-2860.
    [1]Ganapathy V., Karunagaran B., Rhee S.-W. Improved performance of dye-sensitized solar cells with TiO2/alumina core-shell formation using atomic layer deposition [J]. Journal of Power Sources,2010,195(15):5138-5143.
    [2]Wang Z.-S., Yanagida M., Sayama K., Sugihara H. Electronic-Insulating Coating of CaCO3 on TiO2 Electrode in Dye-Sensitized Solar Cells:Improvement of Electron Lifetime and Efficiency [J]. Chem. Mater.,2006,18 (12):2912-2916.
    [3]Jung H.S., Lee J.-K., Nastasi M., Lee S.-W., Kim J.-Y., Park J.-S. Preparation of Nanoporous MgO-Coated TiO2 Nanoparticles and Their Application to the Electrode of Dye-Sensitized Solar Cells [J]. Langmuir,2005,21 (23):10332-10335.
    [4]Palomares E., Clifford J.N., Haque S.A., Lutz T., Durrant J.R. Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers [J]. J. Am. Chem. Soc.,2003,125(2): 475-482.
    [5]Nguyen T.-V., Lee H.-C., Khan M.A., Yang O.-B. Electrodeposition of TiO2/SiO2 nanocomposite for dye-sensitized solar cell [J]. Solar Energy,2007,81(4):529-534.
    [6]Ito S., Zakeeruddin S.M., Comte P., Liska P., Kuang D., Gratzel M. Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte [J], Nature Photonics,2008,2:693-698.
    [7]Niu H.H., Liu L., Wang H.P., Zhang S.W., Ma Q., Mao X.L., Wan L., Miao S.D., Xu JZ. Significant influence of nano-SiO2 on the performance of dye-sensitized solar cells based on P25 [J]. Electrochimica Acta,2012,81:246-253.
    [8]Liu L., Niu H.H, Zhang S.W., Wan L., Miao S.D., Xu J.Z. Improved performance of dye-sensitized solar cells:An TiO2-nano-SiO2 hybrid photoanode with post-treatment of TiCl4 aqueous solution [J]. Appl. Surf. Sci.,2012,261:8-13.
    [9]Lee Y.L., Chang C.H. Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells [J]. Journal of Power Sources,2008,185(1):584-588.
    [10]Alexaki N., Stergiopoulos T., Kontos A.G., Tsoukleris D.S., Katsoulidis A.P., Pomonis P.J., et al. Mesoporous titania nanocrystals prepared using hexadecylamine surfactant template: Crystallization progress monitoring, morphological characterization and application in dye-sensitized solar cells [J], Microporous and Mesoporous Materials,2009,124 (1-3): 52-58.
    [11]Pan Z., Zhang H., Cheng K., Hou Y., Hua J., Zhong X. Highly efficient inverted type-Ⅰ CdS/CdSe core/shell structure QD-sensitized solar cells [J]. ACS Nano.2012,6(5) 3982-3991.
    [12]Ramasamy E., Lee J. Ordered mesoporous Zn-doped SnO2 synthesized by exotemplating for efficient dye-sensitized solar cells [J]. Energ.Environ.Sci.2011,4:2529-2536.
    [13]Chi, W. S., Roh, D. K., Kim, S. J., Heo, S. Y., Kim, J. H. Hybrid electrolytes prepared from ionic liquid-grafted alumina for high-efficiency quasi-solid-state dye-sensitized solar cells [J]. Nanoscale 2013,5:5341-5348.
    [14]Li, Z., Zhou, Y., Yu, T., Liu, J., Zou, Z. Unique Zn-doped SnO2 nano-echinus with excellent electron transport and light harvesting properties as photoanode materials for high performance dye-sensitized solar cell [J]. CrystEngComm 2012,14:6462-6468.
    [1]Lee H.J., Wang M.K., Chen P., Gamelin D.R., Zakeeruddin S.M., Gratzel M., et al. Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process [J]. Nano Lett.,2009,9(12):4221-4227.
    [2]Chang C.-H., Lee Y.-L. Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells [J]. Appl. Phys. Lett., 2007,91(5):053503-053505.
    [3]Lee Y.-L., Lo Y.-S. Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe [J]. Adv. Funct. Mater.,2009,19,604-609.
    [4]Lee H.J., Yum J.-H., Leventis H.C., Zakeeruddin S.M., Haque S.A., Chen P. et al. CdSe Quantum Dot-Sensitized Solar Cells Exceeding Efficiency 1% at Full-Sun Intensity [J]. J. Phys. Chem. C,2008,112:11600-11608.
    [5]Mora-Sero I., Gimenez S., Fabregat-Santiago F., Gomez R., Shen Q., Toyoda T., et al. Recombination in Quantum Dot Sensitized Solar Cells [J]. Acc. Chem. Res.,2009,42 (11):1848-1857.
    [6]Yu W.W., Qu L.H., Guo W.Z., Peng X.G. Experimental determination of the extinction coefficient to CdTe, CdSe, and CdS nanoerystals [J].Chem. Mater.,2003,15:2854-2860.
    [7]Qu L.H., Peng X.G. Control of Photoluminescence Properties of CdSe Nanocrystals in Growth [J]. J. Am. Chem. Soc.,2002,124 (9):2049-2055.
    [8]Lee Y.-L., Chi C.-F., Liau S.-Y. CdS/CdSe Co-Sensitized TiO2 Photoelectrode for Efficient Hydrogen Generation in a Photoelectrochemical Cell [J]. Chem. Mater.,2010,22(3): 922-927.
    [9]The-Vinh N., Hyun-Cheol L., Khan M.A., Yang O.B. Electrodeposition of TiO2/SiO2 nanocomposite for dye-sensitized solar cell [J]. Solar Energy 2007,81(4):529-534.
    [1]G.G. Yordanov, H. Yoshimura, and C.D. Dushkin, Phosphine-free synthesis of metal chalcogenide quantum dots by means of in situ-generated hydrogen chalcogenides. Colloid. Polym. Sci.,2008,286:813-817.
    [2]S. Mandal, D. Rautaray, A. Sanyal, and M. Sastry, Synthesis and assembly of CdS nanoparticles in keggin ion colloidal particles as templates. J. Phys. Chem. B 2004,108:7126-7131.
    [3]Qu L.H., Peng X.G. Control of Photoluminescence Properties of CdSe Nanocrystals in Growth [J]. J. Am. Chem. Soc.,2002,124 (9):2049-2055.
    [4]Qu L.H., Peng Z.A., Peng X.G. Alternative Routes toward High Quality CdSe Nanocrystals [J]. Nano Letters,2001,1 (6):333-337.
    [5]W. Zhang, Wang C. Zhang L., Zhang X., Liu X., Tang K. Room Temperature Synthesis of Cubic Nanocrystalline CdSe in Aqueous Solution [J]. Journal of Solid State Chemistry, 2000,151(2):241-244.
    [6]Wang W.Z., Geng Y, Yan P. Synthesis and characterization of MSe (M=Zn, Cd) nanorods by a new solvothermal method [J]. Inorg. Chem. Commun.,1999,2(3):83-85.
    [7]Bandaranayake R.J., Wen G.W., Lin J.Y. Structural phase behavior in Ⅱ-Ⅵ semiconductor nanoparticles [J]. Appl. Phys. Lett.,1995,67(6):831-833.
    [8]Qu L., Yu W.W., Peng X.G. In situ observation of the nucleation and growth of CdSe nanocrystals [J]. nano lett.,2004,4(3):465-469.
    [9]Peng Z.A., Peng X.G. Mechanisms of the shape evolution of CdSe nanocrystals [J]. Journal of the American Chemical Society,2001,123:1389-1395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700