梅花花粉超低温保存研究及其花粉库建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梅花是中华民族的精神象征和文化瑰宝,也是目前最有竞争力的国花候选者之一。中国拥有丰富的野生梅花资源和栽培品种。因此,进行梅花种质资源保存研究,对于完善梅花种质资源保存体系以及梅花其他研究领域研究工作的深入具有重要的研究价值和现实意义。在5年的研究过程中,试验在对梅花花粉生活力和梅花花粉超低温保存技术进行系统研究的基础上,建立了梅花花粉库并对其可行性和稳定性等进行了评价;同时针对花粉超低温保存研究中出现的问题和观察到的现象,探讨了花粉超低温保存机理,以期为梅花花粉库的完善提供理论指导,试验结果如下:
     (1)对97个梅花品种花粉生活力的检测结果认为,江梅型和宫粉型品种的花粉萌发率较高,而朱砂型品种的无花粉比例较高。梅花不同花枝的花粉萌发率差异不明显,梅花花粉的采集时期可以选在初开期和盛花期,采集大蕾和中蕾期花蕾。从花蕾中剥离的花药可以采用室温散粉。
     (2)根据品种的不同,室温条件下花粉的寿命一般不足1个月;在冷藏条件下,大部分品种的生活力在保存1年左右基本丧失;在冷冻条件下,保存4年的花粉萌发率出现大幅度降低;液氮保存花粉的萌发率并没有随着保存时间的延长而逐渐降低,而是基本保持不变,甚至有升高的现象。
     (3)梅花花粉的超低温保存技术程序为:花粉的收集——花粉的包装——直接投入液氮——自来水冲洗化冻。花粉含水量和品种特性是影响花粉超低温保存效果的重要因子。保存时间与超低温保存效果没有明显的正相关。
     (4)首次建立了梅花花粉种质库。截止2007年,梅花花粉库中目前已经相继保存55个梅花品种,其中11个品种超低温保存4年后的花粉萌发率与新鲜花粉没有明显的降低。31个品种保存时间在1年以上。同时19个品种的超低温保存花粉在武汉和北京两地的田间杂交育种中应用,授粉数约9300朵,结实约970个,2007年两地共获得杂种苗约180株。
     (5)超低温保存花粉在杂交育种工作中的应用效果评价显示:在武汉地区,同一批花粉超低温保存后的杂交结实率,座果率动态变化和所得种子的出苗率与新鲜花粉相比没有明显变化。在北京地区,超低温保存梅花花粉的杂交座果率动态变化与前人对新鲜花粉的研究结果基本一致。超低温保存花药的结实率和座果率动态变化与超低温花粉没有明显差异,但所得种子的出苗率明显低与超低温保存花粉所得种子的出苗率。
     (6)对二乔玉兰,小报春,百合,白玉兰,黄刺玫等园林植物花粉进行超低温保存研究的结果表明,超低温保存技术可以应用于其他园林植物花粉的超低温保存。
     (7)在花粉超低温保存机理的研究中,对3个梅花品种超低温保存后的总可溶蛋白差异点进行分析比较发现,它们有共同的差异蛋白点,上调和下调蛋白点,推测可能是超低温逆境下的应激反应和保护机制。另外,3个品种在超低温保存前后花粉总可溶蛋白点变化上也存在差异,这是否与超低温保存前后花粉的萌发率变化有关还有待于进一步的深入研究。
     (8)采用流式细胞术进行超低温保存花粉钙离子的动态变化研究,同时探讨检测花粉活力的新方法结果表明:梅花花粉超低温后的钙离子浓度与新鲜花粉相比出现了明显的升高。根据品种的不同,随着超低温保存时间的延长,花粉钙离子的变化趋势存在差异。另外,花粉的装载比例与花粉萌发率没有明显的正相关,流式细胞仪是否可以作为检测花粉活力的新方法还待于进一步的深入研究。
     (9)采用电感耦合等离子体-原子发射光谱仪对梅花花粉萌发过程中培养液中钙离子动态变化的研究表明:花粉壁上有储存钙的存在,在花粉萌发过程中,花粉胞内钙离子释放到培养液中,同时钙离子浓度的动态变化影响着花粉萌发的速度以及花粉萌发率。
The Mei flower (Prunus mume Sieb. et. Zucc.) is the plant which China has gained the first authority of the International Register. With plenty of wild and cultivar resources, it reveals the aesthetic standard of the Chinese and it is one of the strongest competitors for the national flower of China. Therefore, the study of preserving Mei flower resources has great research value and practical meanings in Mei flower research areas. Five years have been used to investigate the feasibility for establishing Mei flower pollen bank. The viability study of different Mei flower cultivars, procedure of cryopreservation of Mei flower pollen, practical test of cryopreserved pollen and the mechanism study of pollen cryopreservation have been carried out. The results were as follows:
    1) Pollen viabilities have significant differences according to the viability stastic of 97 Mei cultivars. Pollen viability of Single Flowered Form and Pink Doubl Form were much better than Cinnabar Purple Form.Mei flower pollen can be collectted between the early flowering period and full blossom period, the Buds going to open the following day are the best choice and the anthers would be better gently separated and putted on the buffer paper at room temperature.
    2) At room temperate most of the cultivars will lose viability in 1 month. Pollen germination rate decreased sharply after 1 year and 4 years storage, at 5℃ and -20℃ separately, but there was no significant decrease at -196℃.
    3) Pollen collecting-packing- rapid freezing and direct plunging- thawing with running water may be admitted as the main procedure in Mei flower cryopreservation. Pollen water content and the character of the cultivar are the important factors in Mei flower pollen cryopreservation. Storage time in LN_2 had no positive relationship with the results of pollen cryopreservation.
    4) Mei flower pollen bank was first estabilished in this study. Till 2007, 55 cultivars had been preserved in this pollen bank, 11 cultivars still had high pollen germination rate after 4 years storage in LN_2 and 31 cultivars were preserved more than 1 year. In addition cryopreserved pollen of 19 cultivars had been applied with success in hybridization experiments. From 2005 to 2007, we had pollinated about 9700 flowers, 970 fruits were harvested and 180 seedlings had gained from them in Wuhan and Beijing.
    5) It had been proved that the fruit set rate and seedling rate of cryopreserved pollen had no
    significant difference with its fresh pollen in Wuhan city. The fruit set changes of cryopreserved pollen also had no significant difference with the fresh pollen which reported by other researcher in Beijing. The fruit set rate and fruit setting changes of cryopreserved anthers are similar with cryopreserved pollen, but its seedling rates were sharply decreased.
    6) The technic of pollen cryopreservation applied in other ornamental plants was further proved. Our work also shows a guidline and groundwork to pollen banks' establishment for ornamental plants.
    7) In the mechanism study of pollen cryopreservation. The differences of total soluble proteins in cryopreserved pollen and fresh pollen of Prunus mume were found. Specially expressed total soluble proteins were found in three different cryopreserved cultivars which may be the specially expressed total soluble proteins in cryopreserved Mei flower pollen. Meanwhile the same strengthened and weakened total soluble proteins were found in the 3 cultivars. In addition, changes of total soluble proteins in the 3 cultivars were different, this may be have some relationship with the changing trends of pollen germination rate after cryopreservation.
    8) Flow cytometer was applied in the study of [Ca~(2+)] changes of cryopreserved pollen and also used to searching for new technic of testing pollen viability.The relative fluorescence intensity of Ca~(2+) in cryopreserved pollen was much higher then fresh pollen. After different period of cryopreservation, the changing trends of [Ca~(2+)] were different according to the cultivars. At present, the loading rate of Fluo-3, AM had no significant connection with pollen germination rate, wether Flow cytometer could be used to testing pollen viability needs further study.
    9) ICP-AES was presented in the mensuration of [Ca~(2+)] during pollen germination, the free [Ca~(2+)]
    can be transfered to the culture media and pollen germination were advanced, the concentration of free [Ca~(2+)] increased, meanwhile, The dynamic changes of [Ca~(2+)] may effect the speed of pollen germination and pollen germination rate.
引文
1.艾鹏飞,罗正荣.柿晶种‘禅寺丸’花粉超低温保存研究[J].华中农业大学学报,2004,23(5):563-565.
    2.白淑娟,顾洪如,丁成龙,等.象草花粉贮藏的研究[J].江苏农业科学,1994,(5):61-63.
    3.包满珠,张永春,黄燕文,等.梅花品种花粉可育性及其与育种的关系探讨[J].北京林业大学学报,1995,17(supp):146-148.
    4.蔡青,范源洪,夏红明,等.甘蔗细茎野生种(S.spontaneum)F1代花粉的低温贮藏研究[J].甘蔗,2000,7(3):1-7.
    5.陈俊愉.中国梅花品种图志[M],北京:中国林业出版社,1989.
    6.陈俊愉.中国梅花品种分类最新修正体系[J].北京林业大学学报,1999,21(2):4-6.
    7.陈俊愉.梅花研究六十年[J].北京林业大学学报,2002,24(5/6):224-229.
    8.陈品良,贺善安,金炜.杜仲、秤锤树花粉的超低温贮藏研究[J].植物学报,1990,32(4):288-291.
    9.陈品良.植物组织培养物的超低温保存[J].武汉植物学研究,1989,7(4):390-398.
    10.陈瑞丹,杨乃琴.我国梅园建设现状与展望[J].花木盆景:花卉园艺,2001,02(A):8-8.
    11.陈瑞丹.梅花杂交育种及其胚培养的研究[D].北京林业大学博士论文,2003.
    12.陈霜莹,常永健,赵艳华,等.果树花粉的超低温保存研究[J].华北农学报,1993,8(增刊):60-64.
    13.陈由强,叶冰莹,高一平,等.低温胁迫下枇杷幼叶细胞内Ca2+水平及细胞超微结构变化的研究[J].武汉植物学研究,2000,18(2):138-142.
    14.陈由强,叶冰莹,朱锦懋,等.低温胁迫下龙眼(Dimocarpuslonganalour.)幼叶细胞内Ca2+水平及细胞超微结构[J].植物资源与环境学报,2000,9(1):12-15.
    15.储立民,金爱红,徐冬青,等.钙离子浓度对丝瓜花粉萌发和花粉管生长的影响[J].河南农业科学,2005,4:56-58.
    16.褚孟嫄 主编.中国果树志 梅卷[M],北京:中国林业出版社,1999.
    17.丁国华,秦智伟,周秀艳.植物低温诱导蛋白和诱导基因研究新进展[J].中国农学通报,2003,19(6):33-37.
    18.丁坤善.油松雌配子体败育时期球果蛋白质的变异研究[D].北京林业大学硕士论文,2003.
    19.樊新民,牛建新,孙爱新,等.榆叶梅和海棠花粉萌发率的测定及超低温保存方法[J].湖北农业科技,2004,(6):65-66,58.
    20.冯兆忠,于静,冯宗炜.三唑酮对黄瓜幼苗生长及抗寒性的影响[J].应用生态学报,2003,14(10):1637-1640.
    21.傅鸿妃.植物花粉超低温保存研究进展[J].杭州农业科技,2006,(1):36-38.
    22.龚明,曹宗巽.钙和钙调素对花粉萌发和花粉管生长的调控[J].植物生理学 通,1995,31(5):321-328.
    23.关军锋,马智宏,张晓敏,等.Ca2+与苹果花粉萌发和花粉管生长的关系[J].果树科学,1999,16(3):176-179.
    24.郭光明,张福锁,尚忠林,等.硼对百合花粉萌发过程中细胞内游离钙离子的影响[J].中国农业大学学报,2002,7(5):32-37.
    25.郭尧君 编著.蛋白质电泳实验技术[M],北京:科学出版社,2005.
    26.郭荫槐,董玉臣.不同条件下沙棘花粉生活力测定和贮藏试验[J].沙棘,1996,8(1):10-13.
    27.韩幸幸.梅花盆景造型五式[J].北京农业,2004,(2):13.
    28.何军贤,曾乃燕,易静,等.低温对水稻幼苗叶绿体光化学功能及类囊体膜蛋白水平的影响[J].中国水稻,1999,13(2):99-103.
    29.胡晋,郭长根.超低温(-196℃)保存杂交水稻恢复系花粉的研究[J].作物学报,1996,22(1):72-77.
    30.胡晋.花粉的保存和生活力测定[J].种子,1992(6):33-35.
    31.胡适宜.植物胚胎学实验方法(一)花粉生活力鉴定[J].植物学通报,1993,10(2):60-62.
    32.明永红.抗寒梅花(Prunus mume Sred.& Zucc)育种—梅花杂交.胚培养及胚胎发育的研究[D].北京林业大学硕士论文,1994.
    33.黄腾波,尤瑞麟.烟草花粉低温处理过程中超微结构变化的研究[J].北京大学学报(自然科学版),2003,39(6):780-791.
    34.黄忠连,荆艳萍,朱果利,等.低能氮离子注人对花粉细胞钙浓度及膜电位的影响[J].科学通报,2001,10(46):832-835.
    35.江福英,李延,翁伯琦.植物低温胁迫及其抗性生理[J].福建农业学报,2002,17(3):190-195.
    36.江勇,贾士荣,费云标.抗冻蛋白及其在植物抗冻生理中的作用[J].植物学报,1999,41(7):677-685.
    37.江雨生,高铸九.桃、梨花粉的超低温(-196℃)贮藏[J].上海农业学报,1989,5(1):1-8.
    38.金爱红,储立民,徐冬青,等.钙对葱兰花粉萌发和花粉管生长的影响[J].湖北农业科学,2005,3:91-93.
    39.李广清.山茶花粉超低温保存研究.[硕士论文]北京:北京林业大学,2005.
    40.李楠,王黎明,杨军.激光共聚焦显微镜的原理和应用[J].军医进修学院学报,1996,17(3):232-234.
    41.李楠等主编.激光扫描共聚焦显微术[M],北京:人民军医出版社,1997:61-95.
    42.李树华.中国盆景文化史[M],北京:中国林业出版社,2005:50-51.
    43.李训贞.水稻花粉贮藏的研究[J].农业科技通讯,1987(6):2-4.
    44.李跃强,宣维健,盛承发.植物的低温蛋白[J].生态学报,2004,24(5):1034-1039.
    45.梁立,徐秉芳,郑从义,等.紫菜苔花粉超低温保存及其原生质体分离[J].植物学 报,1993,35(10):733-738.
    46.林善枝,张志毅.毛白杨幼苗低温锻炼过程中Ca~(2+)的作用及细胞Ca~(2+)-ATP酶活性的变化[J].植物生理与分子生物学学报,2002,28(6):449-456.
    47.林新春.几种木兰科植物花粉生活力的测定[J].江西林业科技,2004,4:4-5.
    48.林雁.浅论梅花与屋宇楼阁的配置[J].西北林学院学报,2002,17(2):86-89.
    49.陆培基,苏军,叶文,等。籽瓜花粉的液氮保存研究[J],福建省农科院学报,1992,7(1):32-35
    50.吕玲玲,菠萝花粉保存研究初报[J],上海农业学报 2005,21(1):95-97
    51.刘敦娴.中华梅花情结[J].中国园林,2005,21(3):39-40.
    52.刘美艳,张健,张伟.Ca~(2+)提高白花苜蓿抗冷性的研究[J].广西植物,2004,24(2):174-177.
    53.刘武林.花粉的采集、贮藏和生活力检验[J].吉林农业科学,1981(3):87-94.
    54.刘小军.枇杷种质离体保存及生理生化研究.[硕士论文]福建:福建农林大学,2003.
    55.刘燕,周慧,方标.园林花卉种子超低温保存研究[J].北京林业大学学报,2001,23(4):39-44.
    56.刘月学.枇杷种质离体保存的初步研究.[硕士论文] 福建:福建农林大学,2002.
    57.卢桂宾,梁小娟,韩忻德,等.仁用杏开花、坐果习性及花粉生活力评价[J].山西林业科技,2001,(3):1-5.
    58.陆培基,苏军,叶文,等.籽瓜花粉的液氮保存研究[J].福建省农科院学报,1992,7(1):32-35.
    59.吕玲玲.菠萝花粉保存研究初报(简报)[J].上海农业学报,2005,21(1):95-97.
    60.明军,张启翔,兰彦平.梅花品种资源核心种质构建[J].北京林业大学学报,2005,27(2):65-69.
    61.钱卓蕾,王君晖,边红武,等.抗冻蛋白在超低温保存中作用机制的新模型[J].细胞生物学杂志,2002,24(4):224-226.
    62.瑞菲尔·努纳兹(Rafael Nunez)(瑞士)著;刘秉慈,许增禄主译.流式细胞术原理与科研应用简明手册[M].北京:化学工业出版社,2005:99-103.
    63.尚晓倩,陶清波,刘燕.牡丹花粉超低温保存前后生理生化变化研究[G].中国园艺学会观赏园艺专业委员会.中国观赏园艺研究进展.北京:中国林业出版社,2004:197-199.
    64.尚晓倩.芍约花粉超低温保存研究.[硕士论文]北京:北京林业大学,2005.
    65.尚忠林,马力耕,王学臣,等.细胞外钙调素对百合花粉细胞内钙离子浓度的影响[J].植物学报,2001,43(1):12-17.
    66.尚忠林,王永飞,钱洪,等.百合花粉细胞中钙离子的荧光测定法[J].植物生理学通讯,2001,37(4):319-322.
    67.尚忠林.细胞外钙调素对花粉细胞内钙离子的影响及其信号传递途径的研究[D].北京:中国农业大学博士论文,2001.
    68.邵伟,官葵.钙离子在花粉管伸长中的作用——介绍关于花粉管伸长机理的一个新模型[J]. 植物学通报,1984,2(2-3):39-40.
    69.沈大为,顾文晴.建个梅花切花圃[J].园林,2005,(11):42-43.
    70.石思信,曹心如,肖建平.黑麦花粉超低温保存及过氧化物酶同工酶变化[J].作物品种资源,1992(3):33-35.
    71.石思信,田玥,曹心如.利用液氮保存玉米花粉[G] 马缘生主编.作物种资资源保存技术[M].北京:学术书刊出版社,1989:86-91.
    72.石思信,田玥.玉米花粉超低温保存一年后的结实能力[G] 马缘生主编.作物种资资源保存技术[M].北京:学术书刊出版社,1989:79-85.
    73.石思信,张志娥,肖建平.玉米花粉超低温保存后的同工酶和醇溶蛋白图谱分析[J].安徽农业科学,1997,25(11):5-16.
    74.石思信,张志娥,肖建平.玉米花粉超低温长期保存对其后代农艺性状的影响[J].北京农业科学,1994,12(5):14-15.
    75.石思信,张志娥,肖建平.玉米花粉超低温长期保存后其后代的染色体观察[J].作物品种资源,1995(2):45-47.
    76.石思信,张志娥,肖建平.玉米花粉超低温长期保存后遗传稳定性的研究[J].作物学报,1996,22(4):409-413.
    77.史桂荣,玉米花粉生活力的研究[J].黑龙江农业科学,1996,(2):13-15.
    78.宋平根,李素文 主编.流式细胞术的原理和应用[M],北京:北京师范大学出版社,1992.
    79.苏新.浙贝母花粉超低温保存方法的研究[J].中国中药杂志,1991,16(7):399-340.
    80.清鹏,王小菁.拟南芥叶细胞游离钙离子的测定[J].热带亚热带植物学报,2004,12(1):79-82.
    81.孙书存,陆健健,张利华.流式细胞仪在微型浮游植物生态学中的应用[J].生态学杂志2000,19(1):72-78.
    82.汤健.兰州百合精细胞特异蛋白的研究.[硕士论文]北京:北京大学,1995.
    83.陶清波.牡丹花粉超低温保存研究.[硕士论文]北京:北京林业大学,2003.
    84.万清林,刘鸣远.芸香抗寒生理的初步研究[J].植物研究,1997,17(2):190-194.
    85.万怡震,贺普超,廖祥儒,等.葡萄花粉不同发育阶段、不同干燥及不同保存条件下生活力鉴定研究[J].陕西农业科学,1997,(2):9-11.
    86.汪家政,范明主编.蛋白质技术手册[M],北京:科学出版社,2000.
    87.王彩虹,李嘉瑞.杏花粉的低温与超低温贮藏研究[J].莱阳农学院学报,1996,13(2):169-173.
    88.王家福,刘月学,刘小军,等.枇杷花粉干冻法超低温保存研究[J].中国农学通报,2004,20(1):1-2,20.
    89.王君晖,黄纯农.木本植物种资超低温保存的研究进展[J].世界林业研究,1998,(5):6-11.
    90.王钦丽,卢龙斗,吴小琴,等.花粉的保存及其生活力测定[J].植物学通 报,2002,19(3):365-373.
    91.王瑞云,贺润喜,岳文斌,等.植物抗寒性基因工程研究进展[J].中国生态农业学报,2004,12(1):26-29.
    92.王玉萍,张峰,王蒂.马铃薯花粉的超低温保存研究[J].园艺学报,2003,30(6):683-686.
    93.翁树章,李青英,陈育英,等.广东荔枝主要品种花粉生活力研究初报[J].果树科学,1990,7(2):91-96.
    94.吴素琴,宁布,包来晓.液氮保存牧草花粉生活力的研究[J].中国草业,1996(4):30-31.
    95.谢潮添,邱义兰,葛丽丽,等.烟草花粉萌发和花粉管生长期间柱头和花柱中的钙分布[J].植物生理与分子生物学学报,2005,31(1):53-61.
    96.徐艳.观赏蕨类植物种质超低温保存研究.[博士论文]北京:北京林业大学,2006.
    97.闫立英,冯志红,张慎好,等.番茄花粉生活力研究[J].种子,2005,24(6):23-26.
    98.晏晓兰 主编,赵守边,毛庆山副主编.中国梅花栽培与鉴赏[M],北京:金盾出版社,2002
    99.杨素娟,王玉书,王立,等.茶树花粉的超低温(LN_2,-196℃)保存[J].茶叶科学,1993,13(1):27-30.
    100.姚成义,赵洁.钙和硼对监猪耳花粉萌发及花粉管生长的影响[J].武汉植物学研究2004,22(1):1-7.
    101.叶庆华,陈海鹏,吴韩志,等.用流式细胞仪研究秋茄叶柄薄壁细胞大小及叶绿素含量与海水盐度的关系[J].分析仪器,2004,(3):17-20.
    102.殷晓辉,舒理慧.植物种质资源的超低温保存研究进展[J].热带亚热带植物学报,1996,4(3):75-82.
    103.尹增芳,樊汝汶,尤录徉.鹅掌楸花粉保存条件的比较研究[J].江苏林业科技,1997,24(2):5-8.
    104.曾乃燕,何军闲,赵文,等.低温胁迫期间水稻光合膜色素与蛋白水平的变化[J].西北植物学报,2000,20(1):8-14.
    105.曾韶曲,王以柔,刘鸿先.低温光照下与黄瓜子叶叶绿素降低有关的酶促反应[J].植物生理学报,1991,17(2):177-182.
    106.张彦书.梅花粉生活力和授粉亲合力的测定[J].四川农业大学学报,1990,8(1):27~31.
    107.张启翔.梅花远源杂交与抗寒育种(Ⅰ)梅花开花授粉习性及远源杂交的探讨[J].北京林业大学学报,1987,9(1):69-79
    108.张启翔.梅花远缘杂交与抗冻生理研究.[博士论文],北京:北京林业大学,1990.
    109.张薇.论梅花与园林造景[J].中国园林,1999,15(61):65-68.
    110.张秀梅,杜丽清,王有年.钙和钙调素对花粉萌发和花粉管生长的影响.河北果树,2003(6):1-3.
    111.张玉进,张兴国,刘佩瑛.魔芋花粉的低温和超低温保存[J].园艺学报,2000,27(2):139-140.
    112.张志娥,石思信,肖建平.玉米花粉超低温长期保存后过氧化物酶同工酶的表现[J].玉米科 学,1995,3(1):63-65.
    113.赵树任,武丽英,姚民昌,等.番茄花粉超低温保存研究[J].园艺学报,1993,20(1):66-70.
    114.赵云,王茂林,王天叫.诸葛菜花粉的超低温保存研究[J].西南农业学报,1995,8(3):65-69.
    115.周怀军,赵阿曼,刘从霞,等.杏花粉生活力试验研究[J].河北林业科技,2001,(3):5-9
    116.周索,王绍杰,余晓丽.拟南芥花粉细胞质游离钙离子荧光测定法[J].生物技术,2005,15(5):55-57.
    117.左连富 主编.流式细胞术与生物医学[M],沈阳:辽宁科学技术出版社,1996.
    118. Bowes S A. Long-term storage of narcissus anthers and pollen in liquid nitrogen [J]. Euphytica, 1990, 48: 275-278.
    119. Bravo LA, Gallardo J, Navarrete A, et al. Cryoprotective activity of a cold—induced ehydrin purified frombarley[J]. Physiol. Plant,2003,118:262-269.
    120. Bush, D. S. Calcium regulation in plant cells and its role in signaling. Armu. Rev. Plant Physiol. Plant MOI. Biol. 1995, 46: 95-122.
    121. Bush DS, Jones RL. Measuring intracellular Ca2+ levels in plant cells using the flurescent probes, indo-1 and fura-2. Plant Physiol. 1990, 93: 841-845.
    122. Chen J L, Beversdorf W D. Production of Spontaneous Diploid Lines from Isolated Microspores Following Cryopreservation in Spring Rapeseed (Brassica napus L.)[J].Plant Breeding, 1992,108: 324-327.
    123. Craddock J H, Reed S M, Schlarbaum E S, et al. Storage of flowering dogwood (Cornus florida L.) pollen [J]. Hortscience, 2000, 35(1): 108-109.
    124. Crisp P, Groutb W W. Storage of broccoli pollen in liquid nitrogen [J]. Euphytica, 1984, 33: 819-823.
    125. Daniel I O, Ngno, Tayo T O, et al. Wet-cold preservation of west African yam (Dioscorea spp.) pollen [J]. Journal of Agricultural Science, 2002, 138: 57-62
    126. D'antonio V, Quiros C F. Viability of celery pollen after collection and storage [J]. Hortscience, 1987, 22(3): 479-481.
    127. David Monteiro, Qunlu Liu, Saskia Lisboa, G. E. F. Scherer, Hartmut Quader and Rui Malho. Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca~(2+)]c and membrane secretion. Journal of Experimental Botany, 2005, 56(41):1665-1674.
    128. Demeke T, Hughes H G. Germination and storage of pollen Phytolacca dodecandra L. (endod) [J]. Annals of Botany, 1991, 68: 13-15.
    129. Eisikowitch D, Woodell ARJ. The effect of water on pollen germination in two species of Primula[J]. Evolution, 1975, 28: 692~694
    130. Franklin-Tong, V. E., Ride, J. P., Read, N. D., Trewavas, A. J., and Franklin, F. CH. The self-incompatibility response in Papaver rhoeas is mediated by Cytosolic free calcium[J]. Plant J. 1993,4:163-177.
    
    131. Ganeshan S, Alexander M P. Fertilizing ability of cryopreserved grape (Vitis vinifera L.) pollen [J]. Vitis, 1990,29: 145-150.
    
    132. Ganeshan S. Cryogenic preservation of papaya pollen [J]. Scientia Horticulturae,1986 , 28: 65-70.
    
    133. Ganeshan S. Viability and fertilizing capacity of onion pollen (Allium cepa L.) stored in liquid nitrogen (-196℃) [J]. TropAgric, 1986, 63(1): 46-48.
    
    134. Gilmour S J, ArtusNN. Thomashow M F. CDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thallana[J] .Plant Mol Bid, 1992,18:13-21.
    
    135. Gilroy, S., Read, N.D., and Trewavas, A.J. Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates Stomatal closure[J]. Nature, 1990,346:769-771.
    
    136. Guo W,Ward R W,Thamashow M F. Characterization of a cold-regulated wheat gene nelated to Arabidopsis cor 47 [J]. Plant Physiol, 1992,100: 915-922.
    
    137. Haunold A, Standwood P C. Long-term preservation of hop pollen in liquid nitrogen [J]. Crop Science,1985,25:194-196.
    
    138. Holdaway-Clarke T, Feijo JA, Hackett GR, Kunkel JG, Helpler PK. Pollen tube growth and intracellular Cytosolic calcium gradient oscillates in phase while extracellular calcium influx is delayed[J]. Plant Cell 1997,9:1999-2010.
    
    139. Hond K, Watanabe H, Tsutsui K. Cryopreservation of Delphinium pollen at -30℃ [J]. Euphytica, 2002, 126: 315-320.
    
    140. Huges MA,Dunn M A.The molecular biology of plant acclimation to low temperature[J].Exp.Bot. 1996,47:291 -305.
    
    141. Hughes H G, Lee C W, To will L E. Low-temperature preservation of Clianthus formosus pollen [J]. Hortscience, 1991,26(11): 1411-1412
    
    142. Knight, M.R., Campbell, A.K., Smith, S.M., and Trewavas, A.J. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 1991,352:524-526.
    
    143. Koopowitz H, Vossr, O'neil C. Long-term storage of Gladiolus pollen [J]. Hortscience, 1984, 19(4): 513-514.
    
    144. Kopp R F, Maynard C A, Niellap R D, et al. Collection and storage of pollen from Salix [J]. America Journal of Botany, 2002, 89(2): 248-252.
    
    145. Lee C W, Thomas J C, Buchmann S L. Factors affecting in vitro germination and storage of jojoba pollen [J]. J Amer Soc Hort Sci, 1985, 110(5): 671-676.
    
    146. Liu Y, Zhang Y L. Pollen Cryopreservation of Prunus mume [J]. Journal of Beijing Forestry University, 2004, 26(Supp.): 22-25.
    147. Luza J G, Polito V S. Cryopreservation of English walnut (Juglans regia L.) pollen [J]. Euphytica, 1988, 37: 141-148.
    148. Marchant R, Power J B, Davev M R, et al. Cryopreservation of pollen from two rose eultivars [J]. Euphytica, 1993, 66: 235-241.
    149. Mark D. Lazzaro, Luis Cardenas, Aadra P. Bhatt, Charles D. Justus, Monique S. Phillips, Terena L. Holdaway-Clarke and Peter K. Hepler Calcium gradients in conifer pollen tubes; dynamic properties differ from those seen in angiosperms Journal of Experimental Botany[J]. 2005, 56(420): 2619-2628.
    150. Martinez-gomez P, Gradziel T M, Ortega E, et al. Low temperature storage of almond pollen [J]. Hortscience, 2002, 37(4): 691-692.
    151. Messerli M, Robinson KR: Tip localized Ca~(2+) pulses are coincident with peak pulsatile groth rates in pollen tubes of Lilium longiflorum[J]. J Cell Sci 1997, 110: 1269-1278.
    152. Minonky, P. V. Temperature sensing by plants: A review and hypothesis[J]. Plant Cell Environ. 1989,12:119-135.
    153. Minorsky, P. V., and Spanswick, R. M.. Electrophysiological evidente for a role for calcium in temperature sensing by roots of cucumber seedlings[J]. Plant Cell Environ. 1989, 12:137-143.
    154. Minorsky, W. An heuristic hypothesis of chilling injury in plants: A role for calcium as the primary physiological transducer of injury[J]. Plant Cell Environ. 1985, 8:75-94.
    155. Neven L G, Haskell D W, Hofig A, et al. Characterization of a spinaach gene responsive to low temperature and water stress[J]. Plant Mol Biol, 1993, 21: 291-305.
    156. Omura M, Akihama T A. Pollen preservation of fruit trees for genebanks in Japan [J]. Plant Genetic Resources News Letter, 1980, 43:28-31.
    157. Omura M, Matsutan N, Akihama T A, et al. Pollen preservation of Japanese Apricot and Mume [J]. Plant Genetic Resources News Letter, 1982, 49:19-21.
    158. Parfitt D E, Almehdi A A. Liquid nitrogen storage of pollen from five cultivated Prunus species [J]. Hortscience, 1984, 19(1): 69-70.
    159. Partone, Vervaeke I, Delen R, et al. Viability and storage of bromeliad pollen [J]. Euphytica, 2002, 125: 155-161.
    160. Pearce RS. Plant freezing and damage[J]. AAnu Bot, 2001, 87: 417-424.
    161. Polito V S, Luza J G. Low temperature storage of pistachio pollen [J]. Euphytica, 1988, 39: 265-269.
    162. Rajasekharan P E, Ganeshan S, Thamizharasu V. Expression of trifoliate leaf character in Citrus limonia x Poncirus trifoliata hybrids through cryostored pollen [J]. Journal of Hortcultural Science, 1995, 70(3): 485-490.
    163. Rajasekharan P E, Ganeshan S. Freeze preservation of rose pollen in liquid nitrogen: feasibility, viability and fertility status after long-term storage [J]. Journal of Horticultural Science, 1994, 69(3): 565-569.
    164. Richards AJ. Primula. B. T. Batsford ltd[M], London, 1993: 299.
    165. Sacks E J, Clair D A S. Cryogenic storage of tomato pollen: effect on fecundity [J]. Hortscience, 1996, 31(3): 447-448.
    166. Schou O. The distyly in Primula elatior (L.) Hill (Primulaceae), with a study of flowering phenology and pollen flow[J]. Botanical Journal of the Linnean Society, 1983, 86: 261-274.
    167. Sedgleym. Storage of avocado pollen [J]. Euphytica, 1981, 30: 595-599.
    168. Shinozaki K, Yamaguchi—Shinozaki K. Molecular responses to drought and cold stress[J]. Cttrr. Opin. Biotechnol., 1996, 7: 161-167.
    169. Shivanna KR, Heslop-Harrison J, Heslop-Harrison Y. Heterostyly in Primula. 2. Sites of pollen inhibition, and effects of pistil constituents on compatible and incompatible pollen-tube growth [J]. Protoplasma, 1981, 107:319-337.
    170. Shivanna KR, Heslop-Harrison J, Heslop- Harrison Y. Heterostyly in Primula. 3. Pollen water economy: a factor in the intramorph-incompatibility response [J]. Protoplasma, 1983, 117: 175-184.
    171. Sparks D, Yates I E. Pecan pollen stored over a decade retains viability [J]. Hortscience, 2002, 37(1): 176-177.
    172. Stevens VAM, Murray BG. Studies on heteromophic self-incompatibility systems: physiologyical aspects of the incompatibility system of Primula obconica[J]. Theoretical and Applied Genetics, 1982, 61: 245-256.
    173. Tisserat B, Ulrich J M, Finkle B J. Survival of Phoenix pollen grains under cryogenic conditions [J]. Crop Science, 1983, 23: 254-256.
    174. Towill L E. Liquid nitrogen preservation of pollen from tuber-bearing Solanum species [J]. Hortscience, 1981, 16(2): 177-179.
    175. Walt I. D van der, Littlehohn. G M. Storage and viability testing ofprotea pollen [J]. J.AmerSoc. Hort. Sci, 1996, 121(5): 804-809.
    176. Williams DA, Cody SH, Gehring CA, et al. Confocal imaging of ionized calcium in living plant cells. Cell Calcium. 1990, 11: 291-297.
    177. Xu B F, Han H M, Zheng C Y, et al. Cryopreservation of pollen by vitrification in Brassica [J].Wuhan University Journal of Natural Sciences, 1997, 2(1): 120-123.
    178. Zhang L X, Chang W C, Liu Y J, et al. Cryopreservation of ginseng pollen [J]. Hortscience, 1993, 28(7): 742-743.
    179. Shang Z L, Ma L G, Zhang H L, et al. Ca~(2+) Influx into Lily Pollen Grains Through a Hyperpolarization-activated Ca~(2+)-permeable Channel Which Can be Regulated by Extracellular CaM. Plant Cell Physiol. 2005, 46(4): 598-608.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700