聚集素蛋白(Clusterin)在心脏移植冷缺血再灌注损伤中的保护作用与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分供体心脏表达clusterin显著降低同基因心脏移植的冷缺血再灌注损伤
     [目的]心脏移植中冷缺血保存和随后的热灌注损伤统称为冷缺血再灌注损伤,是引起移植物失功的初始因素,而且还可以导致移植心脏冠状血管病。Clusterin是具有细胞保护功能的伴侣蛋白,几乎在所有哺乳动物组织中表达,具有参与生殖、脂质转运、抑制补体激活和调节凋亡等多种作用。本实验拟探讨供体心脏表达的clusterin在同基因心脏移植冷缺血再灌注损伤中的保护作用及机制。
     [方法]RT-PCR和免疫组化染色检测野生型C57BL/6J小鼠(WT B6)和clusterin基因敲除小鼠(CLU-KO,C57BL/6J)心脏组织中的clusterin表达;分别取上述两组小鼠的心脏,在4℃生理盐水中保存8h,然后行同基因腹部异位心脏移植;移植前,分别检测保存8h后两组保存液中心肌细胞释放的肌酸激酶(CK)和乳酸脱氢酶(LDH)含量;移植后15min和24h行心脏移植物评分,评估移植心脏功能;HE染色观察两组心脏移植物病理变化;免疫组化检测两组心脏移植物内髓过氧化物酶(MPO)的表达情况,原位末端脱氧核苷酸转移酶标记法(TUNEL法)检测两组心脏移植物内的细胞凋亡情况。
     [结果]RT-PCR证实WT B6小鼠心脏组织组成性的表达clusterin,免疫组化染色发现,clusterin蛋白主要表达在血管内皮组织和心肌细胞表面,而CLU-KO小鼠心脏内未见clusterin表达。与CLU-KO组相比,WT B6组心脏在4℃生理盐水中保存8h后,保存液中CK和LDH的释放量显著降低(CK:784.25±90.71 U/L VS610.96±60.02UL,p=0.0226;LDH:0.744±0.129 VS 0.548±0.076,p= 0.0134)。移植后15mmin和24h,WT B6组心脏移植物评分分别为2.3和3.5,而CLU-KO组心脏移植物评分则分别为1和3,两者相比,差异显著,有统计学意义(p=0.002;p=0.0271)。HE染色证明,WT B6组心脏移植物血管周围炎性反应、淋巴细胞浸润和心肌细胞的坏死均比CLU-KO组减轻。MPO染色和TUNEL检测发现,WT B6组心脏移植物MPO阳性细胞数和凋亡细胞数较CLU-KO组均显著减少(p=0.0002;p=0.0316)。
     [结论]供心表达clusterin能显著降低心脏移植过程中冷缺血再灌注损伤。因此,上调供移植心脏中的clusterin表达可能具有保护供心并降低冷缺血再灌注损伤的潜能。
     第二部分Clusterin在心肌细胞冷保存损伤中的保护作用及机制
     [目的]在第一部分实验中已经证实:供心表达clusterin后能减轻冷缺血再灌注损伤。但是,clusterin表达后通过何种机制降低冷缺血再灌注损伤,特别是冷保存损伤,目前尚不清楚。本实验拟分离clusterin基因敲除(CLU-KO)小鼠心肌细胞,并转入clusterin基因,使心肌细胞表达clusterin,在体外进一步研究clusterin在心肌细胞冷保存损伤中的保护作用及机制。
     [方法]分离培养CLU-KO小鼠的心肌细胞,经RT-PCR鉴定后,将永生化SV40基因转入心肌细胞,建立小鼠心肌细胞系(MHC)。分别将pHEX6300或pHEX6300-CLU转染入MHC,获得MHC-Con和MHC-CLU两种细胞,Western Blot检测转染后两组心肌细胞clusterin蛋白的表达;两组心肌细胞在4℃生理盐水中保存6~8h,分别在不同时间点检测两组保存液中心肌细胞的LDH释放量和细胞膜流动性的改变。
     [结果]分离培养的小鼠心肌细胞,经RT-PCR鉴定证实,α-心肌肌球蛋白重链(a-MHC)和间隙连接蛋白43 (connexin 43)表达阳性,而β-心肌肌球蛋白重链(β-MHC)和α-骨骼肌肌动蛋白(a-skeletal actin)表达则为阴性。SV40永生化的小鼠心肌细胞转染pHEX6300或pHEX6300-CLU后,Western Blot检测证明,MHC-CLU表达clusterin蛋白,而MHC-Con未见clusterin蛋白表达。两组心肌细胞在4℃生理盐水中保存8h后,MHC-CLU组释放的LDH量从1h的22.66±7.53%升高到8h的28.24±1.78%,而MHC-Con组则从1h的31.39±3.42%升高到8h的92.16±4.07%,两组间比较,差异显著,有统计学差异(p<0.0001)。两组心肌细胞在4℃生理盐水中保存6h后,MHC-CLU膜稳定性与Oh相比增加了30%,而MHC-Con则降低了15%。
     [结论]心肌细胞表达clusterin后,通过稳定细胞膜,防止冷保存中心肌细胞膜的破裂,并降低心肌细胞LDH释放,进而抑制心肌细胞坏死,发挥保护作用。
     第三部分重组的clusterin蛋白(rCLU)在心脏移植冷缺血再灌注损伤中的保护作用及机制
     [目的]前两部分的研究结果证明:(1)供心表达clusterin能显著降低心脏移植过程中冷缺血再灌注损伤;(2)心肌细胞表达clusterin后,通过稳定细胞膜,防止冷保存中心肌细胞膜的破裂,并降低心肌细胞LDH释放,进而抑制心肌细胞坏死,发挥保护作用。本研究拟构建重组的clusterin蛋白(rCLU),并将其加入UW保存液中,探讨rCLU在人内皮细胞系以及小鼠心脏移植中能否发挥抵御冷缺血再灌注损伤的作用及其潜在的作用机制。
     [方法]体外合成rCLU并经Western Blot鉴定。(1)体外实验:用含不同浓度rCLU的4℃UW液分别保存人脐静脉内皮细胞(HUVECs)和肾小球内皮细胞(HRGECs);冷保存24h后,分别检测两种细胞的LDH释放量,以确定合适的rCLU浓度。上述两种内皮细胞分别在含lmg/ml rCLU的4℃UW液中保存24h,以相同浓度的牛血清白蛋白(BSA)为阳性对照,FDA-EB法检测两种内皮细胞的死亡率;流式细胞仪检测]-CLU在两种细胞表面的结合率;在不同时间点检测上述保存体系中,两种内皮细胞细胞膜的流动性改变。(2)体内实验:以C57BL/6J小鼠心脏作为供体,在含1mg/ml rCLU的4℃UW液保存24h,以相同浓度的BSA为阳性对照,不同时间点检测保存液中心脏释放的LDH量;供心保存24h后,行同基因腹部异位心脏移植。参照第一部分的实验方法,移植后15min和24h行心脏移植物评分,评估移植心脏功能;移植后24h,行HE染色检测心脏移植物病理学变化;免疫组化染色检测心脏移植物内MPO的表达;TUNEL法检测心肌细胞的凋亡情况。
     [结果]Western Blot鉴定结果说明合成的rCLU为异二聚体。体外实验证明,1mg/ml rCLU的4℃UW液与相同浓度的BSA相比,前者能显著降低HUVECs冷保存过程中的LDH释放(29.49±6.07% VS88.27±8.3%, P=0.0039); FDA-EB染色半定量计数亦表明,1mg/ml rCLU的4℃UW液能降低冷保存体系中HUVECs的坏死率;流式细胞术检测证明,rCLU能够结合在HUVECs细胞膜表面,增加细胞膜的流动性;而相同情况下处理的HRGECs,我们也得到了类似的结果。体内实验证实,1mg/ml rCLU的4℃UW液能显著降低小鼠供心在冷保存过程中的LDH释放;心脏移植后,rCLU能有利于心脏移植物功能的恢复并降低血清中CK和LDH值,同时亦能减轻移植物中血管周围炎症、中性粒细胞的浸润以及心肌细胞的坏死和凋亡
     [结论]rCLU能保护供移植器官,减轻其冷保存损伤。因此,在UW液中加入rCLU有望作为一个新的策略,优化供移植器官组织或细胞的冷保存方案。
PartⅠReduction of Cold Ischemia-Reperfusion Injury by Graft-Expressing Clusterin in Heart Transplantation
     【Objective】Cold ischemia-reperfusion injury (IRI) is one of primary factors for early graft dysfunction and is associated with rejection episodes in heart transplantation. Clusterin (CLU) is a cytoprotective protein with chaperone activity. This study was designed to examine the impact of donor-expressing clusterin on cold IRI.
     【Methods】Donor hearts from wild type C57BL/6J (H-2b; B6 WT) versus CLU knockout C57BL/6J (H-2b; CLU-KO) mice were stored at 4"C saline for 8 hours followed by heterotopical transplantation to B6 WT mice. The expression of CLU in the hearts of WT B6 mice or CLU-KO mice was determined by RT-PCR and immunohistochemical analysis. At the end of the preservation, the severity of cardiac injury was determined by release of creatine kinase (CK) and lactate dehydrase (LDH). The function recovery of heart grafts was determined by palpation at 15 minutes and 24 hours after transplantation. At 24 hours after transplantation, tissue injury was tested by HE stain, the expression of MPO was detected by immunohistochemistry, and the cell apoptosis was detected by TUNEL assay with cell counted.
     【Results】WT B6 mice hearts constitutively expressed clusterin, and mature clusterin protein was localized mostly in the endothelium as well as on the cell surface of cardiac myocytes. As compared to CLU-KO hearts, WT hearts were more resistant to cold injury during cold preservation. Compared with the CLU-KO hearts, the CK and LDH levels released from WT hearts were significantly lower, (CK:784.25±90.71 U/L VS 610.96±60.02 U/L, p= 0.0226; LDH:0.744±0.129 VS 0.548±0.076, p= 0.0134). WT hearts had a better function recovery from a prolonged cold preservation following transplantation, indicated by the median score 2.3 in WT group compared to 1 in CLU-KO group at 15 minutes (p= 0.002), or 3.5 in WT group compared to 3 in clusterin deficient group at 24 hours (p= 0.0271). The better graft function of clusterin-expressing grafts was significantly correlated with less degree of both neutrophil infiltration and cardiac injury including myocytic apoptosis and necrosis.
     【Conclusion】Clusterin expression renders donor hearts resistance to cold IRI in transplantation, suggesting that up-regulation of clusterin expression in donor hearts may have potential for protecting heart grafts from cold IRI.
     PartⅡProtection of Cultured Myocytes from Cold-Induced Cell Death by Clusterin Expression
     【Objective】We have demonstrated that clusterin expression renders donor hearts resistance to cold IRI in transplantation. But the mechanism by which CLU prevents cell death at cold temperature is not completely understood. This study was designed to investigate the cytoprotective activity of clusterin at cold temperature in cultured myocytes.
     【Methods】CLU-KO myocyte line (MHC) established from primary myocytes isolated from the heart of a CLU-KO mouse, followed by immortalization with origin deficient SV40 DNA. The phenotype of cloned MHC was confirmed by RT-PCR. MHC was converted to clusterin-expressing myocytes (MHC-CLU) by stable expression of pHEX6300 vector containing human CLU isoform 1 cDNA, while MHC with stable expression of empty pHEX6300 vector were used as clusterin negative control cells (MHC-Con). Clusterin protein in protein extracts of cultured myocytes was examined by Western blot. Cell death/necrosis at 4℃in saline was measured using the levels of LDH release. The change of membrane fluidity in CLU-expressing MHC-CLU cells versus CLU null MHC-Con cells was investigated following exposure to cold temperature.
     【Results】The phenotype of cloned MHC was confirmed by its positive expression of both a-cardiac myosin heavy chain and connexin 43 transcripts, and negative expression of (3-cardiac myosin heavy chain and a-skeletal actin, using RT-PCR. Ectopic expression of clusterin protein in cellular extracts of MHC-CLU versus MHC-Con was determined by Western Blot. Only a slight increase in LDH release was seen in CLU-expressing MHC-CLU cell cultures, from 22.66±7.53% after 1 hr of incubation to 28.24±1.78% after 8 hrs of incubation, while in CLU null MHC-Con cell cultures, LDH release was largely induced following the exposure to 4℃, indicated by the increase of LDH release from 31.39±3.42% after 1 hr to 92.16±4.07% after 8 hrs of incubation (p<0.0001). Further study also shows that the membrane fluidity in MHC-CLU cells increased following cold exposure, evidenced by approximately 30% increase at the end of 6 hrs of incubation, while there was a trend of a slow decrease of membrane fluidity in MHC-Con cells.
     【Conclusion】Ectopic expression of CLU in CLU-KO myoytes stabilizes the cell membrane fluidity, resulting in protection of cells from cell membrane disruption, indicated by LDH release, at cold temperature, suggesting that CLU may function as a chaperone and can stabilize the cell membrane by its chaperone activity at cold temperature.
     PartⅢReduction of Cold Ischemia/Reperfusion Injury of Donor Organs by Supplement of Recombinant Clusterin Protein in Cold Preservation Solution
     【Objective】Donor organ injury during cold preservation prior to transplantation negatively impacts graft survival. Clusterin (CLU) is a chaperonic protein, and its expression confers donor hearts resistance to cold ischemic injury. This study was to evaluate if supplement of recombinant CLU protein (rCLU) protects donor organs from injury during cold storage with University of Wisconsin (UW) solution.
     【Methods】Western blot analysis of recombinant cluterin (rCLU) protein, purified from HEK 293 cell cultures. Human endothelial cell cultures were used as an in vitro model. Heart transplantation in mice was used as an in vivo model. Cell death was measured using lactate dehydrogenase (LDH) release or using a fluorescence microscope after stained with fluorescein diacetate-ethidium bromide solution. The intensity of rCLU on cell surface was measured using a flow cytometer. The cell membrane fluidity of endothelial cells was measured at different time points. Donor injury was determined by biochemical evaluation, its functional recovery and HE stain, the expression of MPO was detected by immunohistochemistry, and the cell apoptosis was detected by TUNEL assay with cell counted.
     【Results】Western blot analysis showed that rCLU protein, isolated from HEK 193 cell cultures, was a heterodimer. Supplement of rCLU to UW solution remarkably protected cultured human endothelial cells from cold-induced cell necrosis, evidenced by a decrease in LDH release or in the number of ethidium bromide-stained necrotic cells. The protective activity of rCLU was associated with enhanced membrane fluidity at cold temperature. During cold storage of heart organs in UW solution, supplement of rCLU significantly reduced LDH release from heart tissue. In preclinical model of transplantation, heart grafts after cold preservation with rCLU-containing UW solution had a better functional recovery and less severity of perivascular inflammation, neutrophil infiltration and cardio injury including apoptosis and necrosis that correlated with lower levels of serum creatine kinase and LDH in recipients.
     【Conclusion】Our data suggest that supplement of CLU protein in a cold preservation solution may have potential in the improvement of cold preservation of donor organs in transplantation.
引文
1. Dragun D, Hoff U, Park JK, et al. Prolonged cold preservation augments vascular injury independent of renal transplant immunogenicity and function. Kidney international 2001;60(3):1173-81.
    2. Howard TK, Klintmalm GB, Cofer JB, et al. The influence of preservation injury on rejection in the hepatic transplant recipient. Transplantation 1990;49(1):103-7.
    3. Tullius SG, Nieminen-Kelha M, Buelow R, et al. Inhibition of ischemia/reperfusion injury and chronic graft deterioration by a single-donor treatment with cobalt-protoporphyrin for the induction of heme oxygenase-1. Transplantation 2002;74(5):591-8.
    4. Belzer FO, Southard JH. Principles of solid-organ preservation by cold storage. Transplantation 1988;45(4):673-6.
    5. Huang H, He Z, Roberts LJ,2nd, et al. Deferoxamine reduces cold-ischemic renal injury in a syngeneic kidney transplant model. Am J Transplant 2003;3(12):1531-7.
    6. Cho YW, Terasaki PI, Cecka JM, et al. Transplantation of kidneys from donors whose hearts have stopped beating. The New England journal of medicine 1998;338(4):221-5.
    7. Metcalfe MS, Butterworth PC, White SA, et al. A case-control comparison of the results of renal transplantation from heart-beating and non-heart-beating donors. Transplantation 2001;71(11):1556-9.
    8. Rudich SM, Kaplan B, Magee JC, et al. Renal transplantations performed using non-heart-beating organ donors:going back to the future? Transplantation 2002;74(12):1715-20.
    9. Caldwell-Kenkel JC, Currin RT, Tanaka Y, et al. Kupffer cell activation and endothelial cell damage after storage of rat livers:effects of reperfusion. Hepatology (Baltimore, Md 1991;13(1):83-95.
    10. Cywes R, Packham MA, Tietze L, et al. Role of platelets in hepatic allograft preservation injury in the rat. Hepatology (Baltimore, Md 1993;18(3):635-47.
    11. Scheinichen D, zu Vilsendorf AM, Weissig A, et al. Reduced P-selectin expression on circulating platelets after prolonged cold preservation in renal transplantation. Clinical transplantation 2003;17(5):444-50.
    12. Kukan M, Haddad PS. Role of hepatocytes and bile duct cells in preservation-reperfusion injury of liver grafts. Liver Transpl 2001;7(5):381-400.
    13. Stolz DB, Ross MA, Ikeda A, et al. Sinusoidal endothelial cell repopulation following ischemia/reperfusion injury in rat liver transplantation. Hepatology (Baltimore, Md 2007;46(5):1464-75.
    14. Zhu J, Wang S, Bie P, et al. Apoptosis and regeneration of sinusoidal endothelial cells after extended cold preservation and transplantation of rat liver. Transplantation 2007;84(11):1483-91.
    15. Song SW, Guo KJ, Shi R, et al. Pretreatment with calcitonin gene-related peptide attenuates hepatic ischemia/reperfusion injury in rats. Transplantation proceedings 2009;41(5):1493-8.
    16. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science (New York, NY 2004;305(5684):626-9.
    17. Breckenridge DG, Germain M, Mathai JP, et al. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 2003;22(53):8608-18.
    18. Blaschuk O, Burdzy K, Fritz IB. Purification and characterization of a cell-aggregating factor (clusterin), the major glycoprotein in ram rete testis fluid. The Journal of biological chemistry 1983;258(12):7714-20.
    19. Wilson MR, Easterbrook-Smith SB. Clusterin is a secreted mammalian chaperone. Trends in biochemical sciences 2000;25(3):95-8.
    20. Jones SE, Jomary C. Clusterin. The international journal of biochemistry & cell biology 2002;34(5):427-31.
    21. Wong P, Taillefer D, Lakins J, et al. Molecular characterization of human TRPM-2/clusterin, a gene associated with sperm maturation, apoptosis and neurodegeneration. European journal of biochemistry/FEBS 1994;221(3):917-25.
    22. Klock G, Baiersdorfer M, Koch-Brandt C. Chapter 7:Cell protective functions of secretory Clusterin (sCLU). Advances in cancer research 2009; 104:115-38.
    23. Bettuzzi S, Rizzi F. Chapter 5:Nuclear CLU (nCLU) and the fate of the cell. Advances in cancer research 2009; 104:59-88.
    24. Caccamo AE, Scaltriti M, Caporali A, et al. Ca2+ depletion induces nuclear clusterin, a novel effector of apoptosis in immortalized human prostate cells. Cell death and differentiation 2005;12(1):101-4.
    25.付桂莉,许成蓉.聚集素与细胞凋亡关系的研究进展.临床口腔医学杂志2004;20(9):570-2.
    26.刘铁力,孙雷.聚集素与肿瘤.医学综述2010;16(8):1179-82.
    27. Zhang H, Kim JK, Edwards CA, et al. Clusterin inhibits apoptosis by interacting with activated Bax. Nature cell biology 2005;7(9):909-15.
    28. Zhou W, Guan Q, Kwan CC, et al. Loss of clusterin expression worsens renal ischemia-reperfusion injury. American journal of physiology 2009;298(3):F568-78.
    29. Krijnen PA, Cillessen SA, Manoe R, et al. Clusterin:a protective mediator for ischemic cardiomyocytes? Am J Physiol Heart Circ Physiol 2005;289(5):H2193-202.
    30. Gleave M, Chi KN. Knock-down of the cytoprotective gene, clusterin, to enhance hormone and chemosensitivity in prostate and other cancers. Annals of the New York Academy of Sciences 2005; 1058:1-15.
    31. Rosenberg ME, Paller MS. Differential gene expression in the recovery from ischemic renal injury. Kidney international 1991;39(6):1156-61.
    32. Dvergsten J, Manivel JC, Correa-Rotter R, et al. Expression of clusterin in human renal diseases. Kidney international 1994;45(3):828-35.
    33. Witzgall R, Brown D, Schwarz C, et al. Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. The Journal of clinical investigation 1994;93(5):2175-88.
    34. Slater JP, Amirhamzeh MM, Yano OJ, et al. Discriminating between preservation and reperfusion injury in human cardiac allografts using heart weight and left ventricular mass. Circulation 1995;92(9 Suppl):Ⅱ223-7.
    1. HU S, D P. Transplantation Surgery Organ preservation. In:Hakim NS, Danovitch GM, editors. London:Springer 2001:p.265-94.
    2. Southard JH, Belzer FO. Organ preservation. Annual review of medicine 1995;46:235-47.
    3. Troppmann C, Gillingham KJ, Benedetti E, et al. Delayed graft function, acute rejection, and outcome after cadaver renal transplantation. The multivariate analysis. Transplantation 1995;59(7):962-8.
    4. Hernandez D, Estupinan S, Perez G, et al. Impact of cold ischemia time on renal allograft outcome using kidneys from young donors. Transpl Int 2008;21(10):955-62.
    5. Quiroga I, McShane P, Koo DD, et al. Major effects of delayed graft function and cold ischaemia time on renal allograft survival. Nephrol Dial Transplant 2006;21(6):1689-96.
    6. Schneeberger S, Amberger A, Mandl J, et al. Cold ischemia contributes to the development of chronic rejection and mitochondrial injury after cardiac transplantation. Transpl Int 2010;23(12):1282-92.
    7. Slater JP, Amirhamzeh MM, Yano OJ, et al. Discriminating between preservation and reperfusion injury in human cardiac allografts using heart weight and left ventricular mass. Circulation 1995;92(9 Suppl):II223-7.
    8. Knight RJ, Dikman S, Liu H, et al. Cold ischemic injury accelerates the progression to chronic rejection in a rat cardiac allograft model. Transplantation 1997;64(8):1102-7.
    9. Tanaka M, Mokhtari GK, Terry RD, et al. Prolonged cold ischemia in rat cardiac allografts promotes ischemia-reperfusion injury and the development of graft coronary artery disease in a linear fashion. J Heart Lung Transplant 2005;24(11):1906-14.
    10. Yamani MH, Tuzcu EM, Starling RC, et al. Myocardial ischemic injury after heart transplantation is associated with upregulation of vitronectin receptor (alpha(v)beta3),activation of the matrix metalloproteinase induction system, and subsequent development of coronary vasculopathy. Circulation 2002; 105(16):1955-61.
    11. de Silva HV, Harmony JA, Stuart WD, et al. Apolipoprotein J:structure and tissue distribution. Biochemistry 1990;29(22):5380-9.
    12. Jones SE, Jomary C. Clusterin. The international journal of biochemistry & cell biology 2002;34(5):427-31.
    13. Aronow BJ, Lund SD, Brown TL, et al. Apolipoprotein J expression at fluid-tissue interfaces:potential role in barrier cytoprotection. Proceedings of the National Academy of Sciences of the United States of America 1993;90(2):725-9.
    14. Ishikawa Y, Akasaka Y, Ishii T, et al. Distribution and synthesis of apolipoprotein J in the atherosclerotic aorta. Arteriosclerosis, thrombosis, and vascular biology 1998;18(4):665-72.
    15. Mackness B, Hunt R, Durrington PN, et al. Increased immunolocalization of paraoxonase, clusterin, and apolipoprotein A-I in the human artery wall with the progression of atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology 1997;17(7):1233-8.
    16. Swertfeger DK, Witte DP, Stuart WD, et al. Apolipoprotein J/clusterin induction in myocarditis:A localized response gene to myocardial injury. The American journal of pathology 1996; 148(6):1971-83.
    17. McLaughlin L, Zhu G, Mistry M, et al. Apolipoprotein J/clusterin limits the severity of murine autoimmune myocarditis. The Journal of clinical investigation 2000;106(9):1105-13.
    18. Zhou W, Guan Q, Kwan CC, et al. Loss of clusterin expression worsens renal ischemia-reperfusion injury. American journal of physiology 2010;298(3):F568-78.
    19. Wehrli P, Charnay Y, Vallet P, et al. Inhibition of post-ischemic brain injury by clusterin overexpression. Nature medicine 2001;7(9):977-9.
    20. Kuznetsov AV, Schneeberger S, Seiler R, et al. Mitochondrial defects and heterogeneous cytochrome c release after cardiac cold ischemia and reperfusion. Am J Physiol Heart Circ Physiol 2004;286(5):H1633-41.
    21. Grisham MB, Everse J, Janssen HF. Endotoxemia and neutrophil activation in vivo. The American journal of physiology 1988;254(5 Pt 2):H1017-22.
    22. Garlicki M. May preservation solution affect the incidence of graft vasculopathy in transplanted heart? Ann Transplant 2003;8(1):19-24.
    23. Hilmi I, Horton CN, Planinsic RM, et al. The impact of postreperfusion syndrome on short-term patient and liver allograft outcome in patients undergoing orthotopic liver transplantation. Liver Transpl 2008;14(4):504-8.
    24. Lauzurica R, Pastor MC, Bayes B, et al. Pretransplant inflammation:a risk factor for delayed graft function? Journal of nephrology 2008;21(2):221-8.
    25. DL D,. LR. Physiology of cold sensitivity. Boulder:Westview Press 1998.
    26. Carles J, Fawaz R, Hamoudi NE, et al. Preservation of human liver grafts in UW solution. Ultrastructural evidence for endothelial and Kupffer cell activation during cold ischemia and after ischemia-reperfusion. Liver 1994;14(1):50-6.
    27. Dragun D, Hoff U, Park JK, et al. Prolonged cold preservation augments vascular injury independent of renal transplant immunogenicity and function. Kidney international 2001;60(3):1173-81.
    28. Hidalgo MA, Shah KA, Fuller BJ, et al. Cold ischemia-induced damage to vascular endothelium results in permeability alterations in transplanted lungs. The Journal of thoracic and cardiovascular surgery 1996; 112(4):1027-35.
    29. Mueller AR, Nalesnik MA, Langrehr JM, et al. Evidence that small bowel preservation causes primarily basement membrane and endothelial rather than epithelial cell injury. Transplantation 1993;56(6):1499-504.
    30. Carbognani P, Spaggiari L, Rusca M, et al. Pulmonary endothelial cell modifications after storage in solid-organ preservation solutions. The Journal of international medical research 1995;23(3):200-6.
    31. Pickford MA, Manek S, Price AB, et al. The pathology of rat lung isografts following 48 or 72-hour cold storage and subsequent reperfusion in vivo for up to 1 month. International journal of experimental pathology 1992;73(5):685-97.
    32. Near RI, Smith RS, Toselli PA, et al. Loss of AND-34/BCAR3 expression in mice results in rupture of the adult lens. Molecular vision 2009;15:685-99.
    33. Kim JH, Yu YS, Kim JH, et al. The role of clusterin in in vitro ischemia of human retinal endothelial cells. Current eye research 2007;32(7-8):693-8.
    34. Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovascular research 2004;61(3):481-97.
    35. Zhao ZQ. Oxidative stress-elicited myocardial apoptosis during reperfusion. Current opinion in pharmacology 2004;4(2):159-65.
    36. Eefting F, Rensing B, Wigman J, et al. Role of apoptosis in reperfusion injury. Cardiovascular research 2004;61(3):414-26.
    37. Holleyman CR, Larson DF. Apoptosis in the ischemic reperfused myocardium. Perfusion 2001;16(6):491-502.
    38. Jordan JE, Zhao ZQ, Vinten-Johansen J. The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovascular research 1999;43(4):860-78.
    39. Gleave M, Chi KN. Knock-down of the cytoprotective gene, clusterin, to enhance hormone and chemosensitivity in prostate and other cancers. Annals of the New York Academy of Sciences 2005;1058:1-15.
    40. Zhang H, Kim JK, Edwards CA, et al. Clusterin inhibits apoptosis by interacting with activated Bax. Nature cell biology 2005;7(9):909-15.
    41. Zoubeidi A, Ettinger S, Beraldi E, et al. Clusterin facilitates COMMD1 and I-kappaB degradation to enhance NF-kappaB activity in prostate cancer cells. Mol Cancer Res 2010;8(1):119-30.
    42. Moers C, Leuvenink HG, Ploeg RJ. Non-heart beating organ donation:overview and future perspectives. Transpl Int 2007;20(7):567-75.
    1. Jamieson RW, Friend PJ. Organ reperfusion and preservation. Front Biosci 2008;13:221-35.
    2. Clavien PA, Harvey PR, Strasberg SM. Preservation and reperfusion injuries in liver allografts. An overview and synthesis of current studies. Transplantation 1992;53(5):957-78.
    3. Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. The Journal of pathology 2000;190(3):255-66.
    4. Jassem W, Heaton ND. The role of mitochondria in ischemia/reperfusion injury in organ transplantation. Kidney international 2004;66(2):514-7.
    5. Port FK, Bragg-Gresham JL, Metzger RA, et al. Donor characteristics associated with reduced graft survival:an approach to expanding the pool of kidney donors. Transplantation 2002;74(9):1281-6.
    6. Rudich SM, Kaplan B, Magee JC, et al. Renal transplantations performed using non-heart-beating organ donors:going back to the future? Transplantation 2002;74(12):1715-20.
    7. Michel D, Chabot JG, Moyse E, et al. Possible functions of a new genetic marker in central nervous system:the sulfated glycoprotein-2 (SGP-2). Synapse (New York, NY 1992; 11 (2):105-11.
    8. Tenniswood M, Wang Z, Lakins J, et al. Clusterin in the male reproductive tract. Journal of andrology 1998;19(5):508-16.
    9. Calero M, Rostagno A, Matsubara E, et al. Apolipoprotein J (clusterin) and Alzheimer's disease. Microscopy research and technique 2000;50(4):305-15.
    10. Rosenberg ME, Silkensen J. Clusterin and the kidney. Experimental nephrology 1995;3(1):9-14.
    11. Holtzman DM. In vivo effects of ApoE and clusterin on amyloid-beta metabolism and neuropathology. J Mol Neurosci 2004;23(3):247-54.
    12. Jones SE, Jomary C. Clusterin. The international journal of biochemistry & cell biology 2002;34(5):427-31.
    13. Lanson NA, Jr., Glembotski CC, Steinhelper ME, et al. Gene expression and atrial natriuretic factor processing and secretion in cultured AT-1 cardiac myocytes. Circulation 1992;85(5):1835-41.
    14. Hays LM, Crowe JH, Wolkers W, et al. Factors affecting leakage of trapped solutes from phospholipid vesicles during thermotropic phase transitions. Cryobiology 2001;42(2):88-102.
    15. Mazur P. Freezing of living cells:mechanisms and implications. The American journal of physiology 1984;247(3 Pt 1):C125-42.
    16. Parks JE, Graham JK. Effects of cryopreservation procedures on sperm membranes. Theriogenology 1992;38(2):209-22.
    17. Kanduc D, Mittelman A, Serpico R, et al. Cell death:apoptosis versus necrosis (review). International journal of oncology 2002;21(1):165-70.
    18. Abrahamse SL, van Runnard Heimel P, Hartman RJ, et al. Induction of necrosis and DNA fragmentation during hypothermic preservation of hepatocytes in UW, HTK, and Celsior solutions. Cell transplantation 2003;12(1):59-68.
    19. Salahudeen AK, Huang H, Joshi M, et al. Involvement of the mitochondrial pathway in cold storage and rewarming-associated apoptosis of human renal proximal tubular cells. Am J Transplant 2003;3(3):273-80.
    20. Salahudeen AK, Joshi M, Jenkins JK. Apoptosis versus necrosis during cold storage and rewarming of human renal proximal tubular cells. Transplantation 2001;72(5):798-804.
    21. Carver JA, Rekas A, Thorn DC, et al. Small heat-shock proteins and clusterin: intra- and extracellular molecular chaperones with a common mechanism of action and function? IUBMB life 2003;55(12):661-8.
    22. Gleave M, Chi KN. Knock-down of the cytoprotective gene, clusterin, to enhance hormone and chemosensitivity in prostate and other cancers. Annals of the New York Academy of Sciences 2005;1058:1-15.
    23. Leskov KS, Klokov DY, Li J, et al. Synthesis and functional analyses of nuclear clusterin, a cell death protein. The Journal of biological chemistry 2003;278(13):11590-600.
    24. O'Sullivan J, Whyte L, Drake J, et al. Alterations in the post-translational modification and intracellular trafficking of clusterin in MCF-7 cells during apoptosis. Cell death and differentiation 2003;10(8):914-27.
    1. Belzer FO, Southard JH. Principles of solid-organ preservation by cold storage. Transplantation 1988;45(4):673-6.
    2. Huang H, He Z, Roberts LJ,2nd, et al. Deferoxamine reduces cold-ischemic renal injury in a syngeneic kidney transplant model. Am J Transplant 2003;3(12):1531-7.
    3. Southard JH, Belzer FO. Organ preservation. Annual review of medicine 1995;46:235-47.
    4. Jamieson RW, Friend PJ. Organ reperfusion and preservation. Front Biosci 2008;13:221-35.
    5. Perico N, Cattaneo D, Sayegh MH, et al. Delayed graft function in kidney transplantation. Lancet 2004;364(9447):1814-27.
    6. Maathuis MH, Manekeller S, van der Plaats A, et al. Improved kidney graft function after preservation using a novel hypothermic machine perfusion device. Annals of surgery 2007;246(6):982-8; discussion 9-91.
    7. McLaren AJ, Jassem W, Gray DW, et al. Delayed graft function:risk factors and the relative effects of early function and acute rejection on long-term survival in cadaveric renal transplantation. Clinical transplantation 1999;13(3):266-72.
    8. Dragun D, Hoff U, Park JK, et al. Prolonged cold preservation augments vascular injury independent of renal transplant immunogenicity and function. Kidney international 2001;60(3):1173-81.
    9. de Silva HV, Harmony JA, Stuart WD, et al. Apolipoprotein J:structure and tissue distribution. Biochemistry 1990;29(22):5380-9.
    10. Poon S, Easterbrook-Smith SB, Rybchyn MS, et al. Clusterin is an ATP-independent chaperone with very broad substrate specificity that stabilizes stressed proteins in a folding-competent state. Biochemistry 2000;39(51):15953-60.
    11. Wyatt AR, Yerbury JJ, Wilson MR. Structural characterization of clusterin-chaperone client protein complexes. The Journal of biological chemistry 2009;284(33):21920-7.
    12. Choi NH, Nakano Y, Tobe T, et al. Incorporation of SP-40,40 into the soluble membrane attack complex (SMAC, SC5b-9) of complement. International immunology 1990;2(5):413-7.
    13. Tschopp J, Chonn A, Hertig S, et al. Clusterin, the human apolipoprotein and complement inhibitor, binds to complement C7, C8 beta, and the b domain of C9. J Immunol 1993;151(4):2159-65.
    14. Garlicki M. May preservation solution affect the incidence of graft vasculopathy in transplanted heart? Ann Transplant 2003;8(1):19-24.
    15. Hilmi I, Horton CN, Planinsic RM, et al. The impact of postreperfusion syndrome on short-term patient and liver allograft outcome in patients undergoing orthotopic liver transplantation. Liver Transpl 2008;14(4):504-8.
    16. Lauzurica R, Pastor MC, Bayes B, et al. Pretransplant inflammation:a risk factor for delayed graft function? Journal of nephrology 2008;21(2):221-8.
    17. Mazur P. Freezing of living cells:mechanisms and implications. The American journal of physiology 1984;247(3 Pt 1):C125-42.
    18. Parks JE, Graham JK. Effects of cryopreservation procedures on sperm membranes. Theriogenology 1992;38(2):209-22.
    19. Drobnis EZ, Crowe LM, Berger T, et al. Cold shock damage is due to lipid phase transitions in cell membranes:a demonstration using sperm as a model. The Journal of experimental zoology 1993;265(4):432-7.
    20. Lee RE, Jr., Damodaran K, Yi SX, et al. Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells. Cryobiology 2006;52(3):459-63.
    21. Humphreys DT, Carver JA, Easterbrook-Smith SB, et al. Clusterin has chaperone-like activity similar to that of small heat shock proteins. The Journal of biological chemistry 1999;274(11):6875-81.
    22. Carles J, Fawaz R, Hamoudi NE, et al. Preservation of human liver grafts in UW solution. Ultrastructural evidence for endothelial and Kupffer cell activation during cold ischemia and after ischemia-reperfusion. Liver 1994; 14(1):50-6.
    23. Hidalgo MA, Shah KA, Fuller BJ, et al. Cold ischemia-induced damage to vascular endothelium results in permeability alterations in transplanted lungs. The Journal of thoracic and cardiovascular surgery 1996; 112(4):1027-35.
    24. Mueller AR, Nalesnik MA, Langrehr JM, et al. Evidence that small bowel preservation causes primarily basement membrane and endothelial rather than epithelial cell injury. Transplantation 1993;56(6):1499-504.
    25. Wehrli P, Charnay Y, Vallet P, et al. Inhibition of post-ischemic brain injury by clusterin overexpression. Nature medicine 2001;7(9):977-9.
    26. Carbognani P, Spaggiari L, Rusca M, et al. Pulmonary endothelial cell modifications after storage in solid-organ preservation solutions. The Journal of international medical research 1995;23(3):200-6.
    27. Pickford MA, Manek S, Price AB, et al. The pathology of rat lung isografts following 48 or 72-hour cold storage and subsequent reperfusion in vivo for up to 1 month. International journal of experimental pathology 1992;73(5):685-97.
    28. Moers C, Leuvenink HG, Ploeg RJ. Non-heart beating organ donation:overview and future perspectives. Transpl Int 2007;20(7):567-75.
    1. Blaschuk O, Burdzy K, Fritz IB. Purification and characterization of a cell-aggregating factor (clusterin), the major glycoprotein in ram rete testis fluid. The Journal of biological chemistry 1983;258(12):7714-20.
    2. Bailey R, Griswold MD. Clusterin in the male reproductive system:localization and possible function. Molecular and cellular endocrinology 1999;151(1-2):17-23.
    3. Zhang H, Kim JK, Edwards CA, et al. Clusterin inhibits apoptosis by interacting with activated Bax. Nature cell biology 2005;7(9):909-15.
    4. 刘铁力,孙雷.聚集素与肿瘤.医学综述2010;16(8):1179-82.
    5. 付桂莉,许成蓉.聚集素与细胞凋亡关系的研究进展.临床口腔医学杂志2004;20(9):570-2.
    6. Gleave M, Chi KN. Knock-down of the cytoprotective gene, clusterin, to enhance hormone and chemosensitivity in prostate and other cancers. Annals of the New York Academy of Sciences 2005;1058:1-15.
    7. Zhou W, Guan Q, Kwan CC, et al. Loss of clusterin expression worsens renal ischemia-reperfusion injury. American journal of physiology 2009;298(3):F568-78.
    8. Krijnen PA, Cillessen SA, Manoe R, et al. Clusterin:a protective mediator for ischemic cardiomyocytes? Am J Physiol Heart Circ Physiol 2005;289(5):H2193-202.
    9. Jones SE, Jomary C. Clusterin. The international journal of biochemistry & cell biology 2002;34(5):427-31.
    10. Wong P, Taillefer D, Lakins J, et al. Molecular characterization of human TRPM-2/clusterin, a gene associated with sperm maturation, apoptosis and neurodegeneration. European journal of biochemistry/FEBS 1994;221(3):917-25.
    11.赵颖,牛膺筠clusterin与视网膜疾病.临床眼科杂志2006;14(2):184-6.
    12.牛林琳,蔡莉Clusterin的研究进展及其在肺癌中的研究现状.实用肿瘤学杂志2007;21(1):72-4.
    13. Kounnas MZ, Loukinova EB, Stefansson S, et al. Identification of glycoprotein 330 as an endocytic receptor for apolipoprotein J/clusterin. The Journal of biological chemistry 1995;270(22):13070-5.
    14. Michel D, Chatelain G, North S, et al. Stress-induced transcription of the clusterin/apoJ gene. The Biochemical journal 1997;328 (Pt 1):45-50.
    15. Reddy KB, Jin G, Karode MC, et al. Transforming growth factor beta (TGF beta)-induced nuclear localization of apolipoprotein J/clusterin in epithelial cells. Biochemistry 1996;35(19):6157-63.
    16. Bettuzzi S, Rizzi F. Chapter 5:Nuclear CLU (nCLU) and the fate of the cell. Advances in cancer research 2009; 104:59-88.
    17. Klock G, Baiersdorfer M, Koch-Brandt C. Chapter 7:Cell protective functions of secretory Clusterin (sCLU). Advances in cancer research 2009;104:115-38.
    18. Caccamo AE, Scaltriti M, Caporali A, et al. Ca2+ depletion induces nuclear clusterin, a novel effector of apoptosis in immortalized human prostate cells. Cell death and differentiation 2005;12(1):101-4.
    19. Choi-Miura NH, Takahashi Y, Nakano Y, et al. Identification of the disulfide bonds in human plasma protein SP-40,40 (apolipoprotein-J). Journal of biochemistry 1992;112(4):557-61.
    20. Yang CR, Leskov K, Hosley-Eberlein K, et al. Nuclear clusterin/XIP8, an x-ray-induced Ku70-binding protein that signals cell death. Proceedings of the National Academy of Sciences of the United States of America 2000;97(11):5907-12.
    21. Rizzi F, Coletta M, Bettuzzi S. Chapter 2:Clusterin (CLU):From one gene and two transcripts to many proteins. Advances in cancer research 2009;104:9-23.
    22. Leskov KS, Klokov DY, Li J, et al. Synthesis and functional analyses of nuclear clusterin, a cell death protein. The Journal of biological chemistry 2003;278(13):11590-600.
    23.刘燕青,韩威,王刚,et al. Clusterin结构特点及其与肿瘤发生、发展的关系.武警医学2008;19(10):941-3.
    24. Miyake H, Nelson C, Rennie PS, et al. Testosterone-repressed prostate message-2 is an antiapoptotic gene involved in progression to androgen independence in prostate cancer. Cancer research 2000;60(1):170-6.
    25. Kissinger C, Skinner MK, Griswold MD. Analysis of Sertoli cell-secreted proteins by two-dimensional gel electrophoresis. Biology of reproduction 1982;27(1):233-40.
    26. Sylvester SR, Morales C, Oko R, et al. Localization of sulfated glycoprotein-2 (clusterin) on spermatozoa and in the reproductive tract of the male rat. Biology of reproduction 1991;45(1):195-207.
    27. Yin Z, Wang L, Xiang Y, et al. Resistance of neonatal porcine Sertoli cells to human xenoantibody and complement-mediated lysis is associated with low expression of alpha-Gal and high production of clusterin and CD59. Xenotransplantation;17(3):215-23.
    28. Leger JG, Montpetit ML, Tenniswood MP. Characterization and cloning of androgen-repressed mRNAs from rat ventral prostate. Biochemical and biophysical research communications 1987;147(1):196-203.
    29. Sensibar JA, Griswold MD, Sylvester SR, et al. Prostatic ductal system in rats: regional variation in localization of an androgen-repressed gene product, sulfated glycoprotein-2. Endocrinology 1991;128(4):2091-102.
    30. Sensibar JA, Qian Y, Griswold MD, et al. Localization and molecular heterogeneity of sulfated glycoprotein-2 (clusterin) among ventral prostate, seminal vesicle, testis, and epididymis of rats. Biology of reproduction 1993;49(2):233-42.
    31.王元天,孙颖浩,钱松溪.抑制前列腺癌细胞凋亡的特异介质-Clusterin国外医学泌尿系统分册2003;23(2):157-9.
    32. Forni M, Zannoni A, Tamanini C, et al. Opposite regulation of clusterin and LH receptor in the swine corpus luteum during luteolysis. Reproduction, nutrition, development 2003;43(6):517-25.
    33. Miyake H, Hara I, Kamidono S, et al. Synergistic chemsensitization and inhibition of tumor growth and metastasis by the antisense oligodeoxynucleotide targeting clusterin gene in a human bladder cancer model. Clin Cancer Res 2001;7(12):4245-52.
    34. Shannan B, Seifert M, Leskov K, et al. Challenge and promise:roles for clusterin in pathogenesis, progression and therapy of cancer. Cell death and differentiation 2006;13(1):12-9.
    35.陈刚,唐伟Clusterin、bcl-2及FasL在前列腺癌中的表达及相关性研究. 重庆医科大学学报2005;30(3):409-11.
    36. Narita S, So A, Ettinger S, et al. GLI2 knockdown using an antisense oligonucleotide induces apoptosis and chemosensitizes cells to paclitaxel in androgen-independent prostate cancer. Clin Cancer Res 2008;14(18):5769-77.
    37. Lee C, Janulis L, Ilio K, et al. In vitro models of prostate apoptosis:clusterin as an antiapoptotic mediator. Prostate Suppl 2000;9:21-4.
    38. Scaltriti M, Brausi M, Amorosi A, et al. Clusterin (SGP-2, ApoJ) expression is downregulated in low-and high-grade human prostate cancer. International journal of cancer 2004;108(1):23-30.
    39.陈金元,李杰,徐宏Clusterin和Survivin在大肠癌中的表达及意义.中国热带医学年2008;8(12):2105-7.
    40. Pucci S, Mazzarelli P, Nucci C, et al. CLU "in and out":looking for a link. Advances in cancer research 2009;105:93-113.
    41. Redondo M, Villar E, Torres-Munoz J, et al. Overexpression of clusterin in human breast carcinoma. The American journal of pathology 2000;157(2):393-9.
    42. Lenferink AE, Cantin C, Nantel A, et al. Transcriptome profiling of a TGF-beta-induced epithelial-to-mesenchymal transition reveals extracellular clusterin as a target for therapeutic antibodies. Oncogene;29(6):831-44.
    43. Kruger S, Ola V, Fischer D, et al. Prognostic significance of clusterin immunoreactivity in breast cancer. Neoplasma 2007;54(1):46-50.
    44.徐亮,张瑾Cluster in在乳腺癌研究中的进展.中华乳腺病杂志(电子版)2009;3(6):659-64.
    45.宋振梅,孙玉琳,毛友生,et al食管鳞癌clusterin表达及其临床意义.世界华人消化杂志2010;18(12):1217-21.
    46. Shannan B, Seifert M, Boothman DA, et al. Clusterin and DNA repair:a new function in cancer for a key player in apoptosis and cell cycle control. Journal of molecular histology 2006;37(5-7):183-8.
    47. Miyake H, Hara I, Kamidono S, et al. Resistance to cytotoxic chemotherapy-induced apoptosis in human prostate cancer cells is associated with intracellular clusterin expression. Oncology reports 2003;10(2):469-73.
    48. Trougakos IP, So A, Jansen B, et al. Silencing expression of the clusterin/apolipoprotein j gene in human cancer cells using small interfering RNA induces spontaneous apoptosis, reduced growth ability, and cell sensitization to genotoxic and oxidative stress. Cancer research 2004;64(5):1834-42.
    49. Wang S, Gao J, Lei Q, et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer cell 2003;4(3):209-21.
    50. Chen X, Halberg RB, Ehrhardt WM, et al. Clusterin as a biomarker in murine and human intestinal neoplasia. Proceedings of the National Academy of Sciences of the United States of America 2003;100(16):9530-5.
    51. Viard I, Wehrli P, Jornot L, et al. Clusterin gene expression mediates resistance to apoptotic cell death induced by heat shock and oxidative stress. The Journal of investigative dermatology 1999;112(3):290-6.
    52.齐越,张强,张志文.新的抗细胞凋亡因子——Clusterin研究新进展.生物学通报2001;36(8):7-9.
    53. Sintich SM, Steinberg J, Kozlowski JM, et al. Cytotoxic sensitivity to tumor necrosis factor-alpha in PC3 and LNCaP prostatic cancer cells is regulated by extracellular levels of SGP-2 (clusterin). The Prostate 1999;39(2):87-93.
    54. Sensibar JA, Sutkowski DM, Raffo A, et al. Prevention of cell death induced by tumor necrosis factor alpha in LNCaP cells by overexpression of sulfated glycoprotein-2 (clusterin). Cancer research 1995;55(11):2431-7.
    55. Trougakos IP, Gonos ES. Clusterin/apolipoprotein J in human aging and cancer. The international journal of biochemistry & cell biology 2002;34(11):1430-48.
    56. Park JH, Park JS, Ju SK, et al. Clusterin mRNA expression in apoptotic and activated rat thymocytes. Cell research 2003;13(1):49-58.
    57. Jenne DE, Tschopp J. Molecular structure and functional characterization of a human complement cytolysis inhibitor found in blood and seminal plasma: identity to sulfated glycoprotein 2, a constituent of rat testis fluid. Proceedings of the National Academy of Sciences of the United States of America 1989;86(18):7123-7.
    58. Muller-Eberhard HJ. Molecular organization and function of the complement system. Annual review of biochemistry 1988;57:321-47.
    59. Tschopp J, Jongeneel CV. Cytotoxic T lymphocyte mediated cytolysis. Biochemistry 1988;27(8):2641-6.
    60. Dahlback B, Podack ER. Characterization of human S protein, an inhibitor of the membrane attack complex of complement. Demonstration of a free reactive thiol group. Biochemistry 1985;24(9):2368-74.
    61. Jenne D, Stanley KK. Molecular cloning of S-protein, a link between complement, coagulation and cell-substrate adhesion. The EMBO journal 1985;4(12):3153-7.
    62. Colle JH, Moreau JL, Fontanet A, et al. CD 127 expression and regulation are altered in the memory CD8 T cells of HIV-infected patients--reversal by highly active anti-retroviral therapy (HAART). Clinical and experimental immunology 2006;143(3):398-403.
    63. Bhakdi S, Kaflein R, Halstensen TS, et al. Complement S-protein (vitronectin) is associated with cytolytic membrane-bound C5b-9 complexes. Clinical and experimental immunology 1988;74(3):459-64.
    64. Murphy BF, Davies DJ, Morrow W, et al. Localization of terminal complement components S-protein and SP-40,40 in renal biopsies. Pathology 1989;21(4):275-8.
    65. Murphy BF, Kirszbaum L, Walker ID, et al. SP-40,40, a newly identified normal human serum protein found in the SC5b-9 complex of complement and in the immune deposits in glomerulonephritis. The Journal of clinical investigation 1988;81(6):1858-64.
    66. Abe K, Miyazaki M, Koji T, et al. Enhanced expression of complement C5a receptor mRNA in human diseased kidney assessed by in situ hybridization. Kidney international 2001;60(1):137-46.
    67. Chauhan AK, Moore TL. Presence of plasma complement regulatory proteins clusterin (Apo J) and vitronectin (S40) on circulating immune complexes (CIC). Clinical and experimental immunology 2006;145(3):398-406.
    68. Rosenberg ME, Paller MS. Differential gene expression in the recovery from ischemic renal injury. Kidney international 1991;39(6):1156-61.
    69. Dvergsten J, Manivel JC, Correa-Rotter R, et al. Expression of clusterin in human renal diseases. Kidney international 1994;45(3):828-35.
    70. Witzgall R, Brown D, Schwarz C, et al. Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. The Journal of clinical investigation 1994;93(5):2175-88.
    71.毛张凡,杜心灵,孙宗全.比较缺血后处理和缺血预适应对大鼠离体心的保护作用.中华实验外科杂志2007;24:1248-50.
    72.张松林,孙宗全,冯剑锷,et al受体诱导一氧化碳经P13 K/Akt信号途径抑制冷缺血再灌注诱导的移植心细胞凋亡.中华实验外科杂志2010;27(9):1218-21.
    73. Nakao A, Choi AM, Murase N. Protective effect of carbon monoxide in transplantation. Journal of cellular and molecular medicine 2006;10(3):650-71.
    74. Kosieradzki M, Rowinski W. Ischemia/reperfusion injury in kidney transplantation:mechanisms and prevention. Transplantation proceedings 2008;40(10):3279-88.
    75. Han BH, DeMattos RB, Dugan LL, et al. Clusterin contributes to caspase-3-independent brain injury following neonatal hypoxia-ischemia. Nature medicine 2001;7(3):338-43.
    76. Wehrli P, Charnay Y, Vallet P, et al. Inhibition of post-ischemic brain injury by clusterin overexpression. Nature medicine 2001;7(9):977-9.
    77. Reeder DJ, Stuart WD, Witte DP, et al. Local synthesis of apolipoprotein J in the eye. Experimental eye research 1995;60(5):495-504.
    78. Jones SE, Meerabux JM, Yeats DA, et al. Analysis of differentially expressed genes in retinitis pigmentosa retinas. Altered expression of clusterin mRNA. FEBS letters 1992;300(3):279-82.
    79. Nishida K, Kawasaki S, Adachi W, et al. Apolipoprotein J expression in human ocular surface epithelium. Investigative ophthalmology & visual science 1996;37(11):2285-92.
    80. Crabb JW, Miyagi M, Gu X, et al. Drusen proteome analysis:an approach to the etiology of age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America 2002;99(23):14682-7.
    81. Wong P, Ulyanova T, Organisciak DT, et al. Expression of multiple forms of clusterin during light-induced retinal degeneration. Current eye research 2001;23(3):157-65.
    82. Gwon JS, Kim IB, Lee MY, et al. Expression of clusterin in Muller cells of the rat retina after pressure-induced ischemia. Glia 2004;47(1):35-45.
    83.马建芳,陈生弟.聚集素蛋白与神经变性疾病.中国现代神经疾病杂志2006;6(4):304-7.
    84.陈平,袁耀宗.簇素在急性胰腺炎发病机制中的研究进展.国际消化病杂志2006;26(1):58-60.
    85. Masamune A, Sakai Y, Satoh A, et al. Lysophosphatidylcholine induces apoptosis in AR42J cells. Pancreas 2001;22(1):75-83.
    86. Wyatt A, Yerbury J, Poon S, et al. Chapter 6:The chaperone action of Clusterin and its putative role in quality control of extracellular protein folding. Advances in cancer research 2009; 104:89-114.
    87. Carver JA, Rekas A, Thorn DC, et al. Small heat-shock proteins and clusterin: intra- and extracellular molecular chaperones with a common mechanism of action and function? IUBMB life 2003;55(12):661-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700