4H-SiC MESFETs微波功率器件新结构与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化硅(SiC)是第三代半导体材料的典型代表,也是目前晶体生长技术和器件制造水平最成熟、应用最广泛的宽禁带半导体材料之一。与传统半导体材料Si和GaAs相比,SiC材料具有大禁带宽度、高临界击穿电场、高电子饱和漂移速度以及高热导率等优良物理特性,是高温、高频、抗辐照、大功率应用场合下极为理想的半导体材料。在微波大功率器件领域,具有高功率密度和高温可靠性的4H-SiCMESFETs器件是极具潜力的竞争者,在固态微波通讯系统和相控阵雷达等领域具有广阔的应用前景。然而SiC MESFETs器件存在的自热效应和陷阱效应严重影响器件工作稳定性,降低了器件输出功率密度,制约其进一步发展。
     本文对4H-SiC MESFETs器件的功率特性和频率特性等进行研究,提出源场板SiC MESFETs器件新结构;在深入分析影响器件工作稳定性的自热效应基础上,建立了大栅宽SiC MESFETs器件三维电热解析模型;并进行多凹栅结构SiC MESFETs器件的实验研究。主要工作包括:
     (1)提出源场板4H-SiC MESFETs器件新结构。该结构通过将场板与源极直接相连,不仅削弱器件栅漏侧栅极边缘的电场强度,优化了栅漏侧的表面电场,提高器件击穿电压;而且场板与源极相连,使得场板与沟道电容转变为漏源反馈电容,并在输出调谐回路中被电感抵消掉,从而降低栅漏反馈电容,改善器件功率增益,克服了栅场板结构引入额外栅漏反馈电容降低器件功率增益的缺点。数值分析结果表明,本文提出的源场板4H-SiC MESFETs器件新结构比常规结构SiCMESFETs器件击穿电压提高66%,最大理论输出功率密度提高73%,功率增益增加2.2dB。同时,本文新结构与常规结构SiC MESFETs工艺相兼容,这为提高SiC微波器件输出功率提供了一种新选择。
     (2)提出大栅宽4H-SiC MESFETs三维电热解析模型。在研究大栅宽SiCMESFETs电热特性的基础上,针对目前严重影响SiC微波器件性能稳定性的自热效应,建立了一个精确且简化的大栅宽SiC MESFETs器件电热解析模型。该模型从固体三维线性热传导方程出发,通过求解器件稳态情况下的拉普拉斯方程,获得器件表面温度分布的解析模型。通过与大信号三区解析模型的联立耦合求解,计算出器件表面各栅指的温度分布。该电热解析模型给出了器件表面峰值温度分布与结构参数(如栅指间距、衬底厚度)和偏置关系(如漏极电压、栅极电压)的解析表达式。模拟分析结果表明,本文建立的三维电热解析模型计算的器件表面各栅指峰值温度分布与二维数值仿真结果基本一致。该电热解析模型有助于器件设计者进行热设计,从而抑制大栅宽器件自热效应的影响,提高器件工作稳定性。
     (3)大栅宽4H-SiC MESFETs多凹栅器件结构实验研究。基于目前国内SiC工艺加工平台,设计制作了多凹栅结构SiC MESFETs器件。该器件通过多凹槽结构削弱栅下峰值电场强度,增加了器件栅漏击穿电压。在仿真分析基础上,合理设计了多凹槽刻蚀工艺流程和5mm栅宽SiC MESFETs器件版图,成功进行了工艺实验。在S波段2GHz脉冲状态下,获得最大输出功率为13.5W,增益11.3dB,功率附加效率50%,输出脉冲顶降小于0.5dB的多凹栅结构SiC MESFETs器件。同时,对影响器件性能的几个关键工艺步骤(源漏电极的欧姆接触电阻、栅凹槽刻蚀和空气桥)进行了工艺研究。通过矩形传输线测试方法,获得源漏电极的比接触电阻率为1.05×10~(-6)Ω.cm~2。实验测量多凹栅结构SiC MESFETs器件栅漏击穿电压大于100V,而相同工艺下常规结构器件栅漏击穿电压只有50V。
     同时,本文对影响SiC MESFETs器件性能稳定性的表面陷阱效应和几何尺寸效应进行了研究,详细分析和讨论了表面态能级和陷阱密度对器件Ⅳ特性、转移特性、跨导和瞬态响应等特性的影响以及栅源、栅漏间距对器件直流和微波性能的影响。模拟分析结果表明,表面态降低了漏电流,使阈值电压发生漂移,引起负跨导频率色散等,严重影响器件性能稳定性,降低了器件输出功率和附加效率。而栅源间距相对于栅漏间距对SiC MESFETs器件性能具有更明显的影响,通过减小栅源间距,可以显著提高器件Ⅳ特性和高频小信号特性。
Silicon carbide (SiC) is an attractive wide band-gap semiconductor material for high-power, high-voltage, high-frequency and high-temperature applications due to its superior properties, such as the wide bandgap, high critical electric field, high thermal conductivity and high electron saturation velocity, and the relatively mature material growth and device fabrication technology. 4H-SiC metal semiconductor field-effect transistors (MESFETs) are emerging as a promising technology for high power microwave applications such as transmitters for commercial and military communications. On account of the recent progress in device process and the technology for producing high quality SiC substrates and epitaxial films, impressive performances for SiC MESFETs has been reported. However, although these performances were very promising, two limitations have appeared, i.e., the self-heating and trapping effects.
     This dissertation majors on studying the power and frequency characteristics of the 4H-SiC MESFETs. A new structure of 4H-SiC MESFETs based on the source field plate technology is proposed in this thesis. Meanwhile, a three-dimensional (3D) electro-thermal analytical model to accurately predict the temperature distribution in multi-finger SiC MESFETs has been developed. And a large periphery SiC MESFETs with multi-recess gate was fabricated. The detail contributions of the dissertation are listed as followings:
     (1) Novel 4H-SiC MESFETs with the source field plate: The proposed structure, which is the source metal extension over the gate to the drift region, not only improve the breakdown voltage, but also eliminate the drawback of low gain characteristics relatively resulted from additional feedback capacitance associated with the field plate electrode. The improvement of the breakdown voltage is due to the facte that the depletion layer formed under the source field plate electrode resulted in the reduction of the electric field strength at the gate edge toward drain. Moreover, the field plate to channel capacitance becomes a drain-source capacitance, which could be absorbed in the output tuning network, thereby reducing gate-to-drain capacitance and improving the gain characteristics. As compared to the conventional structures, the MESFETs with the source field plate show an approximately 66% increase in breakdown voltage, which is responsible for the 73% improvement in the power density. At the same time, the proposed device, which is compatible with conventional SiC MESFETs technology, can afford a novel option to improve the performance of the high-power SiC MESFET devices.
     (2) Electro-thermal analytical model for multi-finger 4H-SiC power MESFETs: A three-dimensional (3D) electro-thermal analytical model to accurately predict the temperature distribution in multi-finger SiC-MESFETs has been proposed by solving the 3D linear heat transfer equation in solid material. The results of the analytical and numerical investigation of self-heating effects have also been presented. The analytical results are well supported by the two-dimensional electro-thermal simulation results obtained by Atlas. The models give an explicit influence on temperature distribution in terms of the structure parameter and operation condition, such as the gate-to-gate pitch, the thickness of the substrate and the source-drain bias. The obtained results can be used for optimization of the thermal design of the multi-finger 4H-SiC power MESFETs.
     (3) 4H-SiC MESFETs with a multi-recess gate: A large periphery SiC MESFETs with multi-recess gate to increase the output power and drain efficiency was fabricated. The gate recess reduces the peak electric field at the gate, enabling both higher operating breakdown voltage and reduced dispersion, leading to higher output power densities and power-added efficiency (PAE). Numerical simulations have indicated similar effects for SiC MESFETs with a multi-recess gate. Packaged devices with 5 mm gate periphery of these transistors demonstrated an output power of 13.5 W with a linear gain of 11.3 dB and a power-added efficiency of 50% under pulse operation at 2 GHz. These results are improved compared to conventional MESFETs fabricated in this work using the same process. The influences of the key processes, such as the omic contact, the recess etch and the air bridge, on the performance of SiC MESFETs also study in this thesis. The typical specific contact resistance on n+ epilayer extracted from transmission line method (TLM) is deduced to be about 1.05×10~6Ω.cm~2. The gate-drain breakdown voltage measured is over 100 V for proposed devices and about 50 V for conventional devices.
     Finally, this dissertation also studies the influence of the surface state effects and the gate-source scaling effects in SiC MESFETs. The mechanism by which acceptor-type traps effect the transconductance and drain current changes has been discussed. The simulation results show that transconductance exhibits negative frequency dispersion behavior, which is caused by the charge exchange via the surface states existing between the gate-source and gate-drain terminals. The current degradation behavior and the threshold voltage shift are also observed due to acceptor-type traps, acting as electron traps, in MESFET devices. Two-dimensional DC and small-signal ac analyses show that a downscaling of the gate-source distance can improve device performance, enhancing drain current, transconductance and maximum oscillation frequency. The variations of gate-to-source capacitance, gate-to-drain capacitance, cut-off frequency and maximum oscillation frequency with respect to the change in gate-source length have also been studied in detail. The obtained results can be used for a design guideline for the layout of 4H-SiC MESFETs.
引文
[1]B.Casady,R.W.Johnson.Status of silicon carbide(SIC) as a wide-bandgap semiconductor for high-temperature applications:A review.Solid-State Electronics,1996,39(10):1409-1422
    [2]R.R.Siergiej,R.C.Clarke,S.Sriram et al.Advances in SiC materials and devices:an industrial point of view.Materials Science and Engineering,1999,B61-62:9-17
    [3]Zolper,J.C.Emerging silicon carbide power electronics components.2005 Applied Power Electronics Conference and Exposition(APEC2005),Vol.1:11-17
    [4]Mark Rosker.Wide Bandgap and MMICs.Ⅲ-Vs Review,2005,18(4):24-25
    [5]Cree.Inc.,http://www.cree.com
    [6]M.Roschke,F.Schwierz,G.Paasch,et al.Evaluating the Three common SiC Polytypes for MESFET Applications.Material Science Forum,1998,264-268:965-968
    [7]A.Elasser,T.P.Chow.Silicon carbide benefits and advantages for power electronics circuits and systems.Proceedings of the IEEE,2002,90(6):969-986
    [8]Max N.Yoder.Wide bandgap semiconductor materials and devices.IEEE Transactions on Electron Devices,1996,43(10):1633-1636
    [9]Hornberger J,Lostetter A.B.,Olejniczak K.J.,et al.Silicon-carbide(SIC) semiconductor power electronics for extreme high-temperature environments 2004 Aerospace Conference(ACP2004),vol.4:2538-2555
    [10]H.Matsunami.Current SiC technology for power electronic devices beyond Si.Microelectronic Engineering,2006,83(1):2-4
    [11]F.Schwierz,M.Roschke,J.J.Liou.Theoretical investigation of the electrical behavior of SiC microwave power amplification.Materials Science Forum,1998,264-268:973 -976
    [12]F.van Raay,Quay,R.Kiefer,et al.A Coplanar X-Band AlGaN/GaN Power Amplifier MMIC on SI SiC Substrate.IEEE Microwave and wireless components letters,2005,15(7):460-462
    [13]F.Cappelluti,M.Fumo,A.Angelini,et al.On the Substrate Thermal Optimization in SiC-Based Backside-Mounted High-Power GaN FETs.IEEE Electron Devices.1996,54(7):1744-1752
    [14]St.G.Muller,M.F.Brady,A.A.Burk,et al.Large area SiC substrates and cpitaxial layers for high power semiconductor devices-An industrial perspective.Superlattices and Microstructures, 2006(40):195-200
    [15]http://china.nikkeibp.co.jp/china/news/news/semi200710220119.html
    [16]J.H.Zhao,P.Alexandrov,X.Li.Demonstration of the first 10-kV 4H-SiC Schottky barrier diodes.IEEE Electron Device Letters,2003,24(6):402-404
    [17]T.Nakamura,T.Miyanagi,I.Kamata,et al.A 4.15 kV 9.07-mΩ.cm~2 4H-SiC Schottky-barrier diode using Mo contact annealed at high temperature.IEEE Electron Device Letters,2005,26(2):99-101
    [18]H.M.McGlothlin,D.T.Morisette,J.A.Cooper,et al.4 kV silicon carbide Schottky diodes for high-frequency switching applications.1999 57th Annual Device Research Conference Digest,1999,pp.42-43
    [19]Y.Sugawara,D.Takayama,K.Asano,et al.12-19 kV 4H-SiC pin diodes with low power loss.Proceedings of the 13th International Symposium on Power Semiconductor Devices and ICs(ISPSD'01),pp.27-30
    [20]Mrinal K.Dasa,Brett A.Hull,James T.Richmond,et al.Ultra High Power 10 kV,50 A SiC PiN Diodes.Proceedings of the 17th International Symposium on Power Semiconductor Devices and ICs(ISPSD'05),pp.159-162
    [21]Y.Negoro,T.Kimoto,H.Matsunami.Highvoltage 4H-SiC pn diodes fabricated by p-type ion implantation.Transactions of the Institute of Electronics,Information and Communication Engineers C,2003,J86-C(4):434-441
    [22]John Palmour.Advances in SiC Power Technology.DARPA MTO Symposium,2007
    [23]F.Dahlquist,J.-O.Svedberg,C.-M.Zetterling,et al.A 2.8kV,forward drop JBS diode with low leakage.Mater.Materials Science Forum,2000,338-342:1179-1182
    [24]L.Zhu,T.P.Chow,K.A.Jones,et al.Design,fabrication,and characterization of low forward drop,low leakage,1-kV 4H-SiC JBS rectifiers.IEEE Transactions on Electron Devices,2006,53(2):363-368
    [25]张波,李肇基,方健.功率半导体器件技术的研究与进展.中国集成电路,2003,50:8-12
    [26]C.Winterhalter,H.-R.Chang,R.N.Gupta.Optimized 1200V Silicon Trench IGBTs with Silicon Carbide Schottky Diodes.2000 IEEE Industry Applications Society(IAS2000),Vol.5:2928-2933
    [27]Alex Q.Huang,Nick X.Sun,Bo Zhang,et al.Low voltage power devices for future VRM.Proceedings of the 10th International Symposium on Power Semiconductor Devices and ICs(ISPSD'98),pp.395-398
    [28]Y.Sui,T.Tsuji,and J.A.Cooper,On-State Characteristics of SiC Power UMOSFETs on 115μm Drift Layers.IEEE Electron Device Letters,2005,26(4):255-257
    [29]J.Tan,J.Cooper,and M.R.Melloch.Highvoltage accumulation-layer UMOSFET's in 4H-SiC.IEEE Electron Device Letters,1998,19(12):487-489
    [30]S.-H.Ryu,S.Krishnaswami,M.O'Loughlin,et al.10-kV,123-mΩ.cm~2 4H-SiC power DMOSFETs.IEEE Electron Device Letters,2004,25(8):556-558
    [31]S.-H.Ryu,S.Krishnaswami,M.O'Loughlin,et al.10-kV,123m cm~2 4H-SiC Power DMOSFETs.IEEE ELECTRON DEVICE LETTERS,VOL.25,NO.8,AUGUST 2004556558
    [32]J.Spitz,M.R.Melloch,J.A.Cooper,et al.2.6 kV 4H-SiC Lateral DMOSFET's.IEEE Electron Device Letters,1998,19(4):100-102
    [33]Tsunenobu Kimoto,Hiroaki Kawano,Jun Suda.1330V,67mΩ.cm~2 4H-SiC(0001) RESURF MOSFET.IEEE Electron Device Letters,2005,26(9):649-651
    [34]J.Tan,J.Cooper,M.R.Melloch.Highvoltage accumulation-layer UMOSFET's in 4H-SiC.IEEE Electron Device Letters,1998,19(12):487-489
    [35]D.Takayama,Y.Sugawara,T.Hayashi,et al.Static and dynamic characteristics of 4-6 kV 4H-SiC SIAFETs.Proceedings of the 13th International Symposium on Power Semiconductor Devices and ICs(ISPSD'01),pp.41-44
    [36]J.H.Zhao,P.Alexandrov,J.Zhang,et al.Fabrication and characterization of 11-kV normally off 4H-SiC trenched-and-implanted vertical junction FET.IEEE Electron Device Letters,2004,25(7):474-476
    [37]http://china.nikkeibp.co.jp/china/news/elec/200504/elec200504040104.html
    [38]Yasunori Tanaka,Mitsuo Okamoto,Akio Takatsuka,et al.700-V 1.0-mΩ.cm~2 Buried Gate SiC-SIT(SiC-BGSIT).IEEE Electron Device Letters,2006,27(11):908-910
    [39]F Allerstam,G Gudjonsson,HOOlafsson,et al.Comparison between oxidation processes used to obtain the high inversion channel mobility in 4H-SiC MOSFETs.Semiconductor Science and Technology,2007,22(4):307-311
    [40]J.Zhang,J.H.Zhao,P.Alexandrov,et al.Demonstration of first 9.2 kV 4H-SiC bipolar junction transistor.Electronics Letters,2004,40(21):1381-1382
    [41]K.Sumi,A.Anant,R.James,et al.High temperature characterization of 4H-SiC bipolar junction transistors.Materials Science Forum,2005,527-529:1437-1440
    [42]A.K.Agarwal,S.Krishnaswami,J.Richmond,et al.Evolution of the 1600 V,20 A,SiC bipolar junction transistors.Proceedings of the 17th International Symposium on Power Semiconductor Devices and ICs(ISPSD'05),pp.271-274
    [43]Y.Sugawara,D.Takayama,K.Asano,et al.12.7kV Ultra high voltage SiC Commutated Gate turn-off Thyristor:SICGT.Proceedings of the 16th International Symposium on Power Semiconductor Devices and ICs(ISPSD'04),pp.365-368
    [44]Y.Sugawara,K.Asano,S.Ogata.et al.4.5 kV 60A SICGT and its half bridge inverter operation of 20kVA class.Proceedings of the 17th International Symposium on Power Semiconductor Devices and ICs(ISPSD'05),pp.295-298
    [45]Y.Sui,X.Wang,J.A.Cooper.High-Voltage Self-Aligned p-Channel DMOS-IGBTs in 4H-SiC.IEEE Electron Device Letters,2007,28(8):728-730
    [46]Q.Zhang,H-R.Chang,M.Gomez,et al.10kV Trench Gate IGBTs on 4H-SiC.Proceedings of the 17th International Symposium on Power Semiconductor Devices and ICs(ISPSD'05),pp.303-306
    [47]S.T.Allen,Sadler,R.A,et al.Silicon carbide MESFET's for high-power S-band applications.1997,Vol.1:57-60
    [48]S.T.Allen,W.L.Pribble,R.A.Sadler,et al.Progress in high power SiC microwave MESFETs IEEE MTT-S International Microwave Symposium Digest,1999,pp.321-324
    [49]Sadler,A.Robert,S.T.Allen,et al.SiC MESFET hybrid amplifier with 30-W output power at 10GHz.Proceedings of the IEEE Comell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits,2000,pp.173-177
    [50]Manabu Arai,Hirotake Honda,Shuichi Ono,et al.Development of High-Frequency SiC-MESFETs.Electronics and Communications in Japan,Part 2,2003,86(11):386-395
    [51]Kristoffer Andersson,Mattias Siidow,Per-Ake Nilsson,et al.Fabrication and Characterization of Field-Plated Buried-Gate SiC MESFETs.IEEE Electron Devices Letters,2006,27(7):573-75
    [52]A.W.Morse,P.M.Esker,S.Sriram,et al.Recent application of silicon carbide to high power microwave.IEEE MTT-S Int.Microwave Syrup.Dig.,1997,pp.53-56
    [53]W.L.Pribble,J.W.Palmour,S.T.Sheppard,et al.Application of SiC and GaN HEMTs in power amplifier design.IEEE MTT-S Int.Microwave Symp.Dig.,2002,pp.1819-1822
    [54]Freteric ViUard,J.-P.Prigent,E.Morvan,et al.Trap-Free Process and Thermal Limitations on Large-Periphery SiC MESFET for RF and Microwave Power.IEEE Microwave therory and techniques,2003,51(4):1129-1133
    [55]A.S.Royet,T.Ouisse,B.Cabon,et al.Self-heating effects in silicon carbide MESFET's IEEE Electron Devices,2000,47(11):2221-2227
    [56]O.Noblanc,C.Arnodo,E.Chartier,et al.Characterization of power MESFETs on 4H-SiC conductive and semi-insulating wafers.Materials Science Forum,1998,264-268:949-952
    [57]J.B.Tucker,R.A.Beaupre,A.P.Z hang,et al.Electrical instability suppression in 4H-SiC power MESFETs.Materials Research Society Symposium - Proceedings,2002,742:347-361
    [58]O.Noblanc,C.Arnodo,C.Dua,et al.Power density comparison between microwave power MESFETs processed on conductive and semi-insulating wafer.Materials Science Forum,2000,338-342:1247-1250
    [59]Steven C.Binari,Klein,P.B.,Kazior,et al.Trapping effects in GaN and SiC microwave FETs.Proceedings of the IEEE,2002,90(6),pp.1048-1058
    [60]O.Noblanc,C.Amodo,E.Chartier,et al.Progress in the use of 4H-SiC semi-insulating wafers for microwave power MESFETs.Materials Science and Engineering B:Solid-State Materials for Advanced Technology,1999,B61-62:339-344
    [61]D.Siriex,D.Barataud,R.Sommet,et al.Characterization and modeling of nonlinear trapping effects in power SiC MESFETs.IEEE MTT-S Int.Microwave Symp.Dig.,2000,pp.765-768
    [62]Ho-Young Cha,Y.C.Choi,A.O.Konstantinov,et al.Elimination of current instability and improvement of RF power performance using Si_3N_4 passivation in SiC lateral epitaxy MESFETs.Solid-State Electronics,2004,48(7):1233-1237
    [63]Ho-Young Cha,Y.C.Choi,R.M.THOMPSON,et al.Influence of Si3N4 Passivation on Surface Trapping in SiC Metal-Semiconductor Field-Effect Transistors.Journal of Electronic Materials,2004,33(8):908-911
    [64]H.George Henry,Gregory C.DeSalvo,Ronald C.Brooks,et al.S-Band Operation of SiC Power MESFET With 20 W(4.4 W/mm) Output Power and 60%PAE.IEEE Electron Devices,2004,51(6):839-845
    [65]罗小蓉,张波,李肇基,等.SiC表面氢化模型.电子与信息学报,2006,28(11):2191-2194
    [66]M.Bakowski,U.Gustafsson,U.Lindefelt.Simulation of SiC high power device.Phys.Stat.Sol.(a),1997,162:421-440.
    [67]U.Lindefelt.Doping-induced band edge displacements and band gap narrowing in 3C,4H,6H-SiC,and Si.J.Appl.Phys.,1998,84(5):2628-2637
    [68]Roschke M,Schwierz F.Electron mobility models for 4H,6H,and 3C SiC.IEEE Electron Devices,2001,48(7):1442-1447
    [69]W.J.Sehaffer,G.H.Negley,K.G.Irvine,et al.Conductivity anisotropy in epitaxial 6H and 4H-SiC.Mat.Res.Soc.Sym.,1994,339:595-600
    [70]Kent Bertilsson,C.Harris,Hans-Erik Nilsson.Calculation of lattice heating in SiC RF power devices.Solid-State Electronics,2004,48(12):2103-2107
    [71]S.Selberherr.Analysis and Simulation of Semiconductor Devices.Springer-Verlag,Wien-New York.1984.
    [72]R.Van Overstraeten,H.Deman.Measurement of the Ionization Rates in Diffused Silicon p-n Junctions.Solid-State Electronics,1970,13(5):583-608
    [73]X.Q.Li,Design and simulation of high voltage 4H silicon carbide power device:[doctoral dissertation].USA,the State University of New Jersey,2004,pp.32-34
    [74]G.J.Linnros,V.Grivickas,U.Lindefelt,C.HaUin.Evaluation of Auger recombination rate in 4H-SiC.Materials Science Forum,1998,264-268:533-536
    [75]P.B.Shah,K.A.Jones,A.K.Agarwal,et al.In-depth analysis of SiC GTO thyristor performance using numerical simulations.Solid-State Electronics,2000,44(2):353-358
    [76]Y.S.Touloukian,E.H.Buyco.Specific Conductivity(Nonmetallic Solids) in Thermophysical Properties of Matter.IF/Plenum,New York,vol.4,1970
    [77]E.A.Burgemeister,W.von Muench,E.Pettenpaul.Thermal conductivity and electrical properties of 6H silicon carbide.J.Appl.Phys.,1979,50(9):5790-5794
    [78]D.T.Morelli,J.P.Heremans.Phonon-electron scattering in single crystal silicon carbide.Applied Physics Letters,1993,63(23):3143-3145
    [79]Y.S.Touloukian,E.H.Buyco.Specific Heat(Nonmetallic Solids) in Thermophysical Properties of Matter.IF/Plenum,New York,vol.5,1970
    [80]C.L.Zhu a,Rusli,C.C.Tin,G.H.Zhang,et al.Improved performance of SiC MESFETs using double-recessed structure.Microelectronic Engineering,2006,83(1):92-95
    [81]J.P.Zhang,X.R.Luo,Z.J.Li,et al.Improved double-recessed 4H-SiC MESFETs structure with recessed source/drain drift region.Microelectronic Engineering,2007,84(12):2888-2891
    [82]J.P.Zhang,B.Zhang,Z.J.Li.Simulation of high-power 4H-SiC MESFETs with 3D tri-gate structure.Electronics Letters,2007,43(7):692-694
    [83]J.P.Zhang,B.Zhang,Z.J.Li,et al.High breakdown voltage 4H-SiC MESFETs with floating metal strips.Microelectronic Engineering,2008,85(1):89-92
    [84]C.L.Zhu,Rusli,P.Zhao.Dual-channel 4H-SiC metal semiconductor field effect transistors.Solid-State Electronics,2007,51(3):343-346
    [85]Y.Hori,M.Kuzuhara,Y.Ando,et al.Analysis of electric field distribution in GaAs metal-semiconductor field effect transistor with a field-modulating plate.J.Appl.Phys.,2000, 87(7):3483-3487 C.L.Zhu,Rusli,P.Zhao.Dual-channel 4H-SiC metal semiconductor field effect transistors.Solid-State Electronics,2007,51(3):343-346
    [86]Y.Ando,Y.Okamoto,H.Miyamoto,et al.10-W/mm AlGaN-GaN HFET With a Field Modulating Plate.IEEE Electron Device letters,2003,24(5):89-291
    [87]V.Kumar,G.Chen,S.Guo,B.Peres,et al.Field-plated 0.25μm gate-length A1GaN/GaN HEMTs on 6H-SiC with power density of 9.1W/mm at 18 GHz.Electronics Letters,2005,41(19):1080-1081
    [88]Y.Okamoto,Y.Ando,T.Nakayama,et al.High-Power Recessed-Gate AIGaN-GaN HFET ith a Field-Modulating Plate.IEEE Electron Device letters,2004 51(12):2217-2222
    [89]S.Karmalkar,M.Shur,G.Simin,et al.Field-Plate Engineering for HFETs.IEEE Electron Device,2005,52(12):2534-2540
    [90]H.-Y.Cha,Y.C.Choi,L.F.Eastman,et al.Simulation study on breakdown behavior of field-plate SiC MESFETs.Int.J.High Speed Electron.Syst.,2004,14(3):884-889
    [91]Device simulator Atlas.Atlas User's Manual.Silvaco International.March 2005
    [92]Hoon Joo Na,Jeong Hyun Moon,Jeong Hyuk Yima,et al.Fabrication and characterization of 4H-SiC planar MESFETs.Microelectronic Engineering,2006,83(1),160-164
    [93]S.M.Sze,Physics of Semiconductor Devices,NowYork:Wiley,1981
    [94]Cree.Inc.CRF24060D-Revl,Datasheet,2006
    [95]Giovanna Sozzi,Roberto Menozzi.A review of the use of electro-thermal simulations for the analysis ofheterostmcture FETs.Microelectronics Reliability,2007,47(1):65-73
    [96]Sankha S.Mukherjee,Syed S.Islam,Robert J.Bowman.An analytical model of SiC MESFET incorporating trapping and thermal effects.Solid-State Electronics,48(10-11):1709-1715
    [97]W Liu,C.-M Zetterling,M.Qsting.Thermal-issues for design of high power SiC MESFETs.Proceedings of the Sixth IEEE CPMT Conference on High Density Microsystem Design and Packaging and Component Failure Analysis(HDP'04),pp.331-33
    [98]R.D.Ltndsted,R.J.Surty.Steady-State Junction Temperatures of Semiconductor Chips.IEEE Electron Devices,1972,19(1):41-44
    [99]C.L.Zhu,Rusli,C.C.Tin,et al.A three-region analytical model for short-channel SiC MESFETs.Microelectronic Engineering,2006,83(1):96-99
    [100]C.L.Zhu,Rusli,C.C.Tin,et al.A three-region analytical model for short-channel SiC MESFETs.Microelectronic Engineering,2006,83(1):96-99
    [101]Nabil Sghaier,Jean-Made Bluet,Abdelkader Souifi,et al.Study of Trapping Phenomenon in 4H-SiC MESFETs:Dependence on Substrate Purity.IEEE Electron Devices,2003,50(2):297-302
    [102]J.H.Yim,H.K.Song,J.H.Moon,et al.4H-SiC Planar MESFETs on High-Purity Semi-insulating Substrates.Materials Science Forum,2007,556-557:763-766
    [103]Ho-Young Cha,C.I.Thomas,G.Koley,et al.Reduced Trapping Effects and Improved Electrical Performance in buffed-gate 4H-SiC MESFETs.IEEE Electron Devices,2003,50(7):1569-1574
    [104]P.-A.Nilsson,N.Rorsman,M.Siidow,et al.SiC MESFET with a Double Gate Recess.Materials Science Forum,2006,527-529:1227-1230
    [105]V.M.Aroutiounian,G A.Avetisyana,et al.A new model of noise characteristics of SiC Schottky barrier MESFET with deep impurity levels and traps.Applied Surface Science,2006,252(15):5445-48
    [106]Gassoumi,M.,Dermoul,I.,Chekir,F.,et al.Evidence of surface states for 4H-SiC MESFETs on semi-insulating substrates by current transient spectroscopy.24th International Conference on Microelectronics,vol.24:417-420
    [107]Codreanu,C.,Avram,M.,Obreja,V.,et al.Interface states and related surface currents in SiC junctions.Semiconductor Conference 2003.CAS 2003,Vol.2:297-300
    [108]S.Dhara,Y.W.Song,L.C.Feldmanb et al.Effect of nitric oxide annealing on the interface trap density near the conduction band edge of 4H-SiC at the oxide/(11 2 0) 4H-SiC interface.Applied Physics Letters,2004,84(9):1498-1500
    [109]N.S.Saks,S,S.Manb,A.K.Agarwal.Interface trap profile near the band edges at the 4H-SiC/SiO_2 interface.Applied Physics Letters,2000,76(16):2250-2252
    [110]Malek Gassoumi,Jean-Marie Bluet,Ime'ne Dermoul,et al.Conductance deep-level transient spectroscopy study of 1m gate length 4H-SiC MESFETs.Solid-State Electronics,2006,50(2):214-219
    [111]Souvick Mitra,Mulpuri V.Rao,Kenneth A.Jones.Transconductance frequency dispersion measurements on fully implanted 4H-SiC MESFETs.Solid-State Electronics,2004,48(1):143-147
    [112]A.V.Los,M.S.Mazzola,D.Kajfez,et al.Influence of buffer layer on DC and RF performance of 4H SiC MESFET.Materials Science Forum,2004,457-460:1193-1196
    [113]Linan Yang,Yimen Zhang,Chunli Yu.A compact model describing the effect of p-buffer layer on the IV characteristics of 4H-SiC power MESFETs.Solid-State Electronics,2005, 49(4):517-523
    [114]J.W.Palmour,S.T.Sheppard,R.P.Smith,et al.Wide bandgap semiconductor devices and MMICs for RF power applications.International Electron Devices Meeting,2001,pp.14-17
    [115]田爱华,赵彤,潘宏菽,等.n型4H-SiC同质外延层上欧姆接触的研究.半导体技术,2007,32(10):867-870
    [116]Cai Shujun,Pan Hongshu,Chen Hao,et al.S-Band lmm SiC MESFET with 2W Output on Semi-Insulated SiC Substrate.Chinese Journal of Semiconductors,2006,27(2):266-269
    [117]柏松,陈刚,张涛.Fabrication of SiC MESFETs for Microwave Power Applications.Chinese Journal of Semiconductors,2007,28(1):10-12
    [118]潘宏菽,李亮,陈昊,等.S波段10 W SiC MESFET的研制.半导体技术,2007,32(11):867-870
    [119]Moore K E,Weitzel C E,Nordquist K J,et al.4H-SiC MESFET with 65.7%Power added efficiency at 850 MHz,IEEE Electron Device Lett.1997,18(2):69-70
    [120]Moore K,Bhatnagar M,Weitzel C,et al.Temperautre dependent small- and lagre- signal performance of 4H-SiC MESFET's.Materials Science Forum,1998,264-268:957-960
    [121]D.Siriex,O.Noblanc,D.Barataud,et al.A CAD-oriented nonlinear model of SiC MESFETs based on pulse I(V),pulsed S-parameters measurements.IEEE Trans Elecrton Devices,1999,46(3):580-58
    [122]H.Honda,M.Ogata,H.Sawazaki,et al.RF Characteristics of Short-Channel SiC MESFETs.Materials Science Forum,2003,433-436:745-748
    [123]Charles E.Weitzel,John W.Palmour,Calvin H.Carter,et al.4H-Sic MESFET with 2.8 W/mm Power Density at 1.8 GHz.IEEE Trans.Electron Device letters,1994,15(10):406-408
    [124]S.T.Allen,J.W.Palmour,V.F.Tsvetkov,et al.4H-SiC MESFET's on high resistivity substrates with 30 GHz f_(max).53~(rd) Device Research Conf.,Charlottesville,VA,1995,pp.102-103
    [125]O.Noblanc,E.Chartier,C.Arnodo,et al.Microwave power MESFET on 4H-SiC.Diamond and Related Materials,1997,6:1508-1511
    [126]Ho-Young Cha,C.I.Thomas,G.Koley,et al.Reduced Trapping Effects and Improved Electrical Performance in buried-gate 4H-SiC MESFETs.IEEE Electron Devices,2003,50(7):569-157
    [127]Han SY,Kim KH,Kim JK.et al.Ohmic contact formation mechanism of Ni on n-type 4H-SiC.Applied Physics Letters,2001,79(12):1816-1818
    [128]Lee S-K,Zetterling C-M,O stling M.Microscopic specific contact resistance mapping and long term reliability on 4H-silicon carbide using sputtered titanium tungsten contacts for high temperature device applications.J.Appl.Phys.2002,92(1):253-260
    [129]L.Kolaklieva,R.Kakanakov,G.Lepoeva,et al.Au/Ti/AI contacts to SiC for power applications:electrical,chemical and thermal properties.24th International conference on microelectronics,2004,2:16-19
    [130]Cho Nam-Ihn,Junk Kyung-Hwa,Choi Yong.Improved ohmic contact to the n-type 4H-SiC semiconductor using cobalt silicides.Semicond Sci Technol,2004,19(3):306-310
    [131]Marinova Ts,Kakanakova-Georgieva A,Krastev V,et al.Nickel based ohmic contacts on SiC.Mater Sci End 1997,B46:223-6
    [132]LG.Fursin,JH Zhao,M Weiner.Nickel ohmic contacts to p and n-type 4H-SiC.Electron Letters,2001,37:1092-1093
    [133]Kakanakov R,Kassamakova L,Kassamakov I,et al.Improved A1/Si ohmic contacts to p-type 4H-SiC.Mater Sci End,2001,B80:374-37
    [134]H.H.Berbe.Models for contacts to planar devices.Solid-State Electronics,1972,15(2):145-158
    [135]GK.Reeves.Specific contact resistance using a circular transmission line model.Solid-State Electronics,1980,23(5):487-490
    [136]S.J.Proctor,L.W.Linholm,A direct measurement of interfacial contact resistance.IEEE Electron Device letters,1982,3(10):294-301
    [137]E.Kuphal.Low resistance ohmic contacts to n- and p- InP.Solid-State Electronics,1981,24:69-78
    [138]G.Dambrine,A.Cappy,F.Heliodore,et al.A New Method for Determining the FET Small-Signal Equivalent Circuit.IEEE Trans.Microwave theory and techniques,1988,36(7):1151-59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700