半导体激光器腔面光学膜关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕半导体激光器所使用的光学薄膜进行了研究与制备。针对高功率半导体激光器对高激光损伤阈值光学膜的要求,主要研究了以下几方面内容:
     第一,从半导体激光器光学薄膜设计理论出发,对1/4λ周期性多层薄膜的光谱特性和反射带宽进行了分析,并讨论了半导体激光器光学薄膜中的损耗和激光在光学薄膜中的电场强度分布情况,为高激光损伤阈值腔面光学膜的设计和制备提供了理论依据和参考。
     第二,以半导体激光器理论为依据,系统的模拟了与腔面光学膜相关的边发射半导体激光器的特性,主要包括阈值电流、斜率效率和输出激光功率与前后腔面光学膜反射率之间的关系。模拟结果表明当前后腔面光学膜的反射率取最佳值时,半导体激光器的输出功率达到最大值。
     第三,研究了边发射半导体激光器腔面灾变光学镜面损伤机理。研究结果表明半导体激光器产生灾变光学镜面损伤最主要的原因是半导体激光器腔面的氧化,抑制半导体激光器腔面的氧化,可以提高光学薄膜激光损伤阈值、半导体激光器的输出功率和器件的可靠性。
     第四,采用钝化新技术制备了边发射半导体激光器腔面光学薄膜,器件特性测试结果表明钝化技术可使输出功率提高36%,相应薄膜激光损伤阈值提高36%。同时优化设计并制备了垂直腔面发射半导体激光器出光窗口增透膜,增透膜的透射率达到99.95%,成功应用于大功率垂直腔面发射激光器制作工艺中,使出光口径为600μm的单管器件输出功率为2.3W,达到国内报道最好水平。
     第五,通过实验首次验证了含氧光学薄膜材料和钝化光学薄膜材料对半导体激光器腔面产生的影响,实验测试结果表明含氧光学薄膜会使半导体激光器腔面发生氧化,生成Ga_2O_3氧化物,增加腔面吸收,降低薄膜激光损伤阈值和输出功率,而钝化光学薄膜可以阻止半导体激光器腔面的氧化,阻止Ga_2O_3氧化物的生成,降低了腔面载流子复合,提高薄膜的激光损伤阈值和器件的输出功率。
In this dissertation, the research work on the optical coating in the laser diode is presented. To achieve high laser damage threshold for the high power laser diode, the main research contents include:
     Firstly, based on the laser diode optical coating design theory, the spectral characteristics of 1/4λperiodic multilayer coatings and reflection bandwidth are analyzed, and the loss of the semiconductor laser diode optical coating and the distribution of the electric field intensity of laser in the optical coatings are discussed, for providing a theoretical basis and reference of high laser damage threshold face coating design and fabrication.
     Secondly, based on semiconductor laser theory, the characteristics of edge emitting semiconductor laser diode which related to optical coating are simulated, including the relationship of threshold current, slope efficiency and output laser power with the reflectance of the before and after the cavity surface optical coatings. Simulation results show that, when the reflectance of before and after cavity surface optical coatings to take the optimum value, the edge emitting semiconductor lasers diode of the output laser power reached the maximum.
     Thirdly, the semiconductor laser diode face catastrophic optical mirror damage mechanisms are studied. The result show that the main reason of semiconductor lasers producing catastrophic optical mirror damage is the semiconductor laser face surface oxidation, inhibiting the oxidation of the semiconductor laser face surface, it can enhance the laser damage threshold of optical coating, output laser power and device reliability.
     Fourthly, face coatings of edge emitting semiconductor laser diode are fabricated by passivation of new technologies. The result show that output power of the devices is increased 36% by passivation technologies, and the optical coatings laser damage threshold is improved 36%. The antireflection coatings of vertical cavity surface laser diode are fabricated. The transmittance of antireflection coatings is 99.95%; successfully applied to high-power vertical cavity surface emitting laser production process ang the output power is 2.3W for the aperture of 600μm single-tube device, and it is achieving the leading domestic level.
     Fifthly, the impact of the oxygen optical coating materials and passivation optical coating materials to semiconductor laser face surface are verified through experiments for the first time. The results show that it is forming Ga_2O_3 oxide between the oxygen optical coatings and the laser diode wafer material, increasing face absorption, reducing optical coating laser damage threshold and the output power, but the passivation coatings can prevent laser diode wafer material from oxidation, and prevent formation Ga_2O_3 oxide, reduce the face surface carriers recombination and can improve laser damage threshold and the laser diode output power.
引文
[1]R N Hall,G E Fenner,J D Kingsley et al.Coherent light emission from GaAs junctions[J].Physical Review Letters.1962,9(9):366-368.
    [2]Xinqiao Wang,Jun Wang,Geoffrey T Burnham.MBE-grown high-efficiency 808 nm laser diodes[J].SPIE,1998,3419:377-381.
    [3]g K Kuang,I C Hernandez,M Mcelhinney et al.MBE growth of reliable high-power lasers with InGaAsP quantum well[J].Journal of Crystal Growth,2004,268:8-11.
    [4]Tang Xiaohong,Bo Baoxue,Zhang Baolin et al.High Power 808nm Diode Lasers Grown By MOCVD Using MO Group V Sources in N2 Ambient[J].IEEE,2004,7:609-612.
    [5]R Hülsewede,H Schulze,J Sebastian et al.Highly reliable high-power AlGaAs/GaAs 808 nm diode laser bars[J].SPIE,2007,6456:645607-1-645607-8.
    [6]Uwe Brauch,Peter Loosen,Hans Opower.High-power diode lasers for direct applications[J].Springer-Series,Topics in Applied Physics,2000,78:303-368.
    [7]伊贺建一,小山二山夫.面发射激光器的基础与应用[M].北京:北京科学出版社,2002.
    [8]Jewell J L,Schere A,McCall S L,et al.Low-threshold electrically pumped vertical-cavity surface-emitting micro lasers[J].Electron Letter,1989,25:1123-1124.
    [9]Orenstein M , Von Lehmen A C , Chang-Hasnain C , et al.Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition[J].Applied Physics Letters,1990,56:2384-2386.
    [10] Geels R S,Corzine S W,Scott J W,et al.Low-threshold planarized vertical-cavity surface-emitting lasers[J].IEEE Photon Technology Letter,1990,2:234-236.
    [11]Huffaker D L,Deppe D G,Kumar K,et al.Native-oxide defined ring contact for low threshold vertical-cavity lasers[J].Applied Physics Letter,1994,65:97-99.
    [12]Choquette K D, Hou H Q.Vertical-cavity surface emitting laser:Moving from research to manufacturing[J].Proc IEEE,1997,85:1730-1739.
    [13]Soda H,Iga K,Kitahara C, et al.GaInAsPInP Surface Emitting Injection Laser[J].Jpn J Appl Phys,1979,18:2329-2330.
    [14]Iga K,Ishikawa S,Ohkouchi S,et al.Room temperature plused oscillation of GaAlAs/GaAs surface- emitting injection laser[J].Appl Phys Lett,1984,45:348-350.
    [15]Koyama F,Kinoshita S,Iga K, et al.Room temperature continuous wave lasingcharacteristics of GaAs vertical cavity surface-emitting lasers[J].Appl Phys Lett,1989,55:221-222.
    [16]Geels R S,Corzine S W,Coldren L A.InGaAs Vertical-Cavity Surface-Emitting Lasers[J].IEEE J Quantum Electron,1991,27:1359-1367.
    [17]Baba T,Yogo Y,Suzuki K,et al.Near room temperature continuous wave lasing characteristics of GaInAsP/InP surface emitting laser[J].Electron Lett,1993,29:913-914.
    [18]Uomi K.Low threshold room temperature pulsed operation of 1.5μm vertical-cavity surface- emitting lasers with an optimized multi-quantum well active layer[J].IEEE Photon Technol Lett,1994,6:317-319.
    [19]Saito H,Nishi K,Ogura I,et al.Room-temperature lasing operation of a quantum-dot vertical- cavitysurface-emitting laser[J].Appl Phys Lett,1996,69:3140-3142.
    [20]Hadji E,Bleuse J,Magnea N,et al.Photopumped infrared vertical-cavity surface-emitting laser[J].Appl Phys Lett,1996,68:2480-2482.
    [21]Someya T, Tachibana K, Arakawa Y, et al.Lasing oscillation in InGaN vertical cavity surface emitting lasers[C].16th International semiconductor laser conference,1998,PD-1:1-2.
    [22]Bewley W W, Felix C L , Vurgaftman I.Continuous-wave mid-infrared VCSEL’s[J].IEEE Photo Tech Lett,1998,10:660-662.
    [23]Choquette K D,Klem J F,Fischer A J,et al.Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3μm[J].Electron Lett,2000,36:1388-1389.
    [24]Lott J A,Ledensov N N,Ustinov V M,et al.Room-temperature continuous wave InAs-InGaAs quantum dots VCSELs on GaAs substrate emitting at 1.3μm[C].In LEOS2000 IEEE Annual Meeting Conference Proceedings,2000,1:304.
    [25]Genty F,Cerutti L,Garnache A,et al.Type-I quantum-well VCSEL structure on GaSb emitting in the 2-2.5μm range[C].IEEE Proceedings Optoelectronics,2002,149:22-26.
    [26]Xu H Z,Zhao F,Majumdar A,et al.High power mid-infrared optically pumpedPbSe/PbSrSe multiple-quantum-well vertical-cavity surface-emitting laser operation at 325 K[J].Electro Lett,2003,39:659-661.
    [27]Wistey M A,Bank S R,Yuen H B,et al.Monolithic,GaInNAsSb VCSELs at 1.46μm on GaAs by MBE[J].Electron Lett,2003,39:1822-1828.
    [28]Cerutti L,Garnache A,Ouvrard A, et al.2.36μm diode pumped VCSEL operating at room temperature in continuous wave with circular TEM00 output beam[J].Electron Lett,2004,40:869-871.
    [29]Suzuki M,Hatakeyama H,Fukatsu K, et al.25-Gb/s operation of 1.1μm-range InGaAs VCSELs for highspeed optical interconnections, presented at the Optical Fiber Commun[J].Conf Anaheim,CA,Mar 2006,OFA4.
    [30]Chang-Hasnain,Harbison C J,Hasnain J P,et al.Dynamic, polarization,and transverse mode characteristics ofvertical cavity surface emitting lasers[J].IEEE J Quantum Electron,1991,27:1402-1409.
    [31]Krishnamoorthy A V,Chirovsky L M F,Hobson W S,et al.Vertical-cavity surface-emitting lasers flip-chip bonded togigabit-per-second CMOS circuits[J]. IEEE Photonics Technology Letters,1999,11(1):128-130.
    [32]Yeh H J J,Smith J S.Environmental stress cracking behavior of short-chain branch polyehtylenes[J].Appl Phys Lett,1994,64:1466-1468.
    [33]Ohiso Y,Tateno K,Kohama Y,et al.Flip-chip bonded 0.85-μm bottom-emitting vertical-cavity laser array on an AlGaAs substrate[J].IEEE Photonics Technology Letters,1996,8:1115-1117.
    [34]McLaren T S,Kang S Y,Zhang W,et al.Thermosonic bonding of an optical transceiver based on an 8×8vertical cavity surface emitting laser array[J].IEEE Trans Compon Package Manufact Technol B,1997,20:152-160.
    [35]Bryan R P,Fu W S,Olbright G R,et al.Hybrid integration of bipolar transistors and microlasers:current-control microlaser smart pixels[J].Appl Phys Lett,1993,62:1230-1232.
    [36]Pu R,Hayes E M,Jurrat R,et al.VCSELs bonded directly to foundry fabricated GaAs smart pixelarrays[J].IEEE Photonics Technology Letters,1997,9:1622-1624.
    [37]Yang Y J,Dziura T G,et al.Monolithic integration of a VCSEL and a MESFET[J].Appl Phys Lett,1993,62:600-602.
    [38]Sandroff C D,Nottenburg R N,Bischoff J C,et al.Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation[J].Appl Phys Lett,1987,51(1):33-36.
    [39]H Kawanishi,H Ohno,T Morimoto,et al.Improvement of high power characteristics of 780nm AlGaAs laser diode by (NH4)2S facet treatment[J].SPIE,1990,1219:309-316.
    [40]Satoshi Kamiyama,Yoshihiro Mori,Yasuhito Takahashi,et al.Improvement of catastrophic optical damage level of AlGaInP visible laser diodes by sulfur treatment[J].Appl Phys Lett,1991,58(23):2595-2597.
    [41]程东明,刘云,王立军.表面钝化技术对光学灾变的影响的研究[J].激光技术,2003,27(1):14-15.
    [42]田增霞,崔碧峰,徐晨,等.808nm半导体激光器腔面硫钝化工艺研究[J].固体电子学研究与进展,2006,26(2):201-204.
    [43]刘春玲,王春武,么艳平,等.硫化的激光器腔面上溅射ZnS钝化膜的研究[J].光电子激光,2008,19(1):14-16.
    [44]Han I K,Woo D H,Kim H J,et al.Thermal stability of sulfur-treated InP investigated by photoluminescence[J].Appl Phys,1996,80:4052-4057.
    [45]Gasser , Marcel.Method for mirror passivation of semiconductor laser diodes[P].European patent:0416190B1.1989-07-09.
    [46]L W Tu,E F Schubert,M Hong,et al.In-vacuum cleaving and coating of semiconductor laser facets using thin silicon and a dielectric[J].J Appl Phys,1996,80(11):6448-6451.
    [47]F Rinner,J Rogg,M T Kelemen,et al.Facet temperature reduction by a current blocking layer at the front facets of high-power InGaAs/AlGaAs lasers[J].J Appl Phys,2003,93(3):1848-1850.
    [48]Hideyoshi Horie,Yoshitaka Yamamoto,Nobuhiro Arai,et al.Thermal Rollover Characteristics Up to 150℃of Buried-Stripe Type 980-nm Laser Diodes with a Current Injection Window Delineated by a SiNx Layer[J].IEEE photonics technology letters,2000,12(1):13-15.
    [49]B Stanczyk,A Jagoda,L Dobrzanski,et al.Optical properties of thin layers and conditions of the reactive sputtering for passivation of SQWCSCH lasers[J].SPIE, 2003,5036:84-89.
    [50]Christofer Silfvenius,Peter Blixt,Carsten Lindstrom,et al.High COMD,nitridized InAlGaAs laser facets for high reliability 50W bar operation at 805 nm[J].SPIE,2004,5336:132-143.
    [51]Christofer Silfvenius,Yanting Sun,Peter Blixt,et al.Nitride facet passivation raises reliability,COMD and enables high temperature operation of InGaAsP,InGaAs and InAlGaAs lasers[J].SPIE,2005,5711:189-200.
    [52]Kiyohisa Hiramoto,Misuzu Sagawa,Takeshi Kikawa,et al.High-Power and HighlyReliable Operation of Al-Free InGaAs-InGaAsP 0.98-μm Lasers with a Window Structure Fabricated by Si Ion Implantation[J].IEEE journal of selected topics in quantum electronics,1999,5(3):817-821.
    [53]M Kanskar,M Nesnidal,S Meassick,et al.Performance and Reliabiliity of ARROW Single Mode & 100μm Laser Diode and the Use of NAM in Al-free Lasers[J].SPIE,2003,4995:196-208.
    [54]Philippe Collot,Julia Arias,Virginie Mira,et al.Non-absorbing mirrors for AlGaAs quantum well lasers by impurity-free inter diffusion[J].SPIE,1999,3628:260-266.
    [55]Yumi Yamada,Yoshikazu Yamada,Tsuyoshi Fujimoto,et al.High power and highly reliable 980nm lasers with window structure using Impurity Free Vacancy Disordering[J].SPIE,2005,5738:40-46.
    [56]M L Osowski,W Hu,R M Lammert,et al.Advances in high-brightness semiconductor lasers[J].SPIE,2008,6952:695208-1-695208-8.
    [57]P Ressel,G Erbert,G Beister,et al.Simple but effective passivation process for the mirror facets of high-power semiconductor diode lasers[J].IEEE,2003,03:145.
    [58]Hu,Martin,H.Passivation of semiconductor laser facets[P].International application published under the patent cooperation treaty,WO01/84680A1.2001-08-11.
    [59]Charache Greg , Hostetler John , Jiang Chinglong , et al.Laser facet passivation[P].International application published under the patent cooperation treaty,WO2006/104980A2.2006-05-10.
    [60]Aaron Hodges,Jun Wang,Mark DeFranza,et all.A CTE matched, hard solder,passively cooled laser diode package combined with nXLTTM facet passivation enables high power, high reliability operation[J].SPIE,2007,6552:65521E-1-65521E-9.
    [61]R Hulsewede,H Schulze,J Sebastian,et al.High Brilliance and Efficiency:Optimized High Power Diode Laser Bars[J].SPIE,2008,6876:68760F-1-68760F-9.
    [62]Hailong Zhou , Keith Kennedy , Eli Weiss , et al.High-efficiency and high-riliability 9xx-nm bars and fiber-coupled devices at Coherent[J].SPIE,2006,6104:610406-1-610406-9.
    [63]Matthew Peters,Victor Rossin,Matthew Everett,et al.High power,high efficiency laser diodes at JDSU[J].SPIE,2007,6456:64560G-1-64560G-11.
    [64]Hanxuan Li,Irving Chyr,Denny Brown,et al.Next-generation High-power,High-efficiency Diode Lasers at Spectra-Physics[J].SPIE , 2007 , 6824 :68240S-1-68240S-12.
    [65]Harald Konig,Gunther Gronninger,Peter Brick,et al.Brilliant high power laser bars for industrial applications[J].SPIE,2008,6876:687616-1-687616-8.
    [66]Norbert Lichtenstein,Martin Krejci,Yvonne Manz,et al.Recent developments forBAR and BASE:Setting the Trends[J].SPIE,2008,6876:68760C-1-68760C-12.
    [67]顾媛媛,冯广智,单肖楠,等808nm和980nm半导体激光迭阵波长耦合技术[J].光学精密工程,2009,17(1):8-13.
    [68]林永昌,卢维强.光学薄膜原理[M].北京:国防工业出版社,1990.
    [69]D.J.Hemingway.Properties of weakly absorbing multi-layer systems in terms of the conept of potential transmittance[J].Optica Acta,1973,20(2):85-96.
    [70]唐晋发,郑权.应用薄膜光学[M].上海:上海科学技术出版社,1984.
    [71]J O.Porteus Relation between the height distribution of a rough surface and the reflectance at normal incidence[J].J Opt Soc Am,1963,53(12):1394-1398.
    [72]J H Apfel.Optical coating design with reduced electric field intensity[J].Applied Optics 1977,16:1880-1885.
    [73]林永昌,卢维强.光学薄膜原理[M].北京:国防工业出版社,1990.
    [74]杜宝勋.半导体激光器原理[M].北京:兵器工业出版社,2004.
    [75]江剑平.半导体激光器[M].北京:电子工业出版社,2000.
    [76]杜伟华,杨红伟,陈国鹰,等.808nm半导体激光器的腔面反射率设计[J].光电工程,2008,35(9):41-44.
    [77]王家卫,王皓,刘海.Matlab7.0编程基础[M].北京:机械工业出版社,2005.
    [78]钱时恒,吕淑珍,张连娣.1.06μm高功率激光反射膜[J].激光与红外,1992,22(1):63-66.
    [79]Thomas W Walker,Arthur H Guenther,Philip Nielsen.Pulsed Laser-Induced Damage to Thin-Film Optical Coatings-Part II:Theory[J].IEEE,1981,QE-17(10):2053-2066.
    [80]E M Ephstein.Scattering of electrons by phonons in a strong radiation field[J].Soviet Physics-Solid State,1970,11(10):2213-2217.
    [81]A S Epifanov,A A Manenkoa,A M Prokhorv.Theory of avalanche ionization induced in transparent dielectrics by an electromagnetic field[J].Sov Phys JETP,1976,43(2):377-382.
    [82]Bloembergen N.Laser-induced electric breakdown in solids[J].IEEE J Quantum Electron,1974,10(3):375-386.
    [83]L V Keldysh.Ionization in the field of a strong electromagnetic wave[J].Soviet physics JETP,1965,20:1307-1314.
    [84]H Goldenberg,C J Tranter.Heat flow in an infinite medium heated by a sphere[J].Br J Appl Phys,1952,3:296-301.
    [85]R W Hopper,D R Uhlmann.Mechanism of inclusion damage in laser glass[J].Journal of Applied Physics,1970,41(10):4023-4037.
    [86]唐晋发,郑权.应用薄膜光学[M].上海:上海科学技术出版社,1984.
    [87]N Bloembergen.Role of Cracks,Pores,and Absorbing Inclusions on Laser Induced Damage Threshold at Surface Transparent Dielectrics[J].APPLIED OPTICS,1973,l2(4):661-664.
    [88]赵强,范正修.光学薄膜界面吸收对温度场的影响[J].光学学报,1996,16(6):777-782.
    [89]江剑平.半导体激光器[M].北京:电子工业出版社,2000.
    [90]CHRISTOFER S,PETER B,CARSTEN L et al.High COMD, nitridized InAlGaAs laser facets for high reliability 50W bar operation at 805nm[J].SPIE,2004,5336:132-143.
    [91]UEDA O.Degradation of III-V optoelectronic devices[J].Journal of the Electrochemical Society,1988,135:11C–22C.
    [92]杨烈宇,关文铎.材料表面薄膜技术[M].北京:人民交通出版社,1991.
    [93]唐伟忠.薄膜材料制备原理、技术及应用[M].北京:冶金工业出版社,2003.
    [94]SILGVENIUS C,BLIXT P,LINDSTROM C et al.Native-Nitride passivation eliminates facet failure[J].Laser Focus World,2003,39(11):69–73.
    [95]TIHANYI P,BAUER R S.Passivation for surfaces and interfaces of semiconductor laser facets or the like[P].U S Patent,4563368.1986-07-07.
    [96]GASSER M,LATTA E E.Method for mirror passivation of semiconductor laser diodes[P].U S Patent,5063173.1991-11-05.
    [97]伊贺健一,小山二三夫.面发射激光器基础研究与应用[M].北京:科学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700