桑细菌性枯萎病病原的定名、分子检测及肠杆菌基因水平转移的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2006年初夏在浙江杭州地区的桑树主栽区发生一种严重的桑树新病害—桑细菌性枯萎病,病害逐年加重,对蚕桑生产造成了严重损失。为有效治理该病,本研究对该病原及其检测方法作了深入的研究。以6株桑细菌性枯萎病分离菌株为代表,通过一系列的研究方法证明了该病原是一种肠杆菌(Enterobacter)病原;利用rpoB序列设计了一对特异性引物,对桑细菌性枯萎病病原进行检测;同时还应用生物信息学技术对肠杆菌科细菌由于基因的获得与丢失而造成的多样性进行了分析与评估。取得了以下主要成果:
     (1)通过6株桑细菌性枯萎病病原细菌代表菌株的常规细菌学分析、生理生化分析、电镜观察、致病性测试及Koch氏假说测定、Biolog鉴定、脂肪酸分析、ERIC-PCR分析、16S rRNA及rpoB序列分析,首次明确了该桑病是国内外未见报道的一种由肠杆菌引起的新病害,最终通过代表菌株R18-2 (ZJUPD3)与9种与植物有关的肠杆菌标准菌株的DNA-DNA杂交,明确了同源性关系,病原归属于Enterobacter cloacae complex (Ecc群)中,并将其定名为Enterobacter morus, R18-2 (ZJUPD3)菌株已作为该新种的模式菌株分别保藏于中国微生物菌种保藏管理中心(CGMCC 1.10322T)和比利时王国菌种保藏管理中心(BCC-LMG 25706)。
     (2)利用rpoB序列设计并合成了一对桑细菌性枯萎病病原Enterobacter morus的特异性引物,通过与其它9种近缘肠杆菌标准菌株、4株桑树细菌性枯萎病、2株桑青枯病病原细菌、2株桑疫病病原细菌及50株桑腐生(附生)菌株的测试后发现其特异性达到了预期的要求;并利用实时定量PCR技术对枯萎菌的灵敏性进行测试,结果发现在一个20μl反应体系中如果含有一个活菌细胞即能有效的检测出来,体现了其良好的灵敏性;此外还利用桑树根、茎田间采样样本直接进行PCR检测,发现无论是已有还是未见明显症状的样本,只要是后期实验中能分离到桑枯萎病病原的样本,通过本PCR手段都能有效检测。研究结果充分体现了该对引物的灵敏性及特异性。首次建立了具有自主知识产权的桑细菌性枯萎病菌检测体系。并申报了国家发明专利(发明专利申请号:200910157005.4)。(3)本研究通过对肠杆菌科细菌的基因水平转移分析,发现基因的获得与丢失在肠杆菌科的进化历史中占据了非常重要的作用;肠杆菌科的核心基因和泛基因的数量差异非常明显,根据估算,肠杆菌科的核心基因数量约为164个,而泛基因数量可以达到约10万个,我们根据其变化的规律拟合了其趋势公式,分别为根据我们利用基因的存在与丢失所构建的马科夫模型推测,肠杆菌科细菌在进化过程中首先经历了一次大量的基因丢失的过程,产生了基因组非常小的内生菌,随后在进化的不同的时期获得了大量的基因,产生了致病力及寄主各不相同的各类病原菌;此外该模型推测超过1/3的肠杆菌科的基因是通过水平转移获得的,表明了水平转移对于肠杆菌科类细菌的影响是非常巨大的;利用最大似然法对这些水平转移所获得的基因与核心基因进行正向选择的分析,结果表明表明水平转移所获得的基因更容易受到强烈的正向选择的影响。
A new mulberry wilt disease was observed in summer of 2006, which caused severe economic lost in mulberry plantations in Hangzhou, Zhejiang, China and the disease severity increased year by year. For effective management of the disease, the exact bacterial pathogen needs to be determined and the scientific name has to be nomenclatured. An accurate, rapid and sensitive molecular detection method for the pathogen has to be established. Based on a series of phytopathological methods for the 6 representative strains, the pathogen of this new mulberry bacterial wilt disease was proved to be a new species in Enterobacter genus; a pair of specific primers based on the rpoB regions was designed to detect the pathogen; the bioinformatics tools was used to analyze and evaluate the diversity of Enterobacteriaceae based on the gene gain and loss results. The major results are listed as follows:
     (1). The results of traditional bacteriology tests, physiological and biochemical analysis, electron microscope observation, pahogenicity and hypersensitive tests, biolog tests, ERIC-PCR analysis,16S rRNA and rpoB sequences analysis of the 6 representative strains show this pathogen is a new species in Enterobacter genus, which has not been reported before. Based on the results of DNA-DNA hybridization of a representative strain R18-2 (ZJUPD3) with the nine Enterobacter type strains, the pathogen was classified into Enterobacter cloacae complex and was nomenclatured as Enterobacter morus. Strain R18-2(ZJUPD3) has been deposited in culture collection center of China and BCCM/LMG Bacteria Collection of Belgium with the deposite ID CGMCC 1.10322T and LMG 25706T, respectivey.
     (2). A specific primer of the Enterobacter morus was designed within regions of the RNA polymeraseβ-subunit (rpoB) gene. An accurate, sensitive and rapid method was established and tested by performing on 9 type species of Enterobacter,4 E. morus,2 Ralstonia solanacearum strains,2 Pseudomonas syringae pv. mori strains and 50 unidentified epiphytic bacterial isolates from mulberry plants. The real-time PCR assays reliably detected one single cell in a 20μl reaction system, reflecting its strong sensitivity. Moreover, mulberry roots and stems were directly used for PCR detection and it was found that samples with E. morus (acquired by isolation) can be detected by this method whether it has obvious symptoms or not. The results indicated the sensitivity and specificity of the primer. This is the first report of establishing detection system for E. morus causing mulberry bacterial wilt and we applied a China national invention patent (Patent Application Number:200910157005.4).
     (3). Based on the horizontal gene transfer (HGT) analysis of Enterobacteriaceae, it can be concluded that gene gain and loss is the major force in Enterobacteriaceae evolution and the divergence is huge between core and pan genome. The number of core genome was only 164 while pan genome was more than 100,000. The size of the species core genome for a large number of sequenced strains was extrapolated by fitting the exponential decaying 2 functions to the amount of conserved genes while the number of strain-specific genes was extrapolated by fitting the Multiple Multiplicative Factor (MMF) model to the amount of strain-specific genes. We may speculate that the small genome endophyte in Enterobacteriaceae was first evolved with a gene loss event in this family. Then, species of pathogens were arised with continous HGT events in different evolutionary scale. The markov models suggested that more than 1/3 of genes in Enterobacteriaceae were horizontally transferred, which indicated that HGT played an important role in evolution. Positive selection analysis also revealed that the transferred genes were much easier to be influenced by positive selection pressure than those of the conserved genes.
引文
Adekambi, T, M Drancourt, D Raoult.2009. The rpoB gene as a tool for clinical microbiologists. Trends Microbiol.17:37-45.
    Arpin, C, C Coze, A Rogues, J Gachie, C Bebear, C Quentin.1996. Epidemiological study of an outbreak due to multidrug-resistant Enterobacter aerogenes in a medical intensive care unit. J. Clin. Microbiol.34:2163-2169.
    Banerjee, R, M Maji, P Ghosh, A Sarkar.2009. Genetic analysis of disease resistance against Xanthomonas campestris pv. mori in mulberry (Morus spp.) and identification of germplasm with high resistance. Arch. Phytopathology. Plant. Protection 42:291-297.
    Beijerinck, M.1888. Cultur des Bacillus radicola aus den Kn lichen. Botanische. Zeitung 46:740-750.
    Beijerinck, M.1921. Schwefelwasserstoffbildung in der Stadtgraben und Aufstellung der Gattung Aerobacter. Centbl. Bakt.(II),6,193-206. Verz. Gesch. van MW Beijerinck 4:24-36.
    Bereswill, S, A Pahl, P Bellemann, W Zeller, K Geider.1992. Sensitive and species-specific detection of Erwinia amylovora by polymerase chain reaction analysis. Appl. Environ. Microbiol. 58:3522-3526.
    Bi, C, X Zhang, L Ingram, J Preston.2009. Genetic Engineering of Enterobacter asburiae Strain JDR-1 for Efficient Production of Ethanol from Hemicellulose Hydrolysates. Appl. Environ. Microbiol.75:5743-5749.
    Bieber, D, S Ramer, C Wu, W Murray, T Tobe, R Fernandez, G Schoolnik.1998. Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science 280:2114-2118.
    Bishop, AL, RM Davis.1990. Internal decay of onions caused by Enterobacter cloacae. Plant Dis. 74:692-694.
    Blum, S, M Lorenz, W Wackernagel.1997. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils. Syst. Appl. Microbiol.20:513-521.
    Boyd, E, S Almagro-Moreno, M Parent.2009. Genomic islands are dynamic, ancient integrative elements in bacterial evolution. Trends Microbiol.17:47-53.
    Brenner, D, A McWhorter, A Kai, A Steigerwalt, J Farmer 3rd.1986. Enterobacter asburiae sp. nov., a new species found in clinical specimens, and reassignment of Erwinia dissolvens and Erwinia nimipressuralis to the genus Enterobacter as Enterobacter dissolvens comb. nov. and Enterobacter nimipressuralis comb. nov. J. Clin. Microbiol.23:1114-1120.
    Brenner, D, C Richard, A Steigerwalt, M Asbury, M Mandel.1980. Enterobacter gergoviae sp. nov.:a new species of Enterobacteriaceae found in clinical specimens and the environment. Int. J. Syst. Evol. Microbiol.30:1-6.
    Brown, J.2003. Ancient horizontal gene transfer. Nat. Rev. Genet.4:121-132.
    Brussow, H, C Canchaya, W Hardt.2004. Phages and the evolution of bacterial pathogens:from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev.68:560-602.
    Canchaya, C, C Proux, G Fournous, A Bruttin, H Brussow.2003. Prophage genomics. Microbiol. Mol. Biol. Rev.67:238-276.
    Carter, J.1945. Wetwood of elms.Ill. Nat. Hist. Surv. Bull 23:401-443.
    Casewell, M, J Cooper, M Webster.1981. Enteral feeds contaminated with Enterobacter cloacae as a cause of septicaemia. Br. Med. J (Clin. Res. Ed) 282:973.
    Castresana, J.2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol.17:540-552.
    Chen, L.2006. Identification of genomic islands in six plant pathogens. Gene 374:134-141.
    Chenna, R, H Sugawara, T Koike, R Lopez, T Gibson, D Higgins, J Thompson.2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res.31:3497.
    Chernin, L, Z Ismailov, S Haran, I Chet.1995. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl. Environ. Microbiol.61:1720-1726.
    Chevalier, J, C Mulfinger, E Garnotel, P Nicolas, A Davin-Regli, J Pages.2008. Identification and evolution of drug efflux pump in clinical Enterobacter aerogenes strains isolated in 1995 and 2003.PLoS ONE 3.
    Chow, J, M Fine, D Shlaes, J Quinn, D Hooper, M Johnson, R Ramphal, M Wagener, D Miyashiro, V Yu.1991. Enterobacter bacteremia:clinical features and emergence of antibiotic resistance
    during therapy. Ann. Intern. Med.115:585-590.
    Chung, YR, DJ Brenner, AG Steigerwalt, BS Kim, HT Kim, KY Cho.1993. Enterobacter pyrinus sp. nov., an organism associated with brown leaf spot disease of pear trees. Int. J. Syst. Bacteriol. 43:157-161.
    Ciccarelli, FD, T Doerks, C von Mering, CJ Creevey, B Snel, P Bork.2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283-1287.
    Cole, J, B Chai, R Farris, Q Wang, S Kulam, D McGarrell, G Garrity, J Tiedje.2005. The Ribosomal Database Project (RDP-II):sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res.33:D294.
    Comas, I, A Moya, R Azad, J Lawrence, F Gonzalez-Candelas.2006. The evolutionary origin of Xanthomonadales genomes and the nature of the horizontal gene transfer process. Mol. Biol. Evol.23:2049-2057.
    Csuros, M.2005. Likely scenarios of intron evolution. Lect Notes Comput Sci 3678:47-60.
    Csuros, M, J Holey, I Rogozin.2007. In search of lost introns. Bioinformatics 23:i87-i96.
    Csuros, M, I Rogozin, E Koonin.2008. Extremely intron-rich genes in the alveolate ancestors inferred with a flexible maximum-likelihood approach. Mol. Biol. Evol.25:903-911.
    Dagan, T, W Martin.2007. Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proc. Natl. Acad. Sci. U. S. A.104:870-875.
    de Vries, J, W Wackernagel.2005. Microbial horizontal gene transfer and the DNA release from transgenic crop plants. Plant Soil 266:91-104.
    Dickey, R, C Zumoff.1988. Emended description of Enterobacter cancerogenus comb. nov.(formerly Erwinia cancerogena). Int. J. Syst. Evol. Microbiol.38:371-374.
    Dobrindt, U, B Hochhut, U Hentschel, J Hacker.2004. Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol.2:414-424.
    Doolittle, W.1999. Lateral genomics. Trends Genet.15:5-8.
    Doolittle, W, Y Boucher, C Nesb, C Douady, J Andersson, A Roger.2003. How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Philos. Trans. R. Soc. Biol. Sci. 358:39-58.
    Dubnau, D.1999. DNA uptake in bacteria. Annu. Rev. Microbiol.53:217-244.
    Dufraigne, C, B Fertil, S Lespinats, A Giron, P Deschavanne.2005. Detection and characterization of horizontal transfers in prokaryotes using genomic signature. Nucleic Acids Res.33:e6.
    Eisen, J.2000. Horizontal gene transfer among microbial genomes:new insights from complete genome analysis. Curr. Opin. Genet. Dev.10:606-611.
    Ewing, W, M Fife.1972. Enterobacter agglomerans (Beijerinck) comb. nov.(the Herbicola-Lathyri bacteria). Int. J. Syst. Evol. Microbiol.22:4-11.
    Farmer, JJ, MA Asbury, FW Hickman, DJ Brenner.1980. Enterobacter sakazakii:a new species of Enterobacteriaceae" isolated from clinical specimens. Int. J. Syst. Bacteriol.30:569-584.
    Farmer, JJ, GR Fanning, BR Davis, CM Ohara, C Riddle, FW Hickmanbrenner, MA Asbury, VA Lowery, DJ Brenner.1985. Escherichia fergusonii and Enterobacter taylorae, two new species of Enterobacteriaceae isolated from clinical specimens. J. Clin. Microbiol.21:77-81.
    Fazzolari, E, A Mariotti, JC Germon.1990. Nitrate reduction to ammonia:A dissimilatory process in Enterobacter amnigenus. Can. J. Microbiol.36:779-785.
    Felsenstein, J.1995. PHYLIP (phylogeny inference package), version 3.57 c. Department of Genetics, University of Washington, Seattle.
    Fernandez-Baca, V, F Ballesteros, J Hervas, P Villalon, M Dom nguez, V Bened, S Albert 2001. Molecular epidemiological typing of Enterobacter cloacae isolates from a neonatal intensive care unit:three-year prospective study. J. Hosp. Infect.49:173-182.
    Foultier, B, P Troisfontaines, S M"'ller, F Opperdoes, G Cornelis.2002. Characterization of the ysa pathogenicity locus in the chromosome of Yersinia enterocolitica and phylogeny analysis of type III secretion systems. J. Mol. Evol.55:37-51.
    French, C, S Nicklin, N Bruce.1998. Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl. Environ. Microbiol. 64:2864-2868.
    Ganeswire, R, K Thong, S Puthucheary.2003. Nosocomial outbreak of Enterobacter gergoviae bacteraemia in a neonatal intensive care unit. J. Hosp. Infect.53:292-296.
    Garazzino, S, A Aprato, A Maiello, A Masse, A Biasibetti, F De Rosa, G Di Perri.2005. Osteomyelitis caused by Enterobacter cancerogenus infection following a traumatic injury:case report and review of the literature. J. Clin. Microbiol.43:1459-1461.
    Garcia-Vallve, S, E Guzman, M Montero, A Romeu.2003. HGT-DB:a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Research
    31:187.
    Gonzalez, J, C Saiz-Jimenez.2005. A simple fluorimetric method for the estimation of DNA-DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles 9:75-79.
    Gophna, U, R Charlebois, W Doolittle.2004. Have archaeal genes contributed to bacterial virulence? Trends Microbiol.12:213-219.
    Gophna, U, E Ron, D Graur.2003. Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312:151-163.
    Grimont, F, P Grimont.1992. The genus Enterobacter. The Prokaryotes:2797-2815.
    Grozdanov, L, C Raasch, J Schulze, U Sonnenborn, G Gottschalk, J Hacker, U Dobrindt.2004. Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917'. J. Bacteriol.186:5432-5441.
    Guindon, S, O Gascuel.2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol.52:696-704.
    Guindon, S, F Lethiec, P Duroux, O Gascuel.2005. PHYML Online-a web-server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res.33:W557-W559.
    Haas, C.1989. Estimation of microbial densities from dilution count experiments. Appl. Environ. Microbiol.55:1934-1942.
    Hacker, J, G Blum-Oehler, I Muhldorfer, H Tschape.1997. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol.23:1089-1097.
    Hacker, J, E Carniel.2001. Ecological fitness, genomic islands and bacterial pathogenicity:a Darwinian view of the evolution of microbes. EMBO Rep.2:376-381.
    Hall, T.1999. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. p.95-98.
    Hao, W, G Golding.2006. The fate of laterally transferred genes:life in the fast lane to adaptation or death. Genome Res.16:636-643.
    Hensel, M, J Shea, S Waterman, R Mundy, T Nikolaus, G Banks, A Vazquez-Torres, C Gleeson, F Fang, D Holden.1998. Genes encoding putative effector proteins of the type Ⅲ secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol. Microbiol.30:163-174.
    Hernandez-Martinez, R, T Pinckard, H Costa, D Cooksey, F Wong.2006. Discovery and characterization of Xylella fastidiosa strains in southern California causing mulberry leaf scorch. Plant Dis.90:1143-1149.
    Heuer, H, K Smalla.2007. Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ. Microbiol.9:657-666.
    Hoffmann, H, A Roggenkamp.2003. Population genetics of the nomenspecies Enterobacter cloacae. Appl. Environ. Microbiol.69:5306-5318.
    Hoffmann, H, S Stindl, W Ludwig, A Stumpf, A Mehlen, J Heesemann, D Monget, K Schleifer, A Roggenkamp.2005a. Reassignment of Enterobacter dissolvens to Enterobacter cloacae as E. cloacae subspecies dissolvens comb. nov. and emended description of Enterobacter asburiae and Enterobacter kobei. Syst. Appl. Microbiol.28:196-205.
    Hoffmann, H, S Stindl, A Stumpf, A Mehlen, D Monget, J Heesemann, K Schleifer, A Roggenkamp. 2005b. Description of Enterobacter ludwigii sp. nov., a novel Enterobacter species of clinical relevance. Syst. Appl. Microbiol.28:206-212.
    Hormaeche, E, P Edwards.1958. Observations on the genus Aerobacter with a description of two species. Int. J. Syst. Evol. Microbiol.8:111-115.
    Hormaeche, E, P Edwards.1960. A proposed genus Enterobacter. Int. J. Syst. Evol. Microbiol. 10:71-74.
    Inoue, K, K Sugiyama, Y Kosako, R Sakazaki, S Yamai.2000. Enterobacter cowanii sp. nov., a new species of the family Enterobacteriaceae. Curr. Microbiol.41:417-420.
    Iversen, C, P Druggan, S Forsythe.2004. A selective differential medium for Enterobacter sakazakii,-a preliminary study. Int. J. Food Microbiol.96:133-139.
    Iversen, C, S Forsythe.2003. Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Trends in Food Science & Technology 14:443-454.
    Iversen, C, A Lehner, N Mullane, E Bidlas, I Cleenwerck, J Marugg, S Fanning, R Stephan, H Joosten. 2007. The taxonomy of Enterobacter sakazakii:proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb, nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol. Biol.7:64.
    Izard, D, F Gavini, H Leclerc.1980. Polynucleotide sequence relatedness and genome size among Enterobacter intermedium sp. nov. and the species Enterobacter cloacae and Klebsiella pneumoniae. Zentbl. Bakteriol. Parasitenkd. Infektkrankh. Hyg. Abt 1:51-60.
    Izard, D, F Gavini, P Trinel, H Leclerc.1981. Deoxyribonucleic acid relatedness between Enterobacter cloacae and Enterobacter amnigenus sp. nov. Int. J. Syst. Evol. Microbiol.31:35-42.
    Jain, R, M Rivera, J Moore, J Lake.2002. Horizontal gene transfer in microbial genome evolution. Theor. Popul. Biol.61:489-495.
    Jain, R, M Rivera, J Moore, J Lake.2003. Horizontal gene transfer accelerates genome innovation and evolution. Mol. Biol. Evol.20:1598-1602.
    Janse, J.2006. Phytobacteriology:principles and practice:CABI.
    Jensen, L, M Kuhn, M Stark, S Chaffron, C Creevey, J Muller, T Doerks, P Julien, A Roth, M Simonovic.2009. STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res.37:D412-D416.
    Johnsen, A, N Kroer.2007. Effects of stress and other environmental factors on horizontal plasmid transfer assessed by direct quantification of discrete transfer events. FEMS Microbiol. Ecol. 59:718-728.
    Jordan, E.1890. A report on certain species of bacteria observed in sewage. Sedgewick, areport of biological work of Lawrence Experiment Station, including an account of methods employed and results obtained in the microscopical and bacteriological investigation of sewage and water. Reports of the Massachusetts Board of Public Health Ⅱ:821-844.
    Kampfer, P, S Ruppel, R Remus.2005. Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae. Syst. Appl. Microbiol.28:213-221.
    Kazmierczak, B, D Mielke, M Russel, P Model.1994. pIV, a filamentous phage protein that mediates phage export across the bacterial cell envelope, forms a multimer. J. Mol. Biol.238:187-198.
    Keane, T, C Creevey, M Pentony, T Naughton, J Mclnerney.2006. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol.6:29.
    Keeling, P, J Palmer.2008. Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9:605-618.
    Keith, R, K Nishijima, L Keith, M Fitch, W Nishijima, M Wall.2008. Atypical internal yellowing of papaya fruit in Hawaii caused by Enterobacter sakazakii. Plant Dis.92:487.
    Kettler, G, A Martiny, K Huang, J Zucker, M Coleman, S Rodrigue, F Chen, A Lapidus, S Ferriera, J Johnson.2007. Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. PLoS Genet.3:e231.
    Khampang, P, P Luxananil, S Tanapongpipat, W Chungjatupornchai, S Panyim.2001. Recombinant Enterobacter amnigenus highly toxic to Anopheles dirus mosquito larvae. Curr. Microbiol. 43:448-451.
    Koonin, E, K Makarova, L Aravind.2001. Horizontal gene transfer in prokaryotes:Quantification and classification. Annu. Rev. Microbiol.55:709-742.
    Kosako, Y, K Tamura, R Sakazaki, K Miki.1996. Enterobacter kobei sp. nov., a new species of the family Enterobacteriaceae resembling Enterobacter cloacae. Curr. Microbiol.33:261-265.
    Kruse, W.1896. Systematik der Streptothricheen und Bakterien. Die Mikroorganismen 2:48-66.
    Kuzina, L, E Miller, B Ge, T Miller.2002. Transformation of Enterobacter gergoviae isolated from pink bollworm (Lepidoptera:Gelechiidae) gut with Bacillus thuringiensis toxin. Curr. Microbiol.44:1-4.
    Lan, R, P Reeves.2000. Intraspecies variation in bacterial genomes:the need for a species genome concept. Trends Microbiol.8:396-401.
    Larkin, M, G Blackshields, N Brown, R Chenna, P McGettigan, H McWilliam, F Valentin, I Wallace, A Wilm, R Lopez.2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947.
    Lawrence, J, H Ochman.1997. Amelioration of bacterial genomes:rates of change and exchange. J. Mol. Evol.44:383-397.
    Lawrence, J, H Ochman.2002. Reconciling the many faces of lateral gene transfer. Trends Microbiol. 10:1-4.
    Lee, YA, AN Sung, TF Liu, YS Lee.2009. Combination of Chromogenic Differential Medium and estA-Specific PCR for Isolation and Detection of Phytopathogenic Xanthomonas spp. Appl. Environ. Microbiol.75:6831-6838.
    Li, L, C Stoeckert, D Roos.2003. OrthoMCL:identification of ortholog groups for eukaryotic genomes. Genome Res.13:2178-2189.
    Li, W, T Gojobori, M Nei.1981. Pseudogenes as a paradigm of neutral evolution. Nature 292:237-239.
    Li, W, D Graur.1991. Fundamentals of molecular evolution. Sunderland, Massachusetts:Sinauer.
    Licht, T, C Struve, B Christensen, R Poulsen, S Molin, K Krogfelt.2003. Evidence of increased spread and establishment of plasmid RP4 in the intestine under sub-inhibitory tetracycline concentrations. FEMS Microbiol. Ecol.44:217-223.
    Lima, W, A Paquola, A Varani, M Vansluys, C Menck.2008. Laterally transferred genomic islands in Xanthomonadales related to pathogenicity and primary metabolism. FEMS Microbiol. Lett. 281:87-97.
    Liu, Y, X Cai, X Zhang, Q Gao, X Yang, Z Zheng, M Luo, X Huang.2006. Real time PCR using TaqMan and SYBR Green for detection of Enterobacter sakazakii in infant formula. J. Microbiol. Methods 65:21-31.
    Lorenz, M, W Wackernagel.1994. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Mol. Biol. Rev.58:563-602.
    M(?)lbak, L, T Licht, T Kvist, N Kroer, S Andersen.2003. Plasmid transfer from Pseudomonas putida to the indigenous bacteria on alfalfa sprouts:characterization, direct quantification, and in situ location of transconjugant cells. Appl. Environ. Microbiol.69:5536-5542.
    Maji, M, T Sengupta, C Das, S Urs.2004. Post-Infectional Biochemical Changes in Mulberry Due to Xanthomonas campestris pv. mori Induced Bacterial Leaf Spot. Int. J. Ind. Ent 9:255-259.
    Marri, P, W Hao, G Golding.2006. Gene gain and gene loss in streptococcus:is it driven by habitat? Mol. Biol. Evol.23:2379-2391.
    Mehlen, A, M Goeldner, S Ried, S Stindl, W Ludwig, K Schleifer.2004. Development of a fast DNA-DNA hybridization method based on melting profiles in microplates. Syst. Appl. Microbiol.27:689-695.
    Mills, D, V Bajaj, C Lee.1995. A 40 kb chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K-12 chromosome. Mol. Microbiol.15:749-759.
    Mollet, C, M Drancourt, D Raoult.1997. rpoB sequence analysis as a novel basis for bacterial identification. Mol. Microbiol.26:1005-1011.
    Morse, R, M Collins, K O'hanlon, S Wallbanks, P Richardson.1996. Analysis of the{beta}'subunit of DNA-dependent RNA polymerase does not support the hypothesis inferred from 16S rRNA analysis that Oenococcus oeni (formerly Leuconostoc oenos) is a tachytelic (fast-evolving) bacterium. Int. J. Syst. Evol. Microbiol.46:1004-1009.
    Nakabachi, A, A Yamashita, H Toh, H Ishikawa, H Dunbar, N Moran, M Hattori.2006. The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267.
    Nakamura, Y, T Itoh, H Matsuda, T Gojobori.2004. Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat. Genet.36:760-766.
    Nie, L, S Shah, A Rashid, G Burd, D George Dixon, B Glick.2002. Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiology et Biochemistry 40:355-361.
    Nielsen, K, K Smalla, J van Elsas.2000. Natural transformation of Acinetobacter sp. strain BD413 with cell lysates of Acinetobacter sp., Pseudomonas fluorescens, and Burkholderia cepacia in soil microcosms. Appl. Environ. Microbiol.66:206-212.
    Nishijima, K, H Couey, A Alvarez.1987. Internal yellowing, a bacterial disease of papaya fruits caused by Enterobacter cloacae. Plant Dis.71:1029-1034.
    Nishijima, K, M Wall, M Siderhurst.2007. Demonstrating Pathogenicity of Enterobacter cloacae on Macadamia and Identifying Associated Volatiles of Gray Kernel of Macadamia in Hawaii. Plant Dis.91:1221-1228.
    O'Hara, C, A Steigerwalt, B Hill, J Farmer, G Fanning, D Brenner.1989. Enterobacter hormaechei, a new species of the family Enterobacteriaceae formerly known as enteric group 75. J. Clin. Microbiol.27:2046-2049.
    Ochman, H, J Lawrence, E Groisman.2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405:299-304.
    Paauw, A, MPM Caspers, FHJ Schuren, MA Leverstein-van Hall, A Deletoile, RC Montijn, J Verhoef, AC Fluit.2008. Genomic diversity within the Enterobacter cloacae complex. PLoS ONE 3:e3018.
    Paradis, S, M Boissinot, N Paquette, S Belanger, E Martel, D Boudreau, F Picard, M Ouellette, P Roy, M Bergeron.2005. Phylogeny of the Enterobacteriaceae based on genes encoding elongation factor Tu and F-ATPase{beta}-subunit. Int. J. Syst. Evol. Microbiol.55:2013-2025.
    Peng, G, W Zhang, H Luo, H Xie, W Lai, Z Tan.2009. Enterobacter oryzae sp. nov., a nitrogen-fixing bacterium isolated from the wild rice species Oryza latifolia. Int. J. Syst. Evol. Microbiol. 59:1650-1655.
    Podell, S, T Gaasterland.2007. DarkHorse:a method for genome-wide prediction of horizontal gene
    transfer. Genome Biol.8:R16.
    Posada, D, K Crandall.1998. Modeltest:testing the model of DNA substitution. Bioinformatics 14:817-818.
    Potrikus, C, J Breznak.1977. Nitrogen-fixing Enterobacter agglomerans isolated from guts of wood-eating termites. Appl. Environ. Microbiol.33:392-399.
    Powell, B, K Purdy, I Thompson, M Bailey.1993. Demonstration of tra plasmid activity in bacteria indigenous to the phyllosphere of sugar beet; gene transfer to a recombinant pseudomonad. FEMS Microbiol. Ecol 12:195-206.
    Price, M, P Dehal, A Arkin.2008. Horizontal gene transfer and the evolution of transcriptional regulation in Escherichia coli. Genome Biol.9:R4.
    Quadt-Hallmann, A, J Kloepper.1996. Immunological detection and localization of the cotton endophyte Enterobacter asburiae JM 22 in different plant species. Can. J. Microbiol. 42:1144-1154.
    Reisner, A, B Holler, S Molin, E Zechner.2006. Synergistic effects in mixed Escherichia coli biofilms: conjugative plasmid transfer drives biofilm expansion. J. Bacteriol.188:3582-3588.
    Richards, T, D Soanes, P Foster, G Leonard, C Thornton, N Talbot.2009. Phylogenomic Analysis Demonstrates a Pattern of Rare and Ancient Horizontal Gene Transfer between Plants and Fungi. The Plant Cell 21:1897-1911.
    Robene-Soustrade, I, P Laurent, L Gagnevin, E Jouen, O Pruvost.2006. Specific Detection of Xanthomonas axonopodis pv. dieffenbachiae in Anthurium (Anthurium andreanum) Tissues by Nested PCR. Appl. Environ. Microbiol.72:1072-1078.
    Rosen, H.1922. The bacterial pathogen of corn stalk rot. Phytopathology 12:497-499.
    rskov, F, I rskov.1983. Summary of a workshop on the clone concept in the epidemiology, taxonomy, and evolution of the Enterobacteriaceae and other bacteria. J. Infect. Dis.148:346-357.
    Sanders Jr, W, C Sanders.1997. Enterobacter spp.:pathogens poised to flourish at the turn of the century. Clin. Microbiol. Rev.10:220-241.
    Sasser, M, Z Klement, K Rudolph, D Sands.1990. Methods in phytobacteriology. Budapest, Hungary: Akademiai Kiado. p:199-204.
    Sayler, R, R Cartwright, Y Yang.2006. Genetic characterization and real-time PCR detection of Burkholderia glumae, a newly emerging bacterial pathogen of rice in the United States. Plant Dis.90:603-610.
    Schaad, N, J Jones, W Chun.1980. Laboratory guide for identification of plant pathogenic bacteria. Minnesota:American Phytopathological Society.
    Sharp, P, W Li.1987. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res.15:1281-1295.
    She, P, B Song, X Xing, M Loosdrecht, Z Liu.2006. Electrolytic stimulation of bacteria Enterobacter dissolvens by a direct current. Biochem. Eng. J.28:23-29.
    Shea, J, M Hensel, C Gleeson, D Holden.1996. Identification of virulence locus encoding secretion system in Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 93:2593-2597.
    Stoger, A, W Ruppitsch.2004. A rapid and sensitive method for the detection of Xanthomonas fragariae, causal agent of angular leafspot disease in strawberry plants. J. Microbiol. Methods 58:281-284.
    Stackebrandt, E, B Goebel.1994. Taxonomic note:a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 44:846-849.
    Steel, M.1994. Recovering a tree from the leaf colourations it generates under a Markov model. Appl Math Lett 7:19-24.
    Stephan, R, S Van Trappen, I Cleenwerck, C Iversen, H Joosten, P De Vos, A Lehner.2008. Enterobacter pulveris sp. nov., isolated from fruit powder, infant formula and an infant formula production environment. Int. J. Syst. Evol. Microbiol.58:237-241.
    Stephan, R, S Van Trappen, I Cleenwerck, M Vancanneyt, P De Vos, A Lehner.2007. Enterobacter turicensis sp. nov. and Enterobacter helveticus sp. nov., isolated from fruit powder. Int. J. Syst. Evol. Microbiol.57:820-826.
    Swift, S, M Winson, P Chan, N Bainton, M Birdsall, P Reeves, C Rees, S Chhabra, P Hill, J Throup. 1993. A novel strategy for the isolation of luxl homologues:evidence for the widespread distribution of a LuxR:Luxl superfamily in enteric bacteria. Mol. Microbiol.10:511-520.
    Takahashi, K, M Sato.1978. The shoot soft rot of mulberry caused by Erwinia carotovora var. carotovora (Jones) DYE. J. Seric. Sci. Jpn.47:143-154.
    Tamagnini, L, G de Sousa, R Gonzalez, C Budde.2008. Behavior of Enterobacter amnigenus and Salmonella typhimurium in Crottin goat's cheese:Influence of fluctuating storage temperature.
    Small Ruminant Res.76:177-182.
    Tanisho, S, Y Ishiwata.1994. Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes. Int J Hydrogen Energy 19:807-812.
    Tatusov, R, D Natale, I Garkavtsev, T Tatusova, U Shankavaram, B Rao, B Kiryutin, M Galperin, N Fedorova, E Koonin.2001. The COG database:new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res.29:22-28.
    Tayeb, L, M Lefevre, V Passet, L Diancourt, S Brisse, P Grimont.2008. Comparative phylogenies of Burkholderia, Ralstonia, Comamonas, Brevundimonas and related organisms derived from rpoB, gyrB and rrs gene sequences. Res. Microbiol.159:169-177.
    Thomas, C, K Nielsen.2005. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol.3:711-721.
    Thompson, J, D Higgins, T Gibson.1994. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.22:4673-4680.
    Tumapa, S, M Holden, M Vesaratchavest, V Wuthiekanun, D Limmathurotsakul, W Chierakul, E Feil, B Currie, N Day, W Nierman.2008. Burkholderia pseudomallei genome plasticity associated with genomic island variation. BMC Genomics 9:190.
    Uchiyama, I.2008. Multiple genome alignment for identifying the core structure among moderately related microbial genomes. BMC Genomics 9:515.
    Urosevic, B.1966. Canker of poplar caused by Erwinia cancerogena n. sp. (Czech.). Lesn. Cas:12:493-505.
    van Acker, J, F de Smet, G Muyldermans, A Bougatef, A Naessens, S Lauwers.2001. Outbreak of necrotizing enterocolitis associated with Enterobacter sakazakii in powdered milk formula. J. Clin. Microbiol.39:293-297.
    Van de Peer, Y, R De Wachter.1997. Construction of evolutionary distance trees with TREECON for Windows:accounting for variation in nucleotide substitution rate among sites. Bioinformatics 13:227.
    van Elsas, J, S Turner, M Bailey.2003. Horizontal gene transfer in the phytosphere. New Phytol. 157:525-537.
    Vandroemmeab, J, S Baeyena, J Van Vaerenbergha, P De Vosb, M Maesa.2008. Sensitive real-time PCR detection of Xanthomonas fragariae in strawberry plants. Plant Pathology 57:438-444.
    Wang, G, K Praphat, G Xie, B Zhu, B Li, B Liu, Q Zhou.2008. Bacterial Wilt of Mulberry (Morus alba) Caused by Enterobacter cloacae in China. Plant Dis.92:483-483.
    Wang, G, G Xie, B Zhu, J Huang, B Liu, P Kawicha, L Benyon, Y Duan. Identification and characterization of the Enterobacter complex causing mulberry (Morus alba) wilt disease in China. Eur. J. Plant Pathol.:1-14.
    Wang, G, G Xie, B Zhu, J Huang, B Liu, P Kawicha, L Benyon, Y Duan.2010. Identification and characterization of the Enterobacter complex causing mulberry (Morus alba) wilt disease in China. Eur. J. Plant Pathol.126:465-478.
    Wang, M, B Cao, Q Gao, Y Sun, P Liu, L Feng, L Wang.2009. Detection of Enterobacter sakazakii and other pathogens associated with powdered infant formula using a DNA microarray. J. Clin. Microbiol.
    Watanabe, K, K Abe, M Sato.2000. Biological control of an insect pest by gut-colonizing Enterobacter cloacae transformed with ice nucleation gene. J. Appl. Microbiol.88:90-97.
    Watanabe, K, M Sato.1998. Plasmid-mediated gene transfer between insect-resident bacteria, Enterobacter cloacae, and plant-epiphytic bacteria, Erwinia herbicola, in guts of silkworm larvae. Curr. Microbiol.37:352-355.
    Watanabe, T.1963. Infective heredity of multiple drug resistance in bacteria. Microbiol. Mol. Biol. Rev. 27:87-115.
    Wattam, A, K Williams, E Snyder, N Almeida Jr, M Shukla, A Dickerman, O Crasta, R Kenyon, J Lu, J Shallom.2009. Analysis of ten Brucella genomes reveals evidence for horizontal gene transfer despite a preferred intracellular lifestyle. J. Bacteriol.191:3569-3579.
    Wenger, P, J Tokars, P Brennan, C Samel, L Bland, M Miller, L Carson, M Arduino, P Edelstein, S Aguero.1997. An outbreak of Enterobacter hormaechei infection and colonization in an intensive care nursery. Clin. Infect. Dis.24:1243-1244.
    Wright, S, C Zumoff, L Schneider, S Beer.2001. Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl. Environ. Microbiol.67:284.
    Xie, G, A Soad, J Swings, T Mew.2003. Diversity of Gram negative bacteria antagonistic against major pathogens of rice from rice seed in the tropic environment. Journal of Zhejiang University-Science A 4:463-468.
    Yang, Z.2007. PAML 4:phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24:1586-1591.
    Yap, W, Z Zhang, Y Wang.1999. Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J. Bacteriol.181:5201-5209.
    Zhang, L, G Xie.2007. Diversity and distribution of Burkholderia cepacia complex in the rhizosphere of rice and maize. FEMS Microbiol. Lett.266:231-235.
    林抗美,官雪芳,马丽娜,王宗华,鲁国东,刘波.2008.有机磷农药降解菌—阴沟肠杆菌的生物学特性.中国农学通报24:382-386.
    胡兴明,叶伟彬,叶楚华.2004.我国桑树保护学科的研究和应用现状与发展对策.蚕桑通报35:6-8.
    夏志松.2005.我国发生的桑病种类.中国蚕学会第七届二次理事会暨学术年会.
    徐丽慧,P Kawicha,谢关林.2007.桑青枯病致病性测定新方法.蚕桑通报38:19-19.
    徐圆圆,刘永民.2008.肠杆菌X-11对石油烃污染物的降解特性.辽宁化工37:581-584.
    隋文志,卢林纲,钟鄂蓉.2002.玉米联合固氮耐铵工程菌Enterobacter gergoviae—7 (E7)在不同载体及玉米根际的存活规律.应用与环境生物学报8:200-203.
    蒯元璋.2000.桑病研究的成就与进展.蚕业科学26:9-14.
    赖文姜,曾宪铭,谭炳安,范怀忠.1982.桑青枯病病原细菌的鉴定.华南农学院学报2:66-72.
    赖文姜,曾宪铭,谭炳安,吴国信,陈俊英,关炜熹,范怀忠.1979.桑青枯病病原细菌的鉴定初报.广东蚕业2:21-24.
    [1]Hueck CJ. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol.Rev,1998,62:379-433.
    [2]Galan JE, Collmer, A. Type Ⅲ secretion machines:Bacterial devices for protein delivery into host cells. Science,1999,284:1322-1328.
    [3]Janse JD. Phytobacteriology principles and practice. Wallingford:CABI Publishing,2005
    [4]Kim JF, Wei ZM. and Beer SV. The hrpA and hrpC operons of Erwinia amylovora encode components of a type III pathway that secretes harpin. J. Bacteriol.1997,179 (5):1690-1697
    [5]Jin Q, Hu, W, Brown I, McGhee G, Hart P, Jones AL. and He SY. Visualization of secreted Hrp and Avr proteins along the Hrp pilus during type III secretion in Erwinia amylovora and Pseudomonas syringae. Mol. Microbiol.2001,40 (5),1129-1139.
    [6]Gaudriault S, Malandrin L, Paulin JP, Barny M.A. DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via the Hrp secretion pathway in a DspB-dependent way. Mol. Microbiol.1997,26 (5): 1057-1069.
    [7]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol.1990,215(3):403-10.
    [8]Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD. Multiple sequence alignment with the Clustal series of programs. Nucl. Acids. Res.2003,13: 3497-3500.
    [9]Hall TA. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser.1999,1999:95-98.
    [10]http://www.nrbsc.org/gfx/genedoc/index.html
    [11]Tamura K, Dudley J, Nei M, Kumar S. MEGA4:Molecular Evolutionary Genetics Analysis " (MEGA) software version 4.0. Mol. Biol. Evol.2007,24 (8):1596-1599.
    [12]Saitou N, Nei M. The neighbor-joining method:A new method for reconstructing phylogenetic trees. Mol. Biol. Evol.1987,4:406-425.
    [13]Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Bioinformatics.1991,8 (3):275-282.
    [14]Comeron JM. K-Estimator:Calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics.1999,15:763-764.
    [15]Oh CS, Kim JF, Beer SV. The Hrp pathogenicity island of Erwinia amylovora and identification of three novel genes required for systemic infection. Mol. Plant. Pathol.2005, 6 (2):125-138.
    [16]Gophna U, Ron EZ, Graur D. Bacterial type III secration systems are ancient and evolved by multiple horizontal-transfer events. Gene.2003,312:151-163.
    [17]Weber E, Koebnik R. Positive selection of Hrp pilin HrpE of the plant pathogen Xanthomonas.J. Bacteriol.2006,188 (4):1405-1410.
    [18]Koebnik R. The role of bacterial pili in protein and DNA translocation. Trends. Microbiol. 2001,9:586-590.
    [19]http://www.expasy.ch/tools/scanprosite
    [20]李为民,王志兴,贾士荣.海岛棉GbKTN1对酵母细胞伸长的影响.科学通报.2003,48(19):2062-2067.
    [21]Endo TK, Ieko K, Gojobori T. Large-scale search for genes on which positive selection may operate. Mol. Biol. Evol.1996,13:685-690.
    [22]Tummler B, Cornelis P. Pyoverdine receptor:a case of positive Darwinian selection in Pseudomonas aeruginosa. J. Bacteriol.2005,187:3289-3292.
    [23]Guttman DS, Gropp Sj, Morgan RL, Wang PW. Diversifying selection drives the evolution of the type III secration system pilus of Pseudomonas syringae. Mol. Biol. Evol.2006,23 (12): 2342-2354.
    [24]Chang JH, Goel AK, Grant SR, Dangl JF. Wake of the flood:ascribing functions to the wave of type III effector proteins of phytopathogenic bacreria. Curr. Opin. Microbiol.2004,7: 11-18.
    [25]Wang GF, Praphat K, Xie GL, Zhu B, Li B. Bacterial wilt of mulberry (Morus alba Linn) caused by Enterobacter cloacae in China. Plant. Dis.2008,92:483.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700