马疱疹病毒1型感染性克隆及表达猪链球菌2型亚单位重组病毒的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马疱疹病毒1型(Equine herpesvirus type1, EHV-1)是马科动物的重要病原之一,临床上多引起呼吸道、流产及神经系统疾病。疱疹病毒拥有庞大的双股DNA基因组,由于其基因组中存在大量非必需基因,有大约30kbp的序列可以被外源基因取代,并且不会严重影响病毒在体外细胞培养中增殖,EHV-1可作为表达外源蛋白活疫苗载体,不但可以用于马病的预防,而且最近的研究显示EHV-1有发展为通用载体或者基因治疗载体的潜力。本实验以ATCC标准株438/77株基础,分别克隆其ORF19和20,与含有绿色荧光蛋白和氯霉素抗性报告基因的pHA2相连构建转移载体后,与母本病毒共转染以传统的同源重组方法在ORF19和20之间插入mini-F序列,构建了含有GFP和氯霉素基因的重组病毒,提取重组病毒基因组环状中间体电转至大肠杆菌DH10B感受态细胞,经过PGR和RFLP筛选到多株阳性细菌人工染色体(BAC)克隆,以磷酸钙法转染RK13细胞,结果均拯救出病毒。拯救病毒与转移载体p1920XM通过同源重组进一步删除含有报告基因mini-F序列构建了无痕迹有标记的恢复病毒。野生株、拯救株和恢复株经过噬斑测定和一步生长曲线测定证明各毒株体外培养特性差异不显著,说明本实验所构建的BAC具有感染性,而且mini-F的插入和删除均没有改变病毒的体外培养特性。
     猪链球菌2型作为一种人畜共患病病原日益受到关注,而溶血素又是其分泌到细胞外的外毒素,是公认的重要毒力因子之一,具有良好的免疫原性。通过对其基因序列的分析发现5’约81bp编码的27个氨基酸残基为信号肽序列。本试验通过PCR及融合PCR方法构建载体在大肠杆菌中成功的表达了带有信号肽和无信号肽的SLY,以及将463和464位色氨酸突变为丙氨酸的带有信号肽和无信号肽的溶血素突变体-SLYm。经过蛋白杂交试验证明,表达的重组SLY和SLYm与提取的SS2分泌的SLY分子量完全一致,而且带有的信号肽的SLY和SLYm均能在细菌上清中检测到杂交条带,说明SS2sly基因的信号肽序列同样能够引导在大肠杆菌中成熟的SLY或者SLYm进行跨膜转运,而且转运至细胞外的SLY和SLYm的分子量与SS2的分子量一致,说明其信号肽序列已被切除,而无信号肽的SLY和SLYm的上清中均未检测到。同时通过血平板和96孔板溶血试验证明溶血素突变体失去溶血活性,而野生型SLY不仅能够溶解红细胞而且对PK15.RK13.SUVEC细胞具有毒性,突变体则不能引起任何细胞发生病变。小鼠毒力实验证明所表达的SLY通过腹腔注射和静脉注射均能致死小鼠,而SLYm在同样条件下对小鼠安全。用SLY和SLYm免疫小鼠制备的抗血清均能抑制SS2SLY的溶血活性,提示了463和464为氨基酸的突变虽然灭活其溶血活性,但是仍具备免疫原性其抗血清能够封闭SLY的膜结合结构域阻止其细胞膜的结合。瞬时表达及免疫转印试验证明未经优化的SS2溶血素突变体全基因在PK15细胞中不能被Pcmv启动子启动表达,而优化合成的slyom则能够表达,所表达的溶血素蛋白在PK15细胞中不需要信号肽序列也能实现跨膜转运。MRP被认为是猪链球菌的重要的毒力因子,从病猪体内分离的菌株常常含这种分子。对链球菌致病菌株的MRP进行了克隆、测序,显示N端前47个氨基酸是典型的信号肽,游离于细菌表面,N端有7个带电荷的残基,后面是一个21个氨基酸的疏水孔和一个公认的信号肽酶切位点。剪切掉信号肽得到一个分子量为131094的成熟蛋白,它与136kD的MRP接近。C端有一类似于A群链球菌M蛋白基因的锚式序列,本试验通过构建含有mrp片段的真核表达质粒转染细胞后瞬时表达MRP并经免疫转印确定能够在Pcmv启动子启动下表达。
     应用疫苗预防目前仍旧是防控猪链球菌病有效措施,传统的灭活疫苗仍旧具有需多次注射的局限,新型高效的猪链球菌2型疫苗仍有待于进一步的研究。本试验在所构建的p438/77的基础上,以两步法无痕迹的将mrp基因片段和溶血素突变体分别插入EHV-1基因组内构建了重组病毒,经过免疫转印鉴定能够表达MRP和SLY。重组病毒通过传统的同源重组方法删除了含有氯霉素抗性基因以及gfp的mini-F序列获得4M和4S株。免疫小鼠后以间接ELISA方法检测到4M能够诱导小鼠产生抗MRP特异性抗体,4M株免疫小鼠后能够抵抗致死量的SLY静脉注射的攻击。
Equine herpesvirus type1(EHV-1) is a major cause of respiratory and reproductive disease in horses worldwide.The genome of EHV-1strain438/77isolated from aborted equine fetus was cloned as bacterial artificial chromosomes (BAC) in E. coli without any gene deletion. Mini-F sequence was inserted in the middle of ORF19and20via homologous recombination upon co-transfection of viral DNA and plasmid pE19_20/HA into RK13cells. Circular viral DNA was extracted from RK13cells infected with purified recombinant virus expressing green fluorescent protein (GFP) and electrophorated into E. coli DH10B cells. The clone harboring the BAC was screened and analyzed by PCR and RFLP. Reconstitution of the recombinant virus was achieved successfully by transfection of the BAC DNA into RK13cells. The mini-F sequence in the reconstituted virus was further removed by homologous recombination between virus DNA and plasmid pE1920XM, inducing a point mutation in the Xbal site in ORF19. Comparison of RFLP profiles of the rescued, recovered and the wild type viral genome demonstrated that no unexpected change occurred during mutagenesis. In vitro replication assay showed that the BAC-reconstituted virus mutant was able to grow with plaque size and kinetics indistinguishable with those of wild type.
     Streptococcus suis serotype2(SS2) is a zoonotic pathogen causing diseases in swine and streptococcal toxic shock syndrome in humans.An effective swine or human SS2vaccinewithout side effects does not exist. Suilysin (SLY) is an extracellularly secreted exotoxin produced by SS2that has been shown to protect vaccinated pigs challenged with SS2. The aim of this study was to construct an avirulentSLY mutant (SLYm), keeping the immunogenicity of wild type SLY, as a subunit vaccine to protect againstSS2infection. Recombinant SLY and SLYm, with Trp-463and Trp-464substituted with Ala residues, were made and reacted with anti-SLY monoclonal antibody by westernblot analysis. The hemolytic and cytopathogenic activities and toxicity of SLYm and SLY were examined, confirming that SLYm lostits perforationability towards eukaryotic cellswhile wild type SLY did not. Both anti-serum of mice vaccinated with SLYm and SLY inhibited the hemolytic activity of wild type SLY.The hemolytic activities were indistinguishable from each other (p>0.05). Both mice vaccinated with SLY and SLYm were protected from the challenge of a lethal dose ofwild type SLY(p>0.05). Most importantly, mice vaccinated with SLYm gained body weight similar to control mice, while those vaccinated with SLY gained less weight (p<0.001). Additionally, SLYmlacked perforation activity towards eukaryotic cellsand was verified to be avirulent to the host cell and animal but kept the immunogenicity of SLY that would make the subunit vaccine effective against the pathogen andsafer to the host.
     Application of vaccine is one of the effective methods to control the SS2, killed vaccines are limited torepeated immunizationand whether these vaccines confer protection against challenges with heterologous strains has not been evaluated. An effective SS2vaccine without side effects that is convenient to use in swine or humans should be developed. Based on the BAC p438/77, mrpfragment and sly were introduced to the genome of EHV-1by the two-step Red E/T, respectively. The recombinant virus were comfired by western blot and could express SLY and MRP. The virus4M and4S strains were generated by homologous recombination with the removal of mini-F sequence harbouring CAM and gfp. The MRP antibody titers of miace inoculated with4M strain were assayed and the4S strain could protect the mice against the lethal dosage of recombinant SLY.
引文
[I]Davison, A.J., et al., The order Herpesvirales. Arch Virol,2009.154(1):p.171-7.
    [2]Telford, E.A., et al., The DNA sequence of equine herpesvirus-1. Virology,1992.189(1):p.304-16.
    [3]Field, H.J., S. Biswas, and I.T. Mohammad, Herpesvirus latency and therapy--from a veterinary perspective. Antiviral Res,2006.71(2-3):p.127-33.
    [4]Allen, G.P. and J.T. Bryans, Molecular epizootiology, pathogenesis, and prophylaxis of equine herpesvirus-1 infections. Prog Vet Microbiol Immunol,1986.2:p.78-144.
    [5]WuDunn, D. and P.G. Spear, Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J Virol,1989.63(1):p.52-8.
    [6]Mettenleiter, T.C., et al., Interaction of glycoprotein gⅢ with a cellular heparinlike substance mediates adsorption of pseudorabies virus. J Virol,1990.64(1):p.278-86.
    [7]Osterrieder, N., Construction and characterization of an equine herpesvirus 1 glycoprotein C negative mutant Virus Res,1999.59(2):p.165-77.
    [8]Ortmann, B., M.J. Androlewicz, and P. Cresswell, MHC class I/beta 2-microglobulin complexes associate with TAP transporters before peptide binding. Nature,1994.368:p.864-867.
    [9]Gilbert, M.J., et al., Cytomegalovirus selectively blocks antigen processing and presentation of its immediate-early gene product Nature,1996.383(6602):p.720-2.
    [10]Levitskaya, J., et al., Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci U S A,1997. 94(23):p.12616-21.
    [11]Fruh, K., et al., A viral inhibitor of peptide transporters for antigen presentation. Nature,1995. 375(6530):p.415-8.
    [12]Ahn, K., et al., The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity,1997.6(5):p.613-21.
    [13]Galocha, B., et al., The active site of ICP47, a herpes simplex virus-encoded inhibitor of the major histocompatibility complex (MHC)-encoded peptide transporter associated with antigen processing (TAP), maps to the NH2-terminal 35 residues. J Exp Med,1997.185(9):p.1565-72.
    [14]Frampton, A.R., Jr., et al., Equine herpesvirus 1 utilizes a novel herpesvirus entry receptor. J Virol, 2005.79(5):p.3169-73.
    [15]Sun, Y., et al., The role of the gene 71 product in the life cycle of equine herpesvirus 1. J Gen Virol, 1996.77 (Pt 3):p.493-500.
    [16]Osterrieder, N., et al., The equine herpesvirus 1 glycoprotein gp21/22a, the herpes simplex virus type 1 gM homolog, is involved in virus penetration and cell-to-cell spread of virions. J Virol,1996. 70(6):p.4110-5.
    [17]Peeters, B., et al., Pseudorabies virus envelope glycoproteins gp50 and gⅡ are essential for virus penetration, but only gⅡ is involved in membrane fusion. J Virol,1992.66(2):p.894-905.
    [18]Neubauer, A., et al., Analysis of the contributions of the equine herpesvirus 1 glycoprotein gB homolog to virus entry and direct cell-to-cell spread. Virology,1997.227(2):p.281-94.
    [19]Neubauer, A., et al., Equine herpesvirus 1 mutants devoid of glycoprotein B or M are apathogenic for mice but induce protection against challenge infection. Virology,1997.239(1):p.36-45.
    [20]Lipinska, A.D., et al., Bovine herpesvirus 1 UL49.5 protein inhibits the transporter associated with antigen processing despite complex formation with glycoprotein M. J Virol,2006.80(12):p. 5822-32.
    [21]Slater, J.D., J.S. Gibson, and H.J. Field, Pathogenicity of a thymidine kinase-deficient mutant of equine herpesvirus 1 in mice and specific pathogen-free foals. J Gen Virol,1993.74 (Pt 5):p. 819-28.
    [22]杜建等,新疆普氏野马鼻肺炎病毒的分离鉴定.云南大学学报(自然科学版),1999.21(3).
    [23]Goodman, L.B., et al., A Point Mutation in a Herpesvirus Polymerase Determines Neuropathogenicity. PLoS Pathogens,2007.3:p.1583-1592.
    [24]Van de Walle, G.R., et al., A Single-Nucleotide Polymorphism in a Herpesvirus DNA Polymerase Is Sufficient to Cause Lethal Neurological Disease. J Infect Dis.,2009.200(1):p.20-25.
    [25]Awan, A.R., M. Baxi, and H.J. Field, EHV-1-induced abortion in mice and its relationship to stage of gestation. Res Vet Sci,1995.59(2):p.139-45.
    [26]Mayr, A., et al., [Studies on the development of a live vaccine against rhinopneumonitis (mare abortion) of horses]. Zentralbl Veterinarmed B,1968.15(3):p.406-18.
    [27]Yu, M.H., et al., Diverse pathogenicity of equine herpesvirus 1 (EHV-1) isolates in CBA mouse model. J Vet Med Sci,2010.72(3):p.301-6.
    [28]Walker, C., D.N. Love, and J.M. Whalley, Comparison of the pathogenesis of acute equine herpesvirus 1 (EHV-1) infection in the horse and the mouse model:a review. Vet Microbiol,1999. 68(1-2):p.3-13.
    [29]Nicolson, L., et al., An improved cosmid vector for the cloning of equine herpesvirus DNA. Gene, 1994.150(2):p.405-6.
    [30]Sun, Y. and S.M. Brown, The open reading frames 1,2,71, and 75 are nonessential for the replication of equine herpesvirus type 1 in vitro. Virology,1994.199(2):p.448-52.
    [31]Colle, C.F.,3rd and D.J. O'Callaghan, Transcriptional analyses of the unique short segment of EHV-1 strain Kentucky A. Virus Genes,1995.9(3):p.257-68.
    [32]Rudolph, J., D.J. O'Callaghan, and N. Osterrieder, Cloning of the genomes of equine herpesvirus type 1 (EHV-1) strains KyA and racLll as bacterial artificial chromosomes (BAC). J Vet Med B Infect Dis Vet Public Health,2002.49(1):p.31-6.
    [33]Wagner, M., Z. Ruzsics, and U.H. Koszinowski, Herpesvirus genetics has come of age. Trends Microbiol,2002.10(7):p.318-24.
    [34]Messerle, M., et al., Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A,1997.94(26):p.14759-63.
    [35]Adler, H., M. Messerle, and U.H. Koszinowski, Cloning of herpesviral genomes as bacterial artificial chromosomes. Rev Med Virol,2003.13(2):p.111-21.
    [36]Tischer, B.K., et al., Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques,2006.40(2):p.191-7.
    [37]Rosas, C.T., et al., Equine herpesvirus type 1 modified live virus vaccines:quo vaditis? Expert Rev Vaccines,2006.5(1):p.119-31.
    [38]Van de Walle, G.R., et al., A vectored equine herpesvirus type 1 (EHV-1) vaccine elicits protective immune responses against EHV-1 and H3N8 equine influenza virus. Vaccine,2010.28(4):p. 1048-55.
    [39]Abaitua, F., et al., Improving recombinant MVA immune responses:potentiation of the immune responses to HIV-1 with MVA and DNA vectors expressing Env and the cytokines IL-12 and IFN-gamma. Virus Res,2006.116(1-2):p.11-20.
    [40]Rupprecht, C.E., et al., Oral vaccination of dogs with recombinant rabies virus vaccines. Virus Res, 2005.111(1):p.101-5.
    [41]Smee, D.F., et al., Topical cidofovir is more effective than is parenteral therapy for treatment of progressive vaccinia in immunocompromised mice. J Infect Dis,2004.190(6):p.1132-9.
    [42]Kanesa-thasan, N., et al., Safety and immunogenicity of NYVAC-JEV and ALVAC-JEV attenuated recombinant Japanese encephalitis virus--poxvirus vaccines in vaccinia-nonimmune and vaccinia-immune humans. Vaccine,2000.19(4-5):p.483-91.
    [43]Campbell, E.M. and T.J. Hope, Gene therapy progress and prospects:viral trafficking during infection. Gene.Ther.,2005.12:p.1353-1359.
    [44]Lauterbach, H., et al., Reduced immune responses after vaccination with a recombinant herpes simplex virus type 1 vector in the presence of antiviral immunity. J Gen Virol,2005.86(Pt 9):p. 2401-10.
    [45]Trapp, S., et al., Potential of equine herpesvirus 1 as a vector for immunization. J Virol,2005.79(9): p.5445-54.
    [46]Bolin, S.R. and J.F. Ridpath, Glycoprotein E2 of bovine viral diarrhea virus expressed in insect cells provides calves limited protection from systemic infection and disease. Arch Virol,1996.141(8):p. 1463-77.
    [47]Rosas, C.T., et al., Live-attenuated recombinant equine herpesvirus type 1 (EHV-1) induces a neutralizing antibody response against West Nile virus (WNV). Virus Res,2007.125(1):p.69-78.
    [48]Rosas, C.T., et al., Protection of mice by equine herpesvirus type 1 based experimental vaccine against lethal Venezuelan equine encephalitis virus infection in the absence of neutralizing antibodies. Am J Trop Med Hyg,2008.78(1):p.83-92.
    [49]Rosas, C.T., et al., Evaluation of the vaccine potential of an equine herpesvirus type 1 vector expressing bovine viral diarrhea virus structural proteins. J Gen Virol,2007.88(Pt 3):p.748-57.
    [50]Rosas, C., et al., Evaluation of a vectored equine herpesvirus type 1 (EHV-1) vaccine expressing H3 haemagglutinin in the protection of dogs against canine influenza. Vaccine,2008.26(19):p. 2335-43.
    [1]陆承平,兽医微生物学(第四版).2007.
    [2]Staats, J.J., et al., Streptococcus suis:past and present. Vet Res Commun,1997.21(6):p. 381-407.
    [3]Tang, J., et al., Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PLoS Med,2006.3(5):p. e151.
    [4]Sriskandan, S. and J.D. Slater, Invasive disease and toxic shock due to zoonotic Streptococcus suis:an emerging infection in the East? PLoS Med,2006.3(5):p. e187.
    [5]Zhang, W. and C.P. Lu, Immunoproteomics of extracellular proteins of Chinese virulent strains of Streptococcus suis type 2. Proteomics,2007.7(24):p.4468-76.
    [6]Mogollon, J.D., et al., Identification of epidemic strains of Streptococcus suis by genomic fingerprinting. J Clin Microbiol,1991.29(4):p.782-7.
    [7]吕立新,et al.,从正常屠宰猪扁桃体中分离到致病性猪链球菌2型.中国人兽共患病学报,2008.24(4).
    [8]黄绍谦,et al.,屠宰生猪体内猪链球菌2型带菌情况调查.福建农业学报,2009.24(5).
    [9]Arends, J.P., et al., Carrier rate of Streptococcus suis capsular type 2 in palatine tonsils of slaughtered pigs. J Clin Microbiol,1984.20(5):p.945-7.
    [10]Quessy, S., et al., Discrimination of virulent and avirulent Streptococcus suis capsular type 2 isolates from different geographical origins. Infect Immun,1995.63(5):p.1975-9.
    [11]Vecht, U., et al., Identification of two proteins associated with virulence of Streptococcus suis type 2. Infect Immun,1991.59(9):p.3156-62.
    [12]Vecht, U., et al., Virulence of Streptococcus suis type 2 strains in newborn germfree pigs depends on phenotype. Infect Immun,1992.60(2):p.550-6.
    [13]Galina, L., et al., Prevalence of various phenotypes of Streptococcus suis isolated from swine in the U.S.A. based on the presence of muraminidase-released protein and extracellular factor. Can J Vet Res,1996.60(1):p.72-4.
    [14]Smith, H.E., et al., Mutants of Streptococcus suis types 1 and 2 impaired in expression of muramidase-released protein and extracellular protein induce disease in newborn germfree pigs. Infect Immun,1996.64(10):p.4409-12.
    [15]Allgaier, A., et al., Relatedness of Streptococcus suis isolates of various serotypes and clinical backgrounds as evaluated by macrorestriction analysis and expression of potential virulence traits. J Clin Microbiol,2001.39(2):p.445-53.
    [16]李小军,et al.,从非法屠宰的猪肉中检出猪链球菌2型.畜牧与兽医,2007.39(8).
    [17]Berthelot-Herault, F., et al., Genetic diversity of Streptococcus suis strains isolated from pigs and humans as revealed by pulsed-field gel electrophoresis. J Clin Microbiol,2002.40(2):p. 615-9.
    [18]Vela, A.I., et al., Analysis of genetic diversity of Streptococcus suis clinical isolates from pigs in Spain by pulsed-field gel electrophoresis. J Clin Microbiol,2003.41(6):p.2498-502.
    [19]Windsor, R.S., Meningitis in pigs caused by Streptococcus suis type II. Vet Rec,1977. 101(19):p.378-9.
    [20]Katsumi, M., et al., Comparative preparation methods of sialylated capsule antigen from Streptococcus suis type 2 with type specific antigenicity. J Vet Med Sci,1996.58(10):p. 947-52.
    [21]Smith, H.E., et al., Identification and characterization of the cps locus of Streptococcus suis serotype 2:the capsule protects against phagocytosis and is an important virulence factor. Infect Immun,1999.67(4):p.1750-6.
    [22]Charland, N., et al., Streptococcus suis serotype 2 mutants deficient in capsular expression. Microbiology,1998.144 (Pt 2):p.325-32.
    [23]Gottschalk, M., et al., Adherence of Streptococcus suis capsular type 2 to porcine lung sections. Can J Vet Res,1991.55(3):p.302-4.
    [24]Charland, N., et al., Role of capsular sialic acid in virulence and resistance to phagocytosis of Streptococcus suis capsular type 2. FEMS Immunol Med Microbiol,1996.14(4):p.195-203.
    [25]Smith, H.E., et al., Cloning and nucleotide sequence of the gene encoding the 136-kilodalton surface protein (muramidase-released protein) of Streptococcus suis type 2. Infect Immun, 1992.60(6):p.2361-7.
    [26]Lalonde, M., et al., Interactions between Streptococcus suis serotype 2 and different epithelial cell lines. Microbiology,2000.146(8):p.1913.
    [27]Smith, H.E., et al., Repeats in an extracellular protein of weakly pathogenic strains of Streptococcus suis type 2 are absent in pathogenic strains. Infect Immun,1993.61(8):p. 3318-26.
    [28]Wisselink, H.J., et al., Protection of pigs against challenge with virulent Streptococcus suis serotype 2 strains by a muramidase-released protein and extracellular factor vaccine. Vet Rec, 2001.148(15):p.473-7.
    [29]Palmer, M., et al., Kinetics of streptolysin O self-assembly. Eur J Biochem,1995.231(2):p. 388-95.
    [30]Allen, A.G., et al., Generation and characterization of a defined mutant of Streptococcus suis lacking suilysin. Infect Immun,2001.69(4):p.2732-5.
    [31]方绍庆,猪链球菌2型江苏分离株溶血素的纯化、化学修饰及其基因检测与分析.2002.
    [32]King, S.J., et al., Distribution and genetic diversity of suilysin in Streptococcus suis isolated from different diseases of pigs and characterization of the genetic basis of suilysin absence. Infect Immun,2001.69(12):p.7572-82.
    [33]Takamatsu, D., M. Osaki, and T. Sekizaki, Evidence for lateral transfer of the Suilysin gene region of Streptococcus suis. J Bacteriol,2002.184(7):p.2050-7.
    [34]Owen, R.H., et al., A role in cell-binding for the C-terminus of pneumolysin, the thiol-activated toxin of Streptococcus pneumoniae. FEMS Microbiol Lett,1994.121(2):p. 217-21.
    [35]Bhakdi, S., J. Tranum-Jensen, and A. Sziegoleit, Mechanism of membrane damage by streptolysin-O. Infect Immun,1985.47(1):p.52-60.
    [36]Engel, F., et al., Breakdown of the round window membrane permeability barrier evoked by streptolysin O:possible etiologic role in development of sensorineural hearing loss in acute otitis media. Infect Immun,1995.63(4):p.1305-10.
    [37]方绍庆and陆承平,猪链球菌2型溶血素的化学修饰.微生物学报,2003.43(3).
    [38]Michel, E., et al., Attenuated mutants of the intracellular bacterium Listeria monocytogenes obtained by single amino acid substitutions in listeriolysin O. Mol Microbiol,1990.4(12):p. 2167-78.
    [39]杨影,et al.,猪链球菌2型溶血素(sLY)抗原表位的鉴定及缺失研究{Tertiary Title):中国畜牧兽医学会动物传染病学分会第三届猪病防控学术研讨会论文集.2008.
    [40]陈国强,猪链球菌2型溶血毒素的产生条件及其特性分析.2000.
    [41]Jacobs, A.A., A.J. van den Berg, and P.L. Loeffen, Protection of experimentally infected pigs by suilysin, the thiol-activated haemolysin of Streptococcus suis. Vet Rec,1996.139(10):p. 225-8.
    [42]梁毅,et al.,致病性猪链球菌2型溶血素基因的克隆与表达.生物技术通讯,2009.20(3).
    [43]刘丽娜,et al.,猪链球菌2型溶血素sly基因的表达及其产物的纯化和活性研究.中华流行病学杂志,2007.28(12).
    [44]王华,et al.,猪链球菌2型四川株溶血素主要抗原决定簇基因的克隆及表达.中国人兽共患病学报,2007.23(11).
    [45]吉利伟,et al.,猪链球菌2型溶血素重组亚单位疫苗的研制{Tertiary Title}第三届南京农业大学畜牧兽医学术年会论文集.2009.
    [46]Okwumabua, O. and S. Chinnapapakkagari, Identification of the gene encoding a 38-kilodalton immunogenic and protective antigen of Streptococcus suis. Clin Diagn Lab Immunol,2005.12(4):p.484-90.
    [47]Okwumabua, O., J.S. Persaud, and P.G. Reddy, Cloning and characterization of the gene encoding the glutamate dehydrogenase of Streptococcus suis serotype 2. Clin Diagn Lab Immunol,2001.8(2):p.251-7.
    [48]段志涛,et al.,猪链球菌2型次黄嘌呤核苷酸脱氢酶基因的克隆与鉴定.微生物学报,2006.46(5):p.730-733.
    [49]姚火春,陈国强,and陆承平,猪链球菌1998分离株病原特性鉴定.南京农业大学学报,1999.22(2).
    [50]王金生,et al.,广东省猪链球菌的分离鉴定与耐药性检测{Tertiary Title}首届中国兽药大会暨中国畜牧兽医学会动物药品学分会2008年学术年会论文集.2008.
    [51]杨瑛,et al.,猪链球菌2型与麦氏弧菌的分离鉴定及动物致病性试验.畜牧与兽医,2001.33(6).
    [52]鞠爱萍,苏中地区猪链球菌分子流行病学调查及猪链球菌2型反应调控因子RevS缺失株的构建.2007.
    [53]郭培元,猪链球菌2型的分离鉴定以及实验性感染猪链球菌2型的病理学研究.2008.
    [54]崔立,et al.,猪链球菌2型四川株与江苏株对spf猪的致病性.上海交通大学学报(农业科学版),2006.24(1).
    [55]俞国乔,et al.,浙江省部分规模猪场猪源链球菌的分离鉴定.畜牧与兽医,2003.35(7).
    [56]徐景野,et al.,宁波市首例人感染猪链球菌2型的实验室鉴定.中国卫生检验杂志,2008.18(11).
    [57]李小军,上海地区致病性猪链球菌及其毒力基因的检测.2007.
    [58]谈志祥,et al.,四川省猪链球菌的分离与鉴定.四川畜牧兽医,2005.32(9).
    [59]黄艳,四川省资阳地区猪链球菌病的流行病学调查和综合性防制措施研究.2006.
    [60]陈小冰,et al.,福建省猪链球菌2型在生猪体内带菌情况及分离株毒力分析.中国畜牧兽医,2007.34(2).
    [61]俞伏松,et al.,猪链球菌2型福建株的分离鉴定.福建农林大学学报(自然科学版),2008.37(3).
    [62]王双山,et al.,猪链球菌的分离鉴定及自家灭活苗研制.中国畜牧兽医,2007.34(1).
    [63]徐引弟,et al,河南省规模化猪场猪链球菌2型的分离鉴定和药敏试验.中国畜牧兽医,2010.””(1).
    [64]乔宏兴,et al.,冀东地区猪链球菌病研究.养猪,2007.""(4).
    [65]范京惠and左玉柱,猪2型链球菌河北株的分离鉴定{Tertiary Title}:中国畜牧兽医学会动物传染病学分会第十二次学术研讨会.2007.
    [66]江定丰,et al.,人-猪链球菌2型安徽分离株的鉴定与初步研究{Tertiary Title}:第六届理事会第二次会议暨教学专业委员会论文集.2006.
    [67]王永明,et al.,一株猪链球菌2型菌株的分离鉴定{Tertiary Title}:首届中国兽药大会暨中国畜牧兽医学会动物药品学分会2008年学术年会论文集.2008.
    [68]李久纯,et al.,猪链球菌的分离鉴定和药敏试验.现代畜牧兽医,2008.""(5).
    [69]王淑杰,et al.,东北地区猪群链球菌分离鉴定及流行病学调查分析.中国兽医学报,2009.29(7).
    [70]Okwumabua, O., M. O'Connor, and E. Shull, A polymerase chain reaction (PCR) assay specific for Streptococcus suis based on the gene encoding the glutamate dehydrogenase. FEMS Microbiol Lett,2003.218(1):p.79-84.
    [71]倪艳秀,et al.,检测猪链球菌2型胞外因子(Ef)的pcr方法的建立.中国人兽共患病杂志,2001.17(4).
    [72]倪艳秀,et al.,猪链球菌2型的pcr快速检测.中国兽医学报,2002.22(5).
    [73]何孔旺,et al.,Pcr方法检测2型猪链球菌2种毒力因子.扬州大学学报(农业与生命科学版),2002.23(3).
    [74]倪艳秀,et al.,检测猪链球菌2型的溶菌酶释放蛋白(Mrp)的pcr方法的建立.中国预防兽医学报,2001.23(1).
    [75]倪艳秀,et al.,猪链球菌2型溶血素基因的检测及其序列分析.中国兽医科技,2002.32(11).
    [76]马有智,李肖梁,and方维焕,猪链球菌2型溶血素基因pcr快速检测方法研究.浙江大学学报(农业与生命科学版),2004.30(1).
    [77]王花茹,猪链球菌pcr检测方法的建立及纤连蛋白结合蛋白的克隆和表达.2006.
    [78]孙理云,et al.,猪链球菌2型纤连蛋白/血纤蛋白原结合蛋白全基因的克隆及融合表达.农业生物技术学报,2005.13(6).
    [79]李干武,姚火春,and陆承平,在猪链球菌2型江苏分离株中发现新的orf2毒力相关基因.农业生物技术学报,2003.11(3).
    [80]Engelbrecht, H. and M. Dolan, Vaccination of swine for jowl abscesses. Oral administration of group E streptococcus vaccine (live culture-modified). Vet Med Small Anim Clin,1968. 63(9):p.872-5.
    [81]Quessy, S., J.D. Dubreuil, and R. Higgins, Immunization of mice against Streptococcus suis serotype 2 infections using a live avirulent strain. Can J Vet Res,1994.58(4):p.299-301.
    [82]Kebede, M., M.M. Chengappa, and J.G. Stuart, Isolation and characterization of temperature-sensitive mutants of Streptococcus suis:efficacy trial of the mutant vaccine in mice. Vet Microbiol,1990.22(2-3):p.249-57.
    [83]Elliott, S.D., F. Clifton-Hadley, and J. Tai, Streptococcal infection in young pigs. V. An immunogenic polysaccharide from Streptococcus suis type 2 with particular reference to vaccination against streptococcal meningitis in pigs. J Hyg (Lond),1980.85(2):p.275-85.
    [84]Blecha, F., et al., Influence of recombinant bovine interleukin-1 beta and interleukin-2 in pigs vaccinated and challenged with Streptococcus suis. Vet Immunol Immunopathol,1995. 44(3-4):p.329-46.
    [85]王永康,et al.,上海地区猪链球菌病的流行病学调查.上海畜牧兽医通讯,2001.""(1).
    [86]王建,et al.,猪链球菌病二联灭活疫苗的研制.南京农业大学学报,2003.26(1).
    [87]王建,et al.,猪链球菌病二联灭活疫苗生产菌株的筛选及培养条件的优化.中国兽药杂志,2003.37(10).
    [88]刘佩红,et al.,猪链球菌病氢氧化铝二联灭活疫苗猪体血清抗体消长规律.中国预防兽医学报,2002.24(4).
    [89]王建,et al.,猪链球菌2型仔猪感染动物模型的建立及免疫保护试验.动物医学进展,2007.28(5).
    [90]王建,et al.,猪链球菌灭活苗的免疫攻毒保护试验.动物医学进展,2008.29(8).
    [91]游启有,et al.,猪链球菌病灭活疫苗(2型,Ha9801株)的研制(Ⅴ)——猪链球菌2型灭活疫苗临床使用效果.广东畜牧兽医科技,2008.33(6).
    [92]中华人民共和国农业部公告第717号.2006.
    [93]欧瑜and陆承平,猪链球菌2型溶菌酶释放蛋白基因片段的克隆与表达.农业生物技术学报,2002.10(1).
    [94]范红结,陆承平,and唐家琪,猪链球菌2型mrp基因免疫功能片段的克隆、表达及动物试验{Tertiary Title}:中国微生物学会兽医微生物专委会学术年会中国畜牧兽医学会生物制品学分会第九次学术研讨会论文集.2003.
    [95]范红结,陆承平,and唐家琪,猪链球菌2型mrp基因免疫功能片段的克隆、表达及动物试验.微生物学报,2004.44(1).
    [96]李明,猪链球菌2型:mrp与epf部分片段串联表达与免疫原性及检测两种猪源链球菌抗体间接elisa方法的建立与应用.2005.
    [97]曹照明,et al.,猪链球菌2型mrp-Fbp串联黏附素的免疫保护力.临床检验杂志,2007.25(3).
    [98]龚善中,猪链球菌2型的鉴定及mrp和ef基因片段的克隆与表达.2007.
    [99]李耿,et al.,猪链球菌2型溶菌酶释放蛋白功能性片段的原核表达及其免疫保护研究{Tertiary Title}:2007年中国畜牧兽医学会生物制品学分会中国微生物学会兽医微生物学专业委员会学术研讨会论文集.2007.
    [100]肖剑,et al.,猪链球菌2型mrp与epf基因串联表达蛋白及其免疫保护作用.畜牧与兽医,2008.40(4).
    [101]郑继平,et al.,猪链球菌2型溶菌酶释放因子mrp在重组沙门菌中的表达.中国兽医 学报,2008.28(11).
    [102]王宝松,et al.,猪链球菌2型mrp与fbps部分片段串联基因的原核表达.中国动物检疫,2009.26(4).
    [103]欧瑜and陆承平,猪链球菌2型胞外蛋白因子基因片段的克隆与表达.中国兽医学报,2003.23(2).
    [104]徐淑菲,et al.,猪链球菌2型胞外蛋白因子部分基因片段的克隆与表达{Tertiary Title}:中国畜牧兽医学会家畜传染病分会第十次学术研讨会论文集.2003.
    [105]王海丽,et al.,猪链球菌2型人源分离株截短的溶菌酶释放蛋白基因的克隆及原核表达.细胞与分子免疫学杂志,2006.22(2).
    [106]葛长城,王海丽,and徐公义,猪链球菌2型epf基因的原核表达及其蛋白纯化.安徽农业科学,2009.37(15).
    [107]王冬梅,et al.,猪链球菌2型胞外因子短片段的原核表达及其免疫保护力.中国兽医科学,2009.39(5).
    [108]马有智and方维焕,猪链球菌血清2型jx02株溶血素基因的克隆及序列分析.中国兽医学报,2003.23(5).
    [109]孙雯,猪链球菌2型强毒株重要功能蛋白的克隆表达、功能鉴定及其免疫特性研究.2008.
    [110]刘燕,et al.,猪链球菌2型荚膜多糖cps2J基因的克隆与原核表达.中国预防兽医学报,2009.31(6).
    [111]段志涛,et al.,猪链球菌2型次黄嘌呤核苷酸脱氢酶基因的克隆与鉴定.微生物学报,2006.46(5).
    [112]赵华梅,et al.,猪链球菌2型谷氨酸脱氢酶基因的克隆表达及酶活性测定.中国人兽共患病学报,2006.22(1).
    [113]韩明月,et al.,2型猪链球菌中国强毒株溶血素样蛋白基因的原核表达及其抗血清制备.中国人兽共患病学报,2009.25(10).
    [114]邵珠卿,et al.,猪链球菌2型组氨酸三聚体蛋白原核表达.中国公共卫生,2009.25(6).
    [115]董亚青,猪链球菌2型强毒株srtA基因缺失株的构建及其毒力分析.2007.
    [116]鞠爱萍,et al.,猪链球菌2型反应调控因子RevS突变株的构建.中华流行病学杂志,2008.29(1).
    [117]吴涛,猪链球菌2型revS基因缺失株构建及HYL蛋白与宿主互作的研究.2008.
    [118]齐翀,et al.,猪链球菌2型PA14及vapE基因缺失突变菌株的构建{Tertiary Title}:首届中国兽药大会暨中国畜牧兽医学会动物药品学分会2008年学术年会论文集.2008.
    [119]张雪寒,et al.,猪链球菌2型次黄嘌呤核苷酸脱氢酶缺失株的构建{Tertiary Title}: 中国畜牧兽医学会兽医公共卫生学分会成立大会暨第一次学术研讨会论文集.2008.
    [120]冯晓丹,et al.,猪链球菌2型二元信号转导系统ciaR基因敲除突变株的构建及生物学功能研究.中国人兽共患病学报,2009.25(3).
    [121]胡丹,猪链球菌2型荚膜缺失株的构建及其致病性研究.2009.
    [122]Zhang, H., H. Fan, and C. Lu, Identification of a Novel Virulence-Related Gene in Streptococcus suis Type 2 Strains. Curr Microbiol,2010.
    [1]Davison, A.J., et al., The order Herpesvirales. Arch Virol,2009.154(1):p.171-7.
    [2]Reed, S.M. and R.E. Toribio, Equine herpesvirus 1 and 4. Vet Clin North Am Equine Pract, 2004.20(3):p.631-42.
    [3]Ostlund, E.N., The equine herpesviruses. Vet Clin North Am Equine Pract,1993.9(2):p. 283-94.
    [4]Lunn, D.P., et al., Equine herpesvirus-1 consensus statement. J Vet Intern Med,2009.23(3):p. 450-61.
    [5]Osterrieder, N., et al., The equine herpesvirus 1 glycoprotein gp21/22a, the herpes simplex virus type 1 gM homolog, is involved in virus penetration and cell-to-cell spread of virions. J Virol,1996.70(6):p.4110-5.
    [6]Nicolson, L., et al., An improved cosmid vector for the cloning of equine herpesvirus DNA. Gene,1994.150(2):p.405-6.
    [7]Sun, Y. and S.M. Brown, The open reading frames 1,2,71, and 75 are nonessential for the replication of equine herpesvirus type 1 in vitro. Virology,1994.199(2):p.448-52.
    [8]Mayr, A., et al., [Studies on the development of a live vaccine against rhinopneumonitis (mare abortion) of horses]. Zentralbl Veterinarmed B,1968.15(3):p.406-18.
    [9]Wagner, M., Z. Ruzsics, and U.H. Koszinowski, Herpesvirus genetics has come of age. Trends Microbiol,2002.10(7):p.318-24.
    [10]McGregor, A. and M.R. Schleiss, Recent advances in herpesvirus genetics using bacterial artificial chromosomes. Mol Genet Metab,2001.72(1):p.8-14.
    [11]Adler, H., M. Messerle, and U.H. Koszinowski, Cloning of herpesviral genomes as bacterial artificial chromosomes. Rev Med Virol,2003.13(2):p.111-21.
    [12]Tischer, B.K., et al., Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques,2006.40(2):p.191-7.
    [13]Colle, C.F.,3rd and D.J. O'Callaghan, Transcriptional analyses of the unique short segment of EHV-1 strain Kentucky A. Virus Genes,1995.9(3):p.257-68.
    [14]Rudolph, J., D.J. O'Callaghan, and N. Osterrieder, Cloning of the genomes of equine herpesvirus type 1 (EHV-1) strains KyA and racL11 as bacterial artificial chromosomes (BAC). J Vet Med B Infect Dis Vet Public Health,2002.49(1):p.31-6.
    [15]Neubauer, A., et al., The equine herpesvirus 1 UL34 gene product is involved in an early step in virus egress and can be efficiently replaced by a UL34-GFP fusion protein. Virology,2002. 300(2):p.189-204.
    [16]Van de Walle, G.R., et al., A single-nucleotide polymorphism in a herpesvirus DNA polymerase is sufficient to cause lethal neurological disease. J Infect Dis,2009.200(1):p. 20-5.
    [17]Trapp, S., et al., Potential of equine herpesvirus 1 as a vector for immunization. J Virol,2005. 79(9):p.5445-54.
    [18]Rosas, C.T., et al., Live-attenuated recombinant equine herpesvirus type 1 (EHV-1) induces a neutralizing antibody response against West Nile virus (WNV). Virus Res,2007.125(1):p. 69-78.
    [19]Rosas, C.T., et al., Protection of mice by equine herpesvirus type 1 based experimental vaccine against lethal Venezuelan equine encephalitis virus infection in the absence of neutralizing antibodies. Am J Trop Med Hyg,2008.78(1):p.83-92.
    [20]Rosas, C.T., et al., Evaluation of the vaccine potential of an equine herpesvirus type 1 vector expressing bovine viral diarrhea virus structural proteins. J Gen Virol,2007.88(Pt 3):p. 748-57.
    [21]Rosas, C., et al., Evaluation of a vectored equine herpesvirus type 1 (EHV-1) vaccine expressing H3 haemagglutinin in the protection of dogs against canine influenza. Vaccine, 2008.26(19):p.2335-43.
    [22]Sun, Y., et al., The role of the gene 71 product in the life cycle of equine herpesvirus 1. J Gen Virol,1996.77 (Pt 3):p.493-500.
    [23]Messerle, M., et al., Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A,1997.94(26):p.14759-63.
    [24]Smith, G.A. and L.W. Enquist, Construction and transposon mutagenesis in Escherichia coli of a full-length infectious clone of pseudorabies virus, an alphaherpesvirus. J Virol,1999. 73(8):p.6405-14.
    [25]Adler, H., et al., Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol,2000.74(15):p.6964-74.
    [26]McGregor, A. and M.R. Schleiss, Molecular cloning of the guinea pig cytomegalovirus (GPCMV) genome as an infectious bacterial artificial chromosome (BAC) in Escherichia coli. Mol Genet Metab,2001.72(1):p.15-26.
    [27]Yu, D., et al., Construction of a self-excisable bacterial artificial chromosome containing the human cytomegalovirus genome and mutagenesis of the diploid TRL/IRL13 gene. J Virol, 2002.76(5):p.2316-28.
    [28]Zhou, F.C., et al., Efficient infection by a recombinant Kaposi's sarcoma-associated herpesvirus cloned in a bacterial artificial chromosome:application for genetic analysis. J Virol,2002.76(12):p.6185-96.
    [29]Arii, J., et al., Construction of an infectious clone of canine herpesvirus genome as a bacterial artificial chromosome. Microbes Infect,2006.8(4):p.1054-63.
    [30]Tischer, B.K., et al., A self-excisable infectious bacterial artificial chromosome clone of varicella-zoster virus allows analysis of the essential tegument protein encoded by ORF9. J Virol,2007.81(23):p.13200-8.
    [31]Azab, W., et al., Cloning of the genome of equine herpesvirus 4 strain TH20p as an infectious bacterial artificial chromosome. Arch Virol,2009.154(5):p.833-42.
    [32]Feng, X., et al., Expression and function of the equine herpesvirus 1 virion-associated host shutoff homolog. J Virol,1996.70(12):p.8710-8.
    [33]Jacobson, J., et al., A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells. Virology,1989.173(1):p.276-283.
    [34]Cameron, J.M., et al., Ribonucleotide reductase encoded by herpes simplex virus is a determinant of the pathogenicity of the virus in mice and a valid antiviral target J Gen Virol, 1988.69 (Pt 10):p.2607-12.
    [1]Staats, J.J., et al., Streptococcus suis:past and present. Vet Res Commun,1997.21(6):p. 381-407.
    [2]Tang, J., et al., Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PLoS Med,2006.3(5):p. e151.
    [3]Yang, Q.P., et al., Autopsy report of four cases who died from Streptococcus suis infection, with a review of the literature. Eur J Clin Microbiol Infect Dis,2009.28(5):p.447-53.
    [4]Wisselink, H.J., et al., Assessment of protective efficacy of live and killed vaccines based on a non-encapsulated mutant of Streptococcus suis serotype 2. Vet Microbiol,2002.84(1-2):p. 155-68.
    [5]Zhang, W. and C.P. Lu, Immunoproteomics of extracellular proteins of Chinese virulent strains of Streptococcus suis type 2. Proteomics,2007.7(24):p.4468-76.
    [6]Jacobs, A.A., A.J. van den Berg, and P.L. Loeffen, Protection of experimentally infected pigs by suilysin, the thiol-activated haemolysin of Streptococcus suis. Vet Rec,1996.139(10):p. 225-8.
    [7]Jacobs, A.A., et al., Identification, purification, and characterization of a thiol-activated hemolysin (suilysin) of Streptococcus suis. Infect Immun,1994.62(5):p.1742-8.
    [8]Liu, L., et al., Identification and experimental verification of protective antigens against Streptococcus suis serotype 2 based on genome sequence analysis. Curr Microbiol,2009. 58(1):p.11-7.
    [9]Lun, S., et al., Role of suilysin in pathogenesis of Streptococcus suis capsular serotype 2. Microb Pathog,2003.34(1):p.27-37.
    [10]Geoffroy, C., et al., Alveolysin, the thiol-activated toxin of Bacillus alvei, is homologous to listeriolysin O, perfringolysin O, pneumolysin, and streptolysin O and contains a single cysteine. J Bacteriol,1990.172(12):p.7301-5.
    [11]Rossjohn, J., et al., Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form Cell,1997.89(5):p.685-92.
    [12]Iwamoto, M., Y. Ohno-Iwashita, and S. Ando, Effect of isolated C-terminal fragment of theta-toxin (perfringolysin O) on toxin assembly and membrane lysis. Eur J Biochem,1990. 194(1):p.25-31.
    [13]Owen, R.H., et al., A role in cell-binding for the C-terminus of pneumolysin, the thiol-activated toxin of Streptococcus pneumoniae. FEMS Microbiol Lett,1994.121(2):p. 217-21.
    [14]Michel, E., et al., Attenuated mutants of the intracellular bacterium Listeria monocytogenes obtained by single amino acid substitutions in listeriolysin O. Mol Microbiol,1990.4(12):p. 2167-78.
    [15]Xu, L., et al., Crystal structure of cytotoxin protein suilysin from Streptococcus suis. Protein & Cell,2010.1(1):p.96-105.
    [16]陈国强,猪链球菌2型江苏分离株溶血素的产生条件、提纯和特性分析.2000.
    [17]陈国强,猪链球菌2型溶血毒素的产生条件及其特性分析.2000.
    [18]Gottschalk, M.G., S. Lacouture, and J.D. Dubreuil, Characterization of Streptococcus suis capsular type 2 haemolysin. Microbiology,1995.141 (Pt 1):p.189-95.
    [19]Segura, M., Streptococcus suis:an emerging human threat. J Infect Dis,2009.199(1):p.4-6.
    [20]Quessy, S., J.D. Dubreuil, and R. Higgins, Immunization of mice against Streptococcus suis serotype 2 infections using a live avirulent strain. Can J Vet Res,1994.58(4):p.299-301.
    [21]Kebede, M., M.M. Chengappa, and J.G. Stuart, Isolation and characterization of temperature-sensitive mutants of Streptococcus suis:efficacy trial of the mutant vaccine in mice. Vet Microbiol,1990.22(2-3):p.249-57.
    [22]姚火春等,猪链球菌1998分离株病原特性鉴定.南京农业大学学报,1999(02).
    [23]Segers, R.P., et al., Characterisation of the gene encoding suilysin from Streptococcus suis and expression in field strains. FEMS Microbiol Lett,1998.167(2):p.255-61.
    [24]Takamatsu, D., M. Osaki, and T. Sekizaki, Evidence for lateral transfer of the Suilysin gene region of Streptococcus suis. J Bacteriol,2002.184(7):p.2050-7.
    [1]Campbell, E.M. and T.J. Hope, Gene therapy progress and prospects:viral trafficking during infection. Gene.Ther.,2005.12:p.1353-1359.
    [2]Trapp, S., et al., Potential of equine herpesvirus 1 as a vector for immunization. J Virol,2005. 79(9):p.5445-54.
    [3]Rudolph, J., D.J.O'Callaghan, and N. Osterrieder, Cloning of genomes of equine herpesvirus type 1 (EHV-!) strains KyA and RacLll as bacterial artificial chromosomes (BAC). J.Vet. Med. B Infect. Dis. Vet. Public Health,2002.49:p.31-36.
    [4]Rudolph, J. and N. Osterrieder, Equine Herpesvirus Type 1 Devoid of gM and gp2 Is Severely Impaired in Virus Egress but Not Direct Cell-to-Cell Spread. Virology,2002.293:p. 356-367.
    [5]Hubert, P.H., et al., Alterations in the equine herpesvirus type-1 (EHV-1) strain RacH during attenuation. Zentralbl. Veterinarmed. B.,1996.43:p.1-14.
    [6]Osterrieder, N., et al., The equine herpesvirus 1 IR6 protein is nonessential for virus growth in vitro and modified by serial virus passage in cell culture. Virology,1996.217:p.442-451.
    [7]Osterrieder, N., et al., The Equine Herpesvirus 1 IR.6 Protein That Colocalizes with Nuclear Lamins Is Involved in Nucleocapsid Egress and Migrates from Cell to Cell Independently of Virus Infection. J. Virol.,1998.72(12):p.9806-9817.
    [8]Rosas, C.T., et al., Evaluation of the vaccine potential of an equine herpesvirus type 1 vector expressing bovine viral diarrhea virus structural proteins. J. Gen Virol,2007.88:p.748-757.
    [9]Rosas, C.T., et al., Live-attenuated recombinant equine herpesvirus type 1 (EHV-1) induces a neutralizing antibody response against West Nile virus (WNV). Virus Research,2007.125:p. 69-78.
    [10]Rosas, C., et al., Evaluation of a vectored equine herpesvirus type 1 (EHV-1) vaccine expressing H3 haemagglutinin in the protection of dogs against canine influenza. Vaccine, 2008.26:p.2335-2343.
    [11]Rosas, C.T., et al., Protection of Mice by Equine Herpesvirus Type 1-Based Experimental Vaccine against Lethal Venezuelan Equine Encephalitis Virus Infection in the Absence of Neutralizing Antibodies. Am. J. Trop. Med. Hyg.,2008.78:p.83-92.
    [12]Stierstorfer, B., et al., Equine herpesvirus type 1 (EHV-1) myeloencephalopathy:a case report. J.Vet.Med. B Infect. Dis. Vet. Public Health,2002.49:p.37-41.
    [13]Mayr, A., et al., [Studies on the development of a live vaccine against rhinopneumonitis (mare abortion) of horses]. Zentralbl Veterinarmed B,1968.15(3):p.406-18.
    [14]Nugent, J., et al., Analysis of Equid Herpesvirus 1 Strain Variation Reveals a Point Mutation of the DNA Polymerase Strongly Associated with Neuropathogenic versus Nonneuropathogenic Disease Outbreaks. J.Virol,2006.80:p.4047-4060.
    [15]Goodman, L.B., et al., A Point Mutation in a Herpesvirus Polymerase Determines Neuropathogenicity. PLoS Pathogens,2007.3:p.1583-1592.
    [16]Van de Walle, G.R., et al., A Single-Nucleotide Polymorphism in a Herpesvirus DNA Polymerase Is Sufficient to Cause Lethal Neurological Disease. J Infect Dis.,2009.
    [17]梁阳秋,猪链球菌2型三种免疫原性蛋白基因片段的串联表达及斑马鱼免疫保护试验.南京农业大学硕士论文,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700