螺线和正交多项式在CAGD中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主题为计算机辅助几何设计中几类曲线的表示、拼接与逼近,特别对螺线和正交多项式在计算机辅助几何设计中的应用进行了深入的研究,主要获得了以下一些创新成果.
     (1)基于道路设计的工程需要,构造了曲率单调且保号的起点曲率为零的平面三次C-Bezier螺线.利用这条螺线,详细推导了在道路设计等工业应用中,直线和圆弧之间的过渡曲线算法.如同工程中已使用回旋曲线来过渡一样,直线和圆弧之间用一条螺线过渡,圆弧与圆弧之间用一对C型或S型螺线过渡,两条直线之间用一对螺线过渡,圆包含圆弧时用一条螺线过渡.在前4种情况中均给出了螺线的具体表达式,第5种情况下不一定有解.由于直线、圆弧也能用C-Bezier曲线精确表示,可以在C-Bezier模式下统一处理整条道路设计问题,避免了以往采用Fresnel积分所表示的回旋曲线,不适合于在计算机辅助设计系统使用的情况.
     (2)构造了带有可调参数的单段C-Bezier曲线光滑地拼接前后两条圆弧的算法.在S型过渡的场合,给出了一条带参数的曲率单调的C-Bezier曲线,讨论了这条曲线能拼接两条圆弧的半径范围,其结果优于使用Bezier螺线的老方法;在C型过渡的场合,给出了一条带参数的内部仅含一个曲率极值点的C-Bezier曲线.所有过渡曲线的具体算法均有详细介绍.用本方法设计的道路线型,与老方法相比具有以下三个优越性:模式统一;可用参数调节形状;拼接曲线仅有一段,且算法归结为求解低次方程的正根,故计算简单,容易实现.
     (3)为了适合当前计算机辅助设计系统中的曲线形式和工业设计中的美学需要,提出了对数螺线段的两种逼近方法.第一种利用s-Power级数,首先给出了s-Power系数的计算公式,提出了对数螺线段的快速多项式逼近算法,同时也给出了对数螺线的等距曲线的具体表达式及其s-Power逼近算法.第二种首先推导出两端点C-Bezier形式的G2 Hermite插值公式,提出了对数螺线的C-Bezie形式的G2 Hermite插值逼近算法.
     (4)为了在计算机辅助几何设计中,有效地求解曲线或曲面的最小平方逼近问题,给出了具有边界约束特征的加权正交基与Bernstein基之间的转换矩阵,并且利用该矩阵,给出了两个具体应用:(ⅰ)得到了在Jacobi加权L2范数下基于正交基的Bezier曲线约束最佳降多阶逼近算法,给出了具体的端点约束最佳降多阶矩阵,且给出了该降阶逼近的可预报的误差公式.同时提出了在L2,L1,L∞范数下适合于最佳降阶逼近的相应Jacobi基的权函数的选取方案.(ⅱ)求解多项式反函数是CAGD中的一个基本问题.利用约束Jacobi基作为有效工具,提出带端点Ck约束的反函数逼近算法.该算法稳定、简易,克服了以往计算反函数的系数时每次逼近系数需全部重新计算的缺陷,同时给出了该算法在PH曲线准弧长参数化中的应用.
     (5)为了在计算机辅助几何设计中,有效的求解三角域上Bezier曲面的最小平方逼近问题,给出了三角域上双变量Jacobi和Bernstein基的相互转换矩阵.首先利用Bernstein基构造了三角域上的Jacobi多项式,然后利用单变量Jacobi和Bernstein基的转换关系,给出了三角域上双变量Bernstein的Jacobi基的相互转换矩阵,并且利用该矩阵,得到了在加权L2范数下基于正交基的Bezier曲面最佳降多阶逼近算法,给出了具体的最佳降多阶矩阵,且给出了该降阶逼近的可预报的误差公式.
In this paper, the theme is everal kind of curve's expressions, splices and approximations, in particular, we have made an in-depth research on spiral and orthogonal polynomials in the CAGD and have obtained new creative production on the following five aspects:
     (1) Based on the requirement of highway design, a planar cubic C-Bezier spiral with monotone curvature of constant sign and a starting point of zero curvature is constructed, then an algorithm of the transition curve between straight lines and/or circular arcs is derived in detail which can be applied in highway design. As was done with clothoids in engineering, a single spiral is used for straight line to circular arc, two spirals suiting C-shaped or S-shaped transition are used for circular arc to circular arc, two spirals are used for straight line to straight line, and a single spiral is used for circular to circular arc when the latter is contained within the former. The concrete expressions for the first four cases are given; in the fifth case the solution cannot always be obtained. Because straight line segments and circular arcs can be represented precisely by C-Bezier curves, the issues such as highway design can be handled in the system by C-Bezier model, avoiding the difficult situation for computer-aided design system to use the clothoids defined in terms of the Fresnel integral.
     (2) A single C-Bezier curve with a shape parameter for G2 joining two circular arcs is constructed. It is shown that a S-shaped transition curve which is able to better manage the broader scope about two circle radii than the Bezier curves has no curvature extrema, and a C-shaped transition curve has a single curvature extremum. Regarding the two kinds of curves, specific algorithms is presented in detail, strict mathematical proof was given, and the effectiveness of the method is showed by examples. This method has the following three advantages:the pattern is unified; the parameters able to adjust the shape of the transition curves are available; the transition curve is only a single segment, and the algorithm can be formulated as a low order equation to be solved for its positive root. Therefore it is simple and easy to implement.
     (3) To fit the form of curve in the current Computer Aided Design system and aesthetic needs in industrial design, two approximation algorithms for logarithmic spiral segments is proposed. In the first method, the calculation formula for s-Power series is firstly derived and a fast polynomial approximation algorithm is presented, and then the calculation formula of the offset curves of the logarithmic spiral and corresponding approximation algorithm by s-Power series is presented. In the second method, The G2 Hermite interpolation formula of the two end points by the C-Bezier form is firstly derived, and then the G2 Hermite interpolation approximation algorithm by the C-Bezier form is presented. The results of example show that the algorithms are correct and effective, suitable for the use of the CAD system.
     (4)To solve least squares approximation problem effectively in CAGD, the transformation matrices between the weighted orthogonal basis which possesses boundary constraints characteristic and Bernstein basis are derived. Then using the matrices, two specific applications are given.(i) the optimal algorithm based on Jacobi weighted L2 norm for constrained multi-degree reducing Bezier curve, including its matrix representation, is presented. Also the degree reduction error that can be forecasted is given. the Jacobi weighted function adapting to optimal degree reduction is selected with respect to L2, L1, L∞norm, respectively. (ⅱ) To solve the inverse function of polynomial is a basic problem in CAGD, an algorithm about approximating the inverse function with Ck constrains by using the constrained Jacobi basis is proposed. The approximation method is easy and steady. Moreover, the defect that the corresponding coefficients must be recalculated when approximating every inverse function one by one is overcame. As an application, how to generate quasi arc-length parameterization of PH curves is shown.
     (5) For solve least squares approximation problem simply and effectively on triangular domains in CAGD, The matrices of transformation of the bivariate Bernstein basis form into the Jacobi basis of the same degree and vice versa are derived. A method for constructing bivariate Jacobi-weighted orthogonal polynomials in the Bernstein form on triangular domains was formulated firstly. And then, by using connection coefficients between the univariate Bernstein and Jacobi basis, the transformation matrices between bivariate Jacobi and Bernstein basis were presented. Finally, Then using the matrices, an explicit form of the multi-degree reduction matrix for Bezierr surface on triangular domains with respect to Jacobi weighted L2 norm was presented, and the error of the degree reduction was given.
引文
[1]Ahn Y J, Kim H O. Curvatures of the Quadratic Rational Bezier Curves. Computers and Mathematics with Applications,1998,36 (9):71-83
    [2]Ahn Y J. Using Jacobi polynomials for degree reduction of Bezier curves with Ck constraints.Computer Aided Geometric Design 2003,20(7):423-434
    [3]Ancher J C, Gruyer E. Two shape preserving lagrange C2-interpolants. Numerische Mathematik,1993,64:1-11.
    [4]Baass K G. The use of clothoid templates in highway design, Transportation Forum,1 1984,1:47-52.
    [5]Baumgarten C, Farin G. Approximation of logarithmic spirals, Computer Aided Geometric Design,1997,14(6):515-532.
    [6]Barsky B A. The Beta-spline:A local representation based on shape parameters and fundamental geometric measure, PhD thesis, Dept. of Computer Science.Univ. of Utah, Salt Lake City, Utah,1981.
    [7]Barnhill R E, Risenfeld R F. Computer Aided Geometric Design. Academic Press. 1974
    [8]Bezier P. Numerical Control:Mathematics and Applications. John Wiley and Sons. New York,1972.
    [9]Bezier P. Mathematical and practical possibilities of UNISURF. In:Barnhill, R and Riesenfeld,R.F., eds., Computer Aided Geometric Design, Academic Press, New York,1974,127-152.
    [10]Bezier P. The mathematical basis of the UNISURF CAD systems. Butterworths, England,1986.
    [11]Bloor M I G, Wilson M J. Generating Blend Surfaces Using Partial Differential Equations. Computer Aided Design,1989,21(3):165-171.
    [12]Bloor M I G, Wilson M J. Using partialdifferential equations to generate free-form surfaces. Computer Aided Design.1990,22(4),202-212.
    [13]Bloor M I G, Wilson M J. The efficient parametrization of generic aircraft geometry. Journal of Aircraft 1995,32(6),1269-1275.
    [14]Bloor M I G, Wilson M J. An analytic pseudo-spectral method to generate a regular 4-sided PDE surface patch. Computer Aided Geometric Design.2005, 22(3),203-219.
    [15]Birkhoff G. Aesthetic Measure. Harvard University Press,1933.
    [16]Boehm W. Inserting new knots into B-spline curves. Computer Aided Design,1980, 12(4):199-201.
    [17]Boehm, W. Smooth curves and surfaces. In:Farin, G. ed., Geometric Modeling Algorithms and New Trends, SIAM, Philadelphia,1987:175-184.
    [18]Burchard H G, Ayers J A, Frey W H, Sapidis N S. Approximation with aesthetic constraints. In:N.S. Sapidis, Editor, Designing fair curves and surfaces, SIAM, Philadelphia,1994:3-28.
    [19]Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary topo logical meshes. Computer-Aided Design,1978,10(6):350-355.
    [20]Castro G, Ugail H, Willis P, Palmer I. A survey of partial differential equations in geometric design. The Visual Computer,2008,24(3):213-225.
    [21]Celniker G, Gossard D. Deformable Curve and surfaces Finite-Element for Free-form Shape Design. Computer Graphics (SIGGRAPH),1991,25(4):257-266.
    [22]Chaikin G. An algorithm for high speed generation. Computer Graphics & Image Processing,1974,3(4):346-349.
    [23]Chen G, Wang G. Optimal multi-degree reduction of Bezier curves with constraints of endpoints continuity. Computer Aided Geometric Design,2002,19(6):365-377.
    [24]Cohen E, Lyche T, Riesenfeld R. Discrete B-splines and subdivision techniques in computeraided geometric design and computer graphics. Computer Graphics and Image Processing,1980,14(2):87-111.
    [25]Coons S A. Surfaces for computer aided design of space figures. MIT Project MAC-TR-255, June,1964.
    [26]Coons S A. Surfaces for computer aided design of space forms. MIT Project MAC-TR-41,June,1967.
    [27]Costantini P. On monotone and convex spline interpolation. Mathematics of Computation,1986,46:203-214.
    [28]Costantini P. An algorithm for computing shape-preserving interpolating splines of arbitrary degree. Journal of Computational and Applied Mathematics,1988,22: 89-136.
    [29]Cox M G. The numerical evaluation of B-spline. Report No. NPL-DNACS-4, National Laboratory,1971.
    [30]Daniel M, Daubisse J C, The numerical problem of using Bezier curves and surfaces in the power basis. Computer Aided Geometric Design,1989,6(2):121-128.
    [31]Davis P J. Interpolation and Approximation. Dover, New York,1975.
    [32]de Boor C. On Calculation with B-spline. Journal of Approximation Theory,1972, 6(1):50-62.
    [33]de Boor C. A practical guide to splines. Springer-Verlag, New York,1978.
    [34]de Boor C, Hollig K, Sabin M. High accuracy geometric Hermite interpolation. Computer Aided Geometric Design,1987,4(4):269-278
    [35]de Casteljau P. Courbes et surfaces a poles. Technical report, A. Citroen, Paris, 1963.
    [36]Demko S, Hodges L, Naylor, B. Construction of fractal objects with iterated functions systems. ACM SIGGRAPH,1985:271-278.
    [37]Dietz D A. Convex Cubic Spirals, Ph.D. dissertation. Troy (NY):Rensselaer Polytechnic Institute; 2002
    [38]Dietz D A, Piper B. Interpolation with cubic spirals, Computer Aided Geometric Design,21(2),2004:165-180
    [39]Dietz D A, Piper B, Sebe E. Rational cubic spirals. Computer Aided Design,2008, 40(1):3-12
    [40]Dill J. An application of color graphics to the display of surface curvature. ACM Computer Graphics,1981,15(3):153-161.
    [41]Doo D, Sabin M. Behaviour of recursive division surfaces near extraordinary points. Computer-Aided Design,1978,10(6):356-360.
    [42]Dunkl C F, Xu Y. Orthogonal Polynomials of Several Variables, Cambridge University Press, Cambridge,2001.
    [43]Dyn N, Levin D, Gregory J A.4-point interpolatory subdivision scheme for curve design. Computer Aided Geometric Design,1987,4:257-268.
    [44]Dyn N, Levin D, Gregory J A. A butterfly subdivision scheme for surface interpolatory with tension control. ACM Transactions on Graphics,1990,9(2): 160-169.
    [45]Dyn N, Levin D, Micchelli C A. Using parameters to increase smoothness of curves and surfaces generated by subdivision. Computer Aided Geometric Design,1990, 7(1):129-140.
    [46]Eck M. Degree reduction of Bezier curves. Computer Aided Geometric Design, 1993,10(3-4):237-251.
    [47]Eck M. Least squares degree reduction of Bezier curves. Computer Aided Design, 1995,27(7):845-851.
    [48]Eck M, DeRose T, Duchamp T. Multiresolution analysis of arbitrary meshes, SIGGRAPH'95:173-182.
    [49]Fang K, Tan J R. Shape preserving interpolation using piecewise cubic. CADDM, 1995,5(2):53-60.
    [50]Farin G. Algorithms for rational Bezier curves. Computer-Aided Design,1983,15(2): 73-77.
    [51]Farin G. Triangular Bernstein-Bezier patches. Computer Aided Geometric Design, 1986,3(2):83-127
    [52]Farin G, Sapidis N. Curvature and the fairness of curves and surfaces. IEEE Computer Graphics and Application,1989,9(2):52-57.
    [53]Farin G. Curves and Surfaces for CAGD:A Practical Guide, fifth edition. Morgan Kaufmann Publishers, San Francisco,2001.
    [54]Farin G, Hoschek J, Kim M S. Handbook of Computer Aided Geometric Design. Elsevier, Amsterdam,2002.
    [55]Farouki R T, Rajan V T. On the numerical condition of polynomials in Bernstein form. Computer Aided Geometric Design,1987,4(3):191-216.
    [56]Farouki R T, Rajan V T. Algorithms for polynomials in Bernstein form. Computer Aided Geometric Design,1988,5(1):1-26.
    [57]Farouki R T. On the stability of transformations between power and Bernstein polynomial forms. Computer Aided Geometric Design,1991,8(1):29-36.
    [58]Farouki R T, Goodman T N T. On the optimal stability of the Bernstein basis. Mathematics of Computation,1996,65(6):1553-1566.
    [59]Farouki R T. Pythagorean-hodograph quintic transition curves of monotone curvature. Computer Aided Design,1997,29(9):601-606.
    [60]Farouki R T. Convergent inversion approximations for polynomials in Bernstein form. Computer Aided Geometric Design,2000,17(2):179-196.
    [61]Farouki R T. Legendre-Bernstein basis transformations, Journal of Computer and Applied Mathematics.2000,119:145-160
    [62]Farouki R T, Goodman T N T, Sauer T, Construction of orthogonal bases for polynomials in Bernstein form on triangular and simplex domains Computer Aided Geometric Design,20 (2003):209-230.
    [63]Faux I D, Pratt M J. Computational Geometry for Design and Manufacture. Ellis Horwood.1979.
    [64]Ferguson J C. Multivariable curve interpolation. Report No.D2-22504, The Boeing Co., Seattle, Washington,1963.
    [65]Ferguson J C. Multivariable curve interpolation. Journal of the ACM,1964, 11(2):221-228.
    [66]Fleury S, Soueres P, Laumond J-P, et al. Primitives for smoothing mobile robot trajectories. IEEE Transactions on Robotics and Automation,1995, 11(3):441-448.
    [67]Forrest A R. Interactive interpolation and approximation by Bezie polynomials. The Computer Journal,1972,15(1):71-79.
    [68]Frey W H, Field D A. Designing Bezier conic segments with monotone curvature. Computer Aided Geometric Design,2000,17(6):457-483.
    [69]Frinkelistein A, Salesin D H. Multiresolution curves. SIGGRAPH'94:261-268.
    [70]Goodman T N T, Meek D S. Planar interpolation with a pair of rational spirals, Journal of Computational and Applied Mathematics,2007,201(1):112-127.
    [71]GordonW J, Riesenfeld R F. B-spline curves and surfaces. In:Barnhill, R.E. and Riesenfeld, R.F. eds., Computer Aided Geometric Design.Academic Press, New York,1974:95-126.
    [72]Guggenheimer H W. Differential geometry, McGraw-Hill, New York,1963.
    [73]Habib Z. spiral function and its application in CAGD. Ph.D dissertation. Kagoshima University,2004
    [74]Habib Z, Sakai M. G2 Pythagorean hodograph quintic transition between two circles with shape control. Computer Aided Geometric Design,2007,24(5): 252-266.
    [75]Habib Z, Sakai M. On PH quintic spirals joining two circles with one circle inside the other. Computer-Aided Design,2007,39(2):125-132.
    [76]Habib Z, Sakai M. Transition between concentric or tangent circles with a single segment of G2 PH quintic curve. Computer Aided Geometric Design,2008,25 (4-5):247-257
    [77]Hagen H, Bonneau G P. Variational design of smooth rational Bezier-surfaces. Geometric Modelling,1993:133-138.
    [78]Hartman P. The highway spiral for combining curves of different radii.Transactions of the American Society of Civil Engineers.1957,122:389-409.
    [79]Higashi M, Kaneko K. Generation of High-Quality Curve and Surface with Smoothly Varying Curvature. Eurographics,1988:79-93.
    [80]Hu Q Q, Wang G J. Optimal multi-degree reduction of triangular Bezier surfaces with corners continuity in the norm L2 Journal of Computational and Applied Mathematics,2008,
    [81]Huang Y, Wang G Z. Constructing a quasi-Legendre basis based on the C-Bezier basis. Progress in Natural Science,2005,15(6):80-84.
    [82]Juttler B. The dual basis functions for the Bernstein polynomials. Advances in Computational Mathematics,1998,8 (4):345-352.
    [83]Kim H J, Ahn Y.J. Good degree reduction of B e zier curves using Jacobi polynomials. Computers & Mathematics with Applications,2000,40(10-11): 1205-1215.
    [84]Kobbelt L. (?)-Subdivision. SIGGRAPH 2000:103-112.
    [85]Koornwinder T H. Two-variable analogues of the classical orthogonal polynomials, in:R.A. Askey (Ed.), Theory and Application of Special Functions, Academic Press, New York,1975:435-495.
    [86]Lachance M A. Chebyshev economization for parametric surfaces. Computer Aided Geometric Design,1988,5(3):195-208.
    [87]Leon J C, Trompette P. A new approach towards free-form surfaces control. Computer Aided Geometric Design,1995,12(4):395-416.
    [88]Lewanowicz S, Wozny P. Connections between two-variable Bernstein and Jacobi polynomials on the triangle. Journal of Computer and Applied Mathematics,2006, 197(2):520-533
    [89]Li Y, Zhang X. Basis conversion among Bezier, Tchebyshev and Legendre. Computer Aided Geometric Design.1998,15(6):637-642
    [90]Loe K F. α-B-spline:a linear singular blending B-spline. The Visual Computer, 1996,12(1):18-25.
    [91]Loop C. Smooth subdivision surfaces based on triangles. Master's thesis.Department of Mathematics, University of Utah,1987.
    [92]Lounsbery M, DeRose T, Warren J. Multiresolution surfaces of arbitrary topological type. ACM Transactions on Graphics,1997,16(1):34-73.
    [93]Lu L, Wang G. Application of Chebyshev Ⅱ-Bernstein basis transformations to degree reduction of Bezier curves. Journal of Computational and Applied Mathematics,2008,221(1):52-65.
    [94]Lu Y G, Wang G Z, Yang X N. Uniform hyperbolic polynomial B-Spline curves. Computer Aided Geometric Design,2002,19(6):379-393.
    [95]Manni C, Sablonniere P. Monotone interpolation of order 3 by C2 cubic splines. IMA Journal of Numerical AnalysisI,1997,17(2):305-320.
    [96]Mainar E, Pea J M, Sanchez-Reyes J. Shape preserving alternatives to the rational Bezier model.Computer Aided Geometric Design,2001,18(1):37-60
    [97]Mason J C, Handscomb J C. Chebyshev Polynomials. Chapman & Hall/CRC.2002
    [98]Marciniak K, Putz B. Approximation of spirals by piecewise curves of fewest circular arc segments. Computer Aided Design.1984,16(2):87-90
    [99]Meek D S, Walton D J. The use of Cornu spirals in drawing planar curves of controlled curvature. Journal of Computational and Applied Mathematics,1989, 25(1):69-78.
    [100]Meek D S, Walton D J. Planar G2 curve design with spiral segments. Computer Aided Design,1998,30(7):529-538.
    [101]Meek DS, Thomas RSD. A guided clothoid spline. Computer Aided Geometric Design,1991,8(2):163-74.
    [102]Meek D S, Walton D J. An arc spline approximation to a clothoid. Journal of Computational and Applied Mathematics,2007,170 (1):59-77.
    [103]Mineur Y, Lichah T, Castelain J M, Giaume H. A shape controled fitting method for Bezier curves. Computer Aided Geometric Design,1998,15(9):879-891.
    [104]Nickolas S. Designing Fair Curves and Surfaces:Shape Quality in Geometric Modeling and Computer-Aided Design[M], Philadelphia:Society for Industrial and Applied Mathematics,1994
    [105]Nielson, G.M. Scattered data modeling. IEEE Computer Graphics and Applications, 1993,13(1):61-70.
    [106]Piegl L, Tiller W. Curve and surface constructions using rational B-splines. Computer Aided Design,1987,19(9):485-498.
    [107]Piegl L. Modifying the Shape of Rational B-Splines. Part 1:Curves, Computer Aided Design,1989,21(8):509-518.
    [108]Piegl L. Modifying the shape of rational B-splines, part 2:surfaces. Computer Aided Design,1989,21(9):538-546.
    [109]Piegl L, Tiller W. A menagerie of rational B-spline circles. IEEE Computer Graphics and its Application,1989,9(5):48-56.
    [110]Piegl L. On NURBS:A survey. IEEE Computer Graphics and Application,1991, 11(1):55-71.
    [111]Piegl L, Tiller W. The NURBS book. Springer Verlag,1995.
    [112]Piegl L, Tiller W. Surface approximation to scanned data. The Visual Computer, 2000,16(7):386-395.
    [113]Pottmann H, Wagner M G Helix splines as example of affine Tchebycheffian splines, Advance in Computational Mathematics,1994,2:123-142.
    [114]Pottmann H. The geometry of Tchebycheffian splines. Computer Aided Geometric Design,1993,10(3-4):181-210.
    [115]Prautzsch H, Piper B. A fast algorithm to raise the degree of spline curves. Computer Aided Geometric Design,1991,8(4):253-265.
    [116]Rababah A. Transformation of Chebyshev-Bernstein polynomial basis. Computational Methods in Applied Mathematics,2003,3(4):608-622.
    [117]Rababah A. Jacobi-Bernstein basis transformation. Computational Methods in Applied Mathematics.2004,4(2):206-214.
    [118]Rababah A. L2 degree reduction of triangular Bezierr surfaces with common tangent planes at vertices. International Journal of Computational Geometry and Applications,2005,15(5)477-499
    [119]Rababah A, Lee B-G, Yoo J. Multiple degree reduction and elevation of Bezier curves using Jacobi-Bernstein Basis Transformations.Numerical Functional Analysis and Optimization,2007,28(9-10):1179-1196.
    [120]Rababah A, Al-Natour M. Weighted dual functionals for the univariate Bernstein basis. Applied Mathematics and Computation,2007,186(2):1581-1590
    [121]Rababah A, Al-Natour M. Weighted dual functions for Bernstein basis satisfying boundary constraints. Applied Mathematics and Computation.2008,199(2): 456-463.
    [122]Sanchez-Reyes J. The Symmetric Analogue of the Polynomial Power Basis. ACM Transactions on Graphics,1997,16(3):319-357.
    [123]Sanchez-Reyes J. Applications of the s-power basis in geometry processing. ACM Transactions on Graphics,2000,19(1):27-55.
    [124]Sanchez-Reyes J. Inversion approximations for functions via s-power series. Computer Aided Geometric Design,2001,18(6):587-608.
    [125]Sanchez-Reyes J, Chacon J M. Polynomial approximation to clothoids via s-power series. Computer Aided Design,2003,35 (14):1305-1313.
    [126]Sapidis N S, Frey W H. Controlling the curvature of quadratic Bezier curve. Computer Aided Geometric Design,1992,9(2):85-91.
    [127]Sauer T. Jacobi polynomials in Bernstein form. Journal of computational and applied mathematics.2007,199(1):149-158.
    [128]Schoenberg I J. Contributions to the problem of approximation of equidis-tant data by analytic functions. Quarterly of Applied Mathematics,1946,4:45-99.
    [129]Schoenberg I J. On spline function. In:Shisha, O. eds. Inequalities, Aca-demic Press, New York,1967.
    [130]Sevant N E, Bloor M I G, Wilson M J. Cost-effective multipoint design of a blended HSCT. AIAA Journal of Aircraft.1999,36 (2):642-650.
    [131]Sevant N E, Bloor M I G, Wilson M J. Aerodynamic design of a flying wing using response surface methodology. AIAA Journal of Aircraft.2000,37(4):562-569.
    [132]Sederberg T W, Zheng J, Bakenov A, et all. T-splines and T-NURCCs. ACM SIGGRAPH,2003:477-484
    [133]Sederberg T W, Cardon D L, Finnigan G T, et al. T-spline simplification and local refinement. ACM SIGGRAPH,2004:276-283
    [134]Sunwoo H. Matrix representation for multi-degree reduction of Bezier curves. Computer Aided Geometric Design,2005,22(3):261-273.
    [135]Szego G Orthogonal Polynomials,4th ed. American Mathematical Society, Providence, RI,1975.
    [136]Szego G. Problems and theorems in analysis II:theory of functions, zeros, polynomials, determinants, number theory, geometry. Springer,2004
    [137]Tai C L, Loe K. F. α-spline:a C2 continuous spline with weights and tension control. In Pasko A. eds., Shape Modeling International'99, IEEE Computer Society Press,138-145.
    [138]Tai C L, Loe K F, Barsky B, Chan Y H. A method for deformingpolygonal shapes into smooth spline surface Models, IEEE International Conference on Information Visualization,1999,302-308.
    [139]Tai C L, Wang G J. Interpolation with slackness and continuity control and convexity-preservation using singular blending. The Journal of Computational and Applied Mathematics,2004,172(2):337-361.
    [140]Terzopoulos D, Platt J, Barr A, Fleischer K. Elastically deformable models. Computer Graphics (SIGGRAPH),1987,21(4):205-214.
    [141]Terzopoulos D, Qin H. Dynamic NURBS with Geometric Constraints for Interactive Sculpting. ACM Transactions on Graphics,1994,13(2):103-136.
    [142]Tiller W. Rational B-splines for curve and surface representation. IEEE Computer Graphics and its Application,1983,3(6):61-69.
    [143]Tiller W. Geometric modeling using non-uniform rational B-splines:mathematical techniques. SIGGRAH tutorial notes, ACM, New York,1986.
    [144]Tiller W. Knot-remove algorithms for NURBS curves and surfaces. Computer Aided Design,1992,24(8):445-453.
    [145]Ugail H. Spine Based Shape Parameterisation for PDE Surfaces. Computing,2004, 72(1-2):195-206.
    [146]Versprille K.J. Computer-Aided Design Applications of the Rational B-Spline Approximation Form. Ph.D. Thesis, Syracuse University, Syracuse, New York, 1975.
    [147]Walton D J, Meek D S. Clothoidal splines. Computers & Graphics,1990,14(1): 95-100
    [148]Walton D J, Meek D S. A planar cubic Bezier spiral. Journal of Computational. and Applied Mathematics,1996,72(1):85-100
    [149]Walton D J, Meek D S. Pythagorean-hodograph quintic spiral. Computer Aided Design,1996,28(12):943-950
    [150]Walton D J, Meek D S. Planar G2 transition between two circles with a fair cubic Bezier curve. Computer Aided Design,1998,31(14):857-866.
    [151]Walton D J, Meek D S. G2 curves composed of planar cubic and Pythagorean hodograph quintic spirals. Computer Aided Geometric Design,1998,15(6): 547-566.
    [152]Walton D J, Meek D S. Curvature extrema of planar parametric polynomial cubic curves. Computational and Applied Mathematics,2001,134 (1-2):69-83.
    [153]Walton D J, Meek D S. Planar G2 transition with a fair Pythagorean hodograph quintic curve. Journal of Computational and Applied Mathematics,2002,138(1): 109-126.
    [154]Walton D J, Meek D S, Ali J M. Planar G2 transition curves composed of cubic Bezier spiral segments. Journal of Computational and Applied Mathematics,2003, 157 (2):453-476.
    [155]Walton D J, Meek D S. A controlled clothoid spline. Computers & Graphics,2005, 29(3):353-363
    [156]Walton D J, Meek D S. G2 curve design with a pair of Pythagorean Hodograph quintic spiral segments. Computer Aided Geometric Design,2007,24 (5):267-285.
    [157]Wang G J, Tang K, Tai C. Parametric representations of the surface pencil with a same spatial geodesic. Computer Aided Design,2004,36(5):447-459
    [158]Wang G Z, Chen Q Y. NUAT B-spline curves. Computer Aided Geometric Design, 2004,21:193-205.
    [159]Wang L Z, Miura K T, Nakamae E, et al. An approximation approach of the clothoid curve defined in the interval [0, π/2] and its offset by free-form curves. Computer Aided Design,2001,33(14):1049-1058.
    [160]Wang Y L, Zhao B Y, Zhang L Z, et al. Designing fair curves using monotone curvature pieces. Computer Aided Geometric Design,2004,21(5):515-527.
    [161]Watkins M A, Worsey A J. Degree reduction of Bezier curves. Computer Aided Design,1988,20(7):398-405.
    [162]Welch W, Witckin A. Variational Surface Modeling, ACM Computer Graphies 1992, 26(2):157-166.
    [163]Xu H, Wang G. New method for distinguishing planar rational cubic B-spline curve segments as monotone curvature variation. Journal of Zhejiang University SCIENCE A,2006,7(Suppl. II):165-173.
    [164]Xu G, Pan Q, Bajaj C. Discrete Surface Modelling Using Partial Differential Equations. Computer Aided Geometric Design,2006,23(2):125-145.
    [165]Ying L, Zorin D. Nonmanifold subdivision. Proceedings of the conference on Visualization '01.2001,325-332.
    [166]You L H, Zhang J J, Comninos P. Generating blending surfaces with a pseudo-Levy series solution to fourth order partial differential equations. Computing,2003, 71(4):353-373.
    [167]Yoshida N, Saito T. Quasi-aesthetic curves in rational cubic Bezier forms. Computer-Aided Design and Applications,2007,4(1-4):477-486
    [168]Zhang J. C-curves:An extension of cubic curves. Computer Aided Geometric Design,1996,13(3):199-217.
    [169]Zhang J.. Two different forms of C-B-splines. Computer Aided Geometric Design, 1997,14(1):31-41.
    [170]Zhang J J, You L H. Surface representation using second, fourth and mixed order partial differential equations. In:International Conference on Shape Modeling and Applications,2001.
    [171]Zhang R, Wang G. Constrained Bezier curves'best multi-degree reduction in the L2-norm. Progress in Natural Science,2005,15(9):843-850
    [172]北京市市政设计研究院.CJJ 37-90城市道路设计规范,第一版.北京:中国建筑工业出版社,1991
    [173]陈国栋,王国瑾.带端点插值条件的Bezier曲线降多阶逼近.软件学报,2000,11(9):1202-1206.
    [174]陈文喻,汪国昭.反函数的混合多项式逼近.浙江大学学报(理学版),2006,33(5):507-509
    [175]方逵,傅凯新.保形插值的样条函数方法.国防科技大学学报,1994,16(4):88-93.
    [176]高斌.曲线曲面质量检测与修正方法研究.浙江大学博士学位论文,2006.
    [177]胡倩倩,王国瑾.三角曲面显式最佳降多阶的一个新颖算法.中国科学(E辑:信息科学)2007,37(8):989-999
    [178]韩旭里,刘圣军.三次均匀B样条曲线的扩展.计算机辅助设计与图形学学报,2003,15(5):576-582.
    [179]李桂清.细分曲面造型及应用.中国科学院,博士论文.2001
    [180]李重,韩丹夫.二次有理B样条曲线曲率单调条件.浙江大学学报(理学版),2003,30(1):23-26.
    [181]李重.基于一条三次Bezier曲线的道路C型缓和曲线构造.农业机械学报,2005,36(9):25-27
    [182]李重;马利庄,Meek D.平面两圆弧相离情况下G2连续过渡曲线构造.计算机辅助设计与图形学学报,2006,18(2):265-269
    [183]李道伦,卢德唐,董玉德,孔祥言.改进的保形二次样条插值.中国图象图形学报,2005,10(4):516-520.
    [184]李亚娟,汪国昭.代数双曲三角函数空间中的一组正交基.计算机辅助设计与图形学学报,2008,20(04):464-468
    [185]齐东旭.分形及计算机生成.北京:科学出版社,1994.
    [186]施法中.计算机辅助几何设计与非均匀有理B样条.高等教育出版社,2005
    [187]苏步青,刘鼎元.计算几何.上海科学技术出版社,1981.
    [188]许幸新,郑友益,高咏涛.对数螺线及其在机械工程领域中的应用,机械设计,2003,20(1):69-70
    [189]徐国良,张琴.计算几何中几何偏微分方程的构造,计算数学,2006,28(4): 337-356.
    [190]王国瑾,汪国昭,郑建民.计算机辅助几何设计.高等教育出版社,2001.
    [192]汪仁泰,陈建兰,空间曲线的C-Bezier插值.浙江工业大学学报,2004,32(2):225-227
    [193]王伟.三次样条空间中的正交基.浙江大学硕士学位论文,2008年6月.
    [194]王玉林,汪叔淳,李迪,张鲁邹,赵炳彦.二次有理Bezier曲线曲率单调条件的研究.计算机辅助设计与图形学学报,2000,12(7):507-511
    [195]尤晓暐.现代道路勘测设计.清华大学出版社出版,2004.
    [196]张景峤.细分曲面生成及其在曲面造型中的应用研究.浙江大学博士学位论文,2003年6月.
    [197]周志敏,汪国昭.代数双曲三角函数空间中的一组正交基.浙江大学学报(理学版),2006,38(4):398-402
    [198]朱心雄.自由曲线曲面造型技术,北京科学出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700