腺病毒初免蛋白加强免疫策略联合DDA/MPL佐剂增强survivin/MUC1特异性抗肿瘤作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于发病率和死亡率的逐年增加,肿瘤已经成为危害人类健康的头号杀手。生物治疗由于具有副作用小,作用范围广等特点已经成为继手术,化疗,放疗之后的第四大肿瘤治疗方法。肿瘤疫苗作为生物治疗的重要组成部分,目前已有很多肿瘤疫苗进入临床实验并且已经有个别疫苗被FDA批准用于临床治疗。
     肿瘤疫苗主要是通过诱导机体产生肿瘤抗原特异性的免疫反应来提高机体免疫力,从而杀伤肿瘤细胞。理想的疫苗靶点应该具备以下几个特点:①特异性较强,即只在肿瘤细胞中表达,在正常细胞中不表达或低表达,若在正常组织中有表达,则在肿瘤组织中的表达要有显著的质和量的改变;②具有一定的广谱性,即在多数肿瘤中均有表达;③最重要的是能在肿瘤病人体内能检测到该抗原的特异性抗体和CTL,这表明肿瘤患者已将其视为异物,并对其产生了免疫应答,如用这样的抗原作为靶点设计疫苗将更容易突破机体的免疫耐受。肿瘤抗原Survivin和MUC1同时具备这三个条件,是非常理想的肿瘤疫苗靶抗原,因此,本论文拟采用MUC1和Survivin为靶点研制肿瘤疫苗。
     Survivin是IAP(inhibitor of apoptosis protein)家族成员之一,具有抗凋亡的功能,广泛表达于肿瘤组织中而在正常的终末分化组织中不表达。研究表明,survivin的表达水平与病人的耐药,预后不良和生存期缩短之间有一定的关系,这使得survivin成为肿瘤疫苗的理想靶抗原。目前已报道的靶向survivin的疫苗有多种形式,但是未见survivin蛋白疫苗的报道。这可能是由于单独使用的蛋白疫苗诱导产生的细胞免疫反应较弱。本论文通过对其蛋白疫苗的佐剂和免疫策略的优化来达到增强蛋白疫苗诱导产生细胞免疫的效果。
     常用的蛋白佐剂有很多种,包括CpG寡核苷酸,弗氏佐剂,Al(OH)3,MPL(monophosphoryl lipid A)等。DDA/MPL (MPL formulated with cationic dimethyldioctadecylammonium)佐剂由于能够显著增强疫苗的抗原提呈能力和疫苗的保护力而被用于结核和衣原体疫苗的研究中。目前DDA/MPL用做增强肿瘤疫苗的佐剂还未见报道。异源的prime-boost策略可以通过应用不同的抗原提呈系统增强蛋白疫苗的细胞免疫水平。本论文选用了DDA/MPL和Al(OH)_3作为蛋白疫苗的佐剂并联合应用重组腺病毒疫苗和蛋白疫苗的异源免疫策略形式来增强survivin抗原特异性的细胞免疫反应和抗肿瘤效应(出于疫苗安全性方面的考虑,本论文使用缺失了survivin蛋白抗凋亡功能的S8蛋白形式)。
     研究结果显示,单独使用survivin的蛋白疫苗并不能诱导小鼠产生有效的细胞免疫,但DDA/MPL佐剂能显著提高survivin蛋白的抗原特异性细胞免疫反应。同时,与其它免疫策略相比,重组腺病毒初免,蛋白联合佐剂加强的免疫策略能够最大程度地抑制小鼠黑色素瘤的生长。对抗肿瘤效应机制的研究表明,这种抗肿瘤效应主要是由Th1型免疫反应介导的。
     MUC1是粘蛋白家族成员之一,是一个跨膜的糖蛋白,其膜外的VNTR区是它主要的免疫原性区域,目前已在很多类型的肿瘤患者体内发现其蛋白的表达,是肿瘤治疗的理想靶抗原。目前许多针对MUC1VNTR区的疫苗正在进行临床实验。本论文应用重组腺病毒初免蛋白联合佐剂加强的免疫策略,评价了MUC1蛋白疫苗的免疫原性及其对黑色素瘤荷瘤小鼠的肿瘤抑制效应。结果显示,采用重组腺病毒初免,MUC1蛋白联合DDA/MPL佐剂加强的免疫策略能够产生有效的抗原特异性免疫反应,且能有效抑制肿瘤生长并延长荷瘤小鼠的生存时间,生命延长率约为33%。由于肿瘤细胞的异质性,应用单一抗原位点的疫苗不一定能够引起足够的肿瘤抑制效应。本论文评价了survivin与MUC1联合应用后对黑色素瘤荷瘤小鼠的肿瘤抑制效应和生命延长情况,结果表明,两种肿瘤相关抗原联用与二者单独使用时相比,尽管不能减缓小鼠肿瘤生长的速度,但是可以延长荷瘤小鼠的生存时间,与AD-S8/S8pro组相比生命延长率为8.82%;与AD-9M/9M pro组相比生命延长率为2.78%。
     由于肿瘤细胞的异质性和肿瘤微环境的复杂性,很多单独使用的肿瘤疫苗临床实验宣告失败。研究表明,生物疗法与其他的肿瘤治疗方法的组合,比如化药治疗,可能会更有效。本论文中,我们采用了化疗药物奥沙利铂与疫苗联合应用的方式来治疗肿瘤,并且观察疫苗与奥沙利铂联合使用后荷瘤小鼠的生命质量是否有改善。结果显示,与PBS组相比,奥沙利铂组,疫苗组和联用组的抑瘤率分别为29.64%,42.59%和54.68%;生命延长率分别为22.22%,33.33%,48.15%。表明奥沙利铂可以增强survivin与MUC1联合疫苗对黑色素瘤荷瘤小鼠的抗肿瘤作用,且二者联用组小鼠体重较奥沙利铂组有一定程度的增大,表明疫苗可以减轻奥沙利铂对小鼠的副作用。
     为了初步探索一下以survivin和MUC1为靶点的蛋白疫苗的肿瘤适应症,我们对乳腺癌,肠癌,卵巢癌,食管癌,肺癌,胃癌六种血清样本中survivin和MUC1的抗体进行了检测,结果发现不同类型肿瘤的血清样本survivin和MUC1抗体表达水平不同。肠癌,胃癌,肺癌,卵巢癌,食管癌,乳腺癌患者血清样本的MUC1抗体阳性率分别为18.5%,12%,2%,0,0,10.1%;survivin抗体的阳性率分别为31.1%,3%,0,0,2.9%,15.15%。可以看出,在肠癌和乳腺癌患者体内均产生了针对MUC1和survivin的特异性抗体,而且肠癌样本中的含量明显高于乳腺癌样本。因此,我们评价了survivin及MUC1联合使用疫苗对肠癌和乳腺癌荷瘤模型小鼠的抗肿瘤效应。
     结果表明,AD-MS/S8+9M pro能够明显抑制结肠癌模型小鼠肿瘤生长(P<0.05)且能明显延长荷瘤小鼠的生存期(P<0.01)。对于乳腺癌模型小鼠,AD-MS/S8+9M pro能够抑制肿瘤的生长速度(P<0.01),但是并不能延长小鼠的生存期(P>0.05)。这一结果与肠癌患者血清抗体抗性阳性率要高于乳腺癌患者血清阳性率的结果是相呼应的。对于结肠癌模型小鼠,疫苗与化疗药物奥沙利铂有协同作用,能够协同抑制结肠癌荷瘤小鼠的肿瘤生长速度并延长荷瘤小鼠的生存期。但是对于乳腺癌模型小鼠,二者并没有协同作用。
     总的来说,DDA/MPL能够增加蛋白疫苗诱导的抗原特异性细胞免疫反应,重组腺病毒初免蛋白联合佐剂加强免疫的策略具有最强的肿瘤抑制效率,这种肿瘤抑制效应是由Th1型免疫反应介导的。Survivin和MUC1两种抗原联合免疫的效果要优于单独免疫的效果。两种抗原联合疫苗对于黑色素瘤模型小鼠,乳腺癌模型小鼠,结肠癌模型小鼠的肿瘤生长都具有明显抑制作用,并能显著延长黑色素瘤模型小鼠和结肠癌模型小鼠的生命。化药与免疫治疗的联用对于黑色素瘤和结肠癌模型小鼠有显著的协同作用,但是不能增强乳腺癌模型小鼠的抗肿瘤效应。。
Because of the increasment of incidence and mortality year by year, cancer hasbecome one of the most serious diseases to human health. Due to less side-effect andwider range of treatment, biological therapy has now become the fourth mostfrequently used therapy for tumor treatment, except for surgery, chemotherapy andradiation. Many tumor vaccines have been under the clinical trials or permitted to beused for the clinical treatment so far.
     The ideal vaccine targets should have the following characteristics:①strongspecificity. The targets are only expressed in tumor cells, but they are not or lowexpressed in normal cells. If they are expressed in normal tissues, the expressionlevels must have a significant change in quality and quantity in tumor tissue.②Thetumor targets must have a certain broad spectrum, which means that they areexpressed in the majority of tumors.③Antigen-specific antibody and CTL can bedetected in cancer patients. It is suggested that cancer patients has been regarded it asa foreign body and produced immune response against it. Such tumor antigens used asvaccine targets will be easier to break immune tolerance. Survivin and MUC1whichare broadly used have all the three conditions above. Therefore, this thesis intends toapply MUC1and Survivin as the targets of cancer vaccine.
     Survivin, as a member of IAP families, could both inhibit cell apoptosis andcontrol cell division. Survivin is widely expressed in tumor tissues, but not expressedin terminal devision of normal tissues. It is reported that the expression levels ofsurvivin are associated with drug resistance, poor prognosis and shortened survival,and which make survivin an ideal target antigen of tumor vaccine. The current reportshave revealed that survivin-targeted vaccine has various forms, whereas no report on survivin protein vaccine can be found. This may be due to its poor ability to inducecellular immunity. A suitable immunoadjuvant and optimized immunization strategycan greatly enhance the cellular immune response to this protein vaccine.
     In order to get a vaccine of higher immunogenicity and better antitumor effection,our research makes survivin as the target of tumor vaccine, uses the protein form ofS8which has lost the function of anti-apoptosis and optimizes the choice of adjuvantof S8proten and the vaccine immunization strategies.
     Immunoadjuvants such as CpG ODN, incomplete Freund's adjuvant, aluminiumhydroxide [Al(OH)3] and monophosphoryl lipid A (MPL) have been used to enhanceresponses to a variety of vaccines. DDA/MPL has been shown to enhance antigenuptake and presentation and induce a significant level of protective immunity inChlamydia and tuberculosis vaccine research. However, whether DDA/MPL canenhance efficacy of tumor vaccines has not been reported. A heterologousprime-boost strategy can enhance the cellular immunity of a protein vaccine byapplying different antigen-presenting systems. DDA/MPL, Al(OH)3and anadenovirus prime-protein boost strategy were applied to enhance the survivin-specificimmunity and anti-tumor immunity of a truncated survivin protein vaccine.(Due tosafety concerns of full-length survivin, an anti-apoptosis protein, this vaccine wasbased on a truncated form of survivin (S8) with a deletion of seven amino acids at itsN-terminus, which was shown to be non-functional in our previous study.)
     It was showed that survivin protein used alone couldn’t induce effective cellularimmunity, and DDA/MPL adjuvant induced stronger antigen-specific cellularresponses than Al(OH)3. Furthermore, comparing to other immunization regimens,recombinant adenovirus prime adjuvanted protein boosted immunization showed thestrongest anti-tumor effect in the murine melanoma model. The anti-tumor effect wasmediated by Th1-typed immune response.
     MUC1is a transmembrane glycoprotein normally expressed on the apical surfaceof ductal epithelia. A variable number (20–125) of tandem repeats (VNTR) of a20 amino acid sequence which was contained in its extracellular domain is the dominantimmunogenic domain. MUC1(mucin1) is a classic target for cancer immunotherapythat is overexpressed in many adenocarcinomas. Many active immunotherapiestargeting MUC1are in clinical trials. We investigated the immunity response andanti-tumor effect in a murine melanoma model after administration of an AD-9Madenoviral vector prime-recombinant9M protein and DDA/MPL boost. Our resultsdemonstrated that the vaccination induced a significant inhibition of the growth ofB16melanoma in mice and prolonged the survival of B16melanoma–bearing mice.The survival rate was about33%. Due to the heterogeneity of tumor cells, theapplication of a single antigen site vaccine may not be able to induce enough tumorsuppressive effect. Our work evaluated the anti-tumor effect and survival extendanceof the survivin and MUC1combination vaccine in a murine melanoma-bearingmodel. The results showed that the combination could not inhibit the tumor growth,however, it could extend the survival time of tumor-bearing mice. The survival ratewas8.82%compared with AD-S8/S8pro group, and2.78%compared withAD-9M/9M pro group.
     Due to the heterogeneity of tumor cells and complexity of tumormicroenvironments, many clinical trials of tumor vaccines alone have failed. It isreported that the administration of other therapies such as chemotherapy along with avaccine may enhance its efficacy. The tumor inhibitory effect of our cancer vaccinewas also tested in combination with a widely used anti-tumor chemotherapy drugoxaliplatin. Compared to PBS group, the tumor inhibition rate of oxaliplatin, vaccine,combination of oxaliplatin and vaccine are29.64%,42.59%and54.68%respectively;the survival rate of tumor-bearing mice are22.22%,33.33%and48.15%respectively.It is suggested that oxaliplatin may help to improve the outcome of survivin-basedimmunotherapy. Moreover, the vaccine also alleviated side effects of thechemotherapy drug oxaliplatin, such as emaciation and poor activity.
     To investigate the most suitable cancer types of vaccine targeting survivin andMUC1, antibody levels of serum from breast cancer, colorectal cancer, overian cancer, esophageal cancer, lung cancer and gastric cancer are evaluated. Our results showedthat the antibody levels are different from cancer types. The sero-positive rate ofMUC1of colorectal cancer, gastric cancer, lung cancer overian cancer, esophagealcancer and breast cancer was18.5%,12%,2%,0,0,10.1%respectively; thesero-positive rate of surviving was31.1%,3%,0,0,2.9%,15.15%respectively. Theinduced anti-tumor effect of vaccine targeting survivin and MUC1was evaluated inmurine colorectal cancer and breast cancer models whose sero-positive rate wererelatively high.
     The results showed that the AD-MS/S8+9M Pro could significantly inhibittumor growth in murine colon cancer model (P<0.05) and can significantly prolongthe survival time of colon carcinoma-bearing mice (P<0.01). However, AD-MS/S8+9M Pro could significantly inhibit tumor growth in murine breast cancer model(P<0.05) but can’t significantly prolong the survival time of colon carcinoma-bearingmice (P>0.05). The data was in correspondence with the serological test results. Thecombination of vaccine and oxaliplatin had synergistic effects in inhibition andsurvival time prolonging in murine colon cancer model. However, it didn’t havesynergistic effects in murine breast cancer model.
     Overall, DDA/MPL possibly increased the protein vaccine induced antigen-specific cellular immuneresponse,the strategy adenovirus early immuned withprotein combined with adjuvant to enhance immunization has the strongest tumorinhibition efficiency, this tumor inhibitory effect is mediatedby Th1type immuneresponses.Survivin and MUC1combined immunization is better than the aloneimmune effects. Combined immunity inhibits tumor growth in the model ofmelanoma, mammary gland carcinoma and colon carcinoma. However, it cansignificantly extend the life of the tumor-bearing mice in nurine melanoma and coloncancer model.
引文
1. SIEGEL R., NAISHADHAM D., and JEMAL A., Cancer statistics,2012[J]. CACancer J Clin,2012,62:10-29.
    2. NABHAN C., Sipuleucel-T immunotherapy for castration-resistant prostatecancer[J]. N Engl J Med,2010,363:1966-7; author reply1968.
    3. TANIMOTO T., HORI A., and KAMI M., Sipuleucel-T immunotherapy forcastration-resistant prostate cancer[J]. N Engl J Med,2010,363:1966; author reply1967-8.
    4. SCHWARTZENTRUBER D.J., LAWSON D.H., RICHARDS J.M., et al., gp100peptide vaccine and interleukin-2in patients with advanced melanoma[J]. N Engl JMed,2011,364:2119-27.
    5. LEFFERS N., LAMBECK A.J., GOODEN M.J., et al., Immunization with a P53synthetic long peptide vaccine induces P53-specific immune responses in ovariancancer patients, a phase II trial[J]. Int J Cancer,2009,125:2104-13.
    6. KANTOFF P.W., SCHUETZ T.J., BLUMENSTEIN B.A., et al., Overall survivalanalysis of a phase II randomized controlled trial of a Poxviral-based PSA-targetedimmunotherapy in metastatic castration-resistant prostate cancer[J]. J Clin Oncol,2010,28:1099-105.
    7. HARBERS S.O., CROCKER A., CATALANO G., et al., Antibody-enhancedcross-presentation of self antigen breaks T cell tolerance[J]. J Clin Invest,2007,117:1361-9.
    8. PAWLUCZKOWYCZ A.W., BEURSKENS F.J., BEUM P.V., et al., Binding ofsubmaximal C1q promotes complement-dependent cytotoxicity (CDC) of B cellsopsonized with anti-CD20mAbs ofatumumab (OFA) or rituximab (RTX):considerably higher levels of CDC are induced by OFA than by RTX[J]. JImmunol,2009,183:749-58.
    9. WANG S.Y., RACILA E., TAYLOR R.P., et al., NK-cell activation andantibody-dependent cellular cytotoxicity induced by rituximab-coated target cells isinhibited by the C3b component of complement[J]. Blood,2008,111:1456-63.
    10. BESSER M.J., SHAPIRA-FROMMER R., TREVES A.J., et al., Clinical responsesin a phase II study using adoptive transfer of short-term cultured tumor infiltrationlymphocytes in metastatic melanoma patients[J]. Clin Cancer Res,2010,16:2646-55.
    11. HUNDER N.N., WALLEN H., CAO J., et al., Treatment of metastatic melanomawith autologous CD4+T cells against NY-ESO-1[J]. N Engl J Med,2008,358:2698-703.
    12. JOHNSON L.A., MORGAN R.A., DUDLEY M.E., et al., Gene therapy withhuman and mouse T-cell receptors mediates cancer regression and targets normaltissues expressing cognate antigen[J]. Blood,2009,114:535-46.
    13. TOPALIAN S.L., WEINER G.J., and PARDOLL D.M., Cancer immunotherapycomes of age[J]. J Clin Oncol,2011,29:4828-36.
    14. MELLMAN I., COUKOS G., and DRANOFF G., Cancer immunotherapy comesof age[J]. Nature,2011,480:480-9.
    15. HEATH W.R. and CARBONE F.R., Cross-presentation, dendritic cells, toleranceand immunity[J]. Annu Rev Immunol,2001,19:47-64.
    16. GAUDERNACK G., Prospects for vaccine therapy for pancreatic cancer[J]. BestPract Res Clin Gastroenterol,2006,20:299-314.
    17. MATZINGER P., The danger model: a renewed sense of self[J]. Science,2002,296:301-5.
    18. KEIZMAN D., MAIMON N., and GOTTFRIED M., Metastatic HormoneRefractory Prostate Cancer: Recent Advances in Standard Treatment Paradigm,and Future Directions[J]. Am J Clin Oncol,2012.
    19. ROSENBERG S.A., YANG J.C., and RESTIFO N.P., Cancer immunotherapy:moving beyond current vaccines[J]. Nat Med,2004,10:909-15.
    20. PARK J.S., KIM H.S., PARK H.M., et al., Efficient induction of anti-tumorimmunity by a TAT-CEA fusion protein vaccine with poly(I:C) in a murinecolorectal tumor model[J]. Vaccine,2011,29:8642-8.
    21. CAWOOD R., HILLS T., WONG S.L., et al., Recombinant viral vaccines forcancer[J]. Trends Mol Med,2012,18:564-74.
    22. HAYNES N.M., VAN DER MOST R.G., LAKE R.A., et al., Immunogenicanti-cancer chemotherapy as an emerging concept[J]. Curr Opin Immunol,2008,20:545-57.
    23. ZITVOGEL L., APETOH L., GHIRINGHELLI F., et al., Immunological aspectsof cancer chemotherapy[J]. Nat Rev Immunol,2008,8:59-73.
    24. NOWAK A.K., LAKE R.A., MARZO A.L., et al., Induction of tumor cellapoptosis in vivo increases tumor antigen cross-presentation, cross-priming ratherthan cross-tolerizing host tumor-specific CD8T cells[J]. J Immunol,2003,170:4905-13.
    25. ZHANG B., BOWERMAN N.A., SALAMA J.K., et al., Induced sensitization oftumor stroma leads to eradication of established cancer by T cells[J]. J Exp Med,2007,204:49-55.
    26. NICHOLLS E.F., MADERA L., and HANCOCK R.E., Immunomodulators asadjuvants for vaccines and antimicrobial therapy[J]. Ann N Y Acad Sci,2010,1213:46-61.
    27. KORSHOLM K.S., AGGER E.M., FOGED C., et al., The adjuvant mechanism ofcationic dimethyldioctadecylammonium liposomes[J]. Immunology,2007,121:216-26.
    28. KOLIBAB K., YANG A., DERRICK S.C., et al., Highly persistent and effectiveprime/boost regimens against tuberculosis that use a multivalent modified vaccinevirus Ankara-based tuberculosis vaccine with interleukin-15as a molecularadjuvant[J]. Clin Vaccine Immunol,2010,17:793-801.
    29. KOLIBAB K., PARRA M., YANG A.L., et al., A practical in vitro growthinhibition assay for the evaluation of TB vaccines[J]. Vaccine,2009,28:317-22.
    30. LANGERMANS J.A., DOHERTY T.M., VERVENNE R.A., et al., Protection ofmacaques against Mycobacterium tuberculosis infection by a subunit vaccine basedon a fusion protein of antigen85B and ESAT-6[J]. Vaccine,2005,23:2740-50.
    31. LU S., Heterologous prime-boost vaccination[J]. Curr Opin Immunol,2009,21:346-51.
    32. ESTCOURT M.J., RAMSAY A.J., BROOKS A., et al., Prime-boost immunizationgenerates a high frequency, high-avidity CD8(+) cytotoxic T lymphocytepopulation[J]. Int Immunol,2002,14:31-7.
    33. CHEN Y., WEBSTER R.G., and WOODLAND D.L., Induction of CD8+T cellresponses to dominant and subdominant epitopes and protective immunity toSendai virus infection by DNA vaccination[J]. J Immunol,1998,160:2425-32.
    34. COLE G.A., HOGG T.L., COPPOLA M.A., et al., Efficient priming of CD8+memory T cells specific for a subdominant epitope following Sendai virusinfection[J]. J Immunol,1997,158:4301-9.
    35. KIM S.J., KIM H.K., HAN Y.W., et al., Multiple alternating immunizations withDNA vaccine and replication incompetent adenovirus expressing gB ofpseudorabies virus protect animals against lethal virus challenge[J]. J MicrobiolBiotechnol,2008,18:1326-34.
    36. SIN J.I., BAGARAZZI M., PACHUK C., et al., DNA priming-protein boostingenhances both antigen-specific antibody and Th1-type cellular immune responsesin a murine herpes simplex virus-2gD vaccine model[J]. DNA Cell Biol,1999,18:771-9.
    37. LU Y., OUYANG K., FANG J., et al., Improved efficacy of DNA vaccinationagainst prostate carcinoma by boosting with recombinant protein vaccine and byintroduction of a novel adjuvant epitope[J]. Vaccine,2009,27:5411-8.
    38. SONG S., LIU C., WANG J., et al., Vaccination with combination of Fit3L andRANTES in a DNA prime-protein boost regimen elicits strong cell-mediatedimmunity and antitumor effect[J]. Vaccine,2009,27:1111-8.
    39. BISWAS S., REDDY G.S., SRINIVASAN V.A., et al., Preexposure efficacy of anovel combination DNA and inactivated rabies virus vaccine[J]. Hum Gene Ther,2001,12:1917-22.
    40. WANG S., PARKER C., TAAFFE J., et al., Heterologous HA DNA vaccineprime--inactivated influenza vaccine boost is more effective than using DNA orinactivated vaccine alone in eliciting antibody responses against H1or H3serotypeinfluenza viruses[J]. Vaccine,2008,26:3626-33.
    41. DIAZ-MONTERO C.M., CHIAPPORI A., AURISICCHIO L., et al., Phase1studies of the safety and immunogenicity of electroporated HER2/CEA DNAvaccine followed by adenoviral boost immunization in patients with solid tumors[J].J Transl Med,2013,11:62.
    42. KRUPA M., CANAMERO M., GOMEZ C.E., et al., Immunization withrecombinant DNA and modified vaccinia virus Ankara (MVA) vectors deliveringPSCA and STEAP1antigens inhibits prostate cancer progression[J]. Vaccine,2011,29:1504-13.
    43. KIM H.D., JIN J.J., MAXWELL J.A., et al., Enhancing Th2immune responsesagainst amyloid protein by a DNA prime-adenovirus boost regimen for Alzheimer'sdisease[J]. Immunol Lett,2007,112:30-8.
    44. HARARI A., BART P.A., STOHR W., et al., An HIV-1clade C DNA prime,NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting Tcell responses[J]. J Exp Med,2008,205:63-77.
    45. EGAN M.A., CHONG S.Y., MEGATI S., et al., Priming with plasmid DNAsexpressing interleukin-12and simian immunodeficiency virus gag enhances theimmunogenicity and efficacy of an experimental AIDS vaccine based onrecombinant vesicular stomatitis virus[J]. AIDS Res Hum Retroviruses,2005,21:629-43.
    46. SKINNER M.A., WEDLOCK D.N., DE LISLE G.W., et al., The order ofprime-boost vaccination of neonatal calves with Mycobacterium bovis BCG and aDNA vaccine encoding mycobacterial proteins Hsp65, Hsp70, and Apa is notcritical for enhancing protection against bovine tuberculosis[J]. Infect Immun,2005,73:4441-4.
    47. HAN T.H., TANG Y., PARK Y.H., et al., Vector prime protein boost vaccinationin the setting of myeloablative-induced lymphopenia suppresses growth ofleukemia and solid tumors[J]. Bone Marrow Transplant,2010,45:550-7.
    48. DEISSEROTH A., TANG Y., ZHANG L., et al., TAA/ecdCD40L adenoviralprime-protein boost vaccine for cancer and infectious diseases[J]. Cancer GeneTher,2013,20:65-9.
    49. AKBULUT H., TANG Y., AKBULUT K.G., et al., Addition of adenoviral vectortargeting of chemotherapy to the MUC-1/ecdCD40L VPPP vector prime proteinboost vaccine prolongs survival of mice carrying growing subcutaneous deposits ofLewis lung cancer cells[J]. Gene Ther,2010,17:1333-40.
    50. RAHMAN S., MAGALHAES I., RAHMAN J., et al., Prime-boost vaccinationwith rBCG/rAd35enhances CD8(+) cytolytic T-cell responses in lesions fromMycobacterium tuberculosis-infected primates[J]. Mol Med,2012,18:647-58.
    51. AMBROSINI G., ADIDA C., and ALTIERI D.C., A novel anti-apoptosis gene,survivin, expressed in cancer and lymphoma[J]. Nat Med,1997,3:917-21.
    52. VERDECIA M.A., HUANG H., DUTIL E., et al., Structure of the humananti-apoptotic protein survivin reveals a dimeric arrangement[J]. Nat Struct Biol,2000,7:602-8.
    53. CHANTALAT L., SKOUFIAS D.A., KLEMAN J.P., et al., Crystal structure ofhuman survivin reveals a bow tie-shaped dimer with two unusual alpha-helicalextensions[J]. Mol Cell,2000,6:183-9.
    54. TU S.P., JIANG X.H., LIN M.C., et al., Suppression of survivin expression inhibitsin vivo tumorigenicity and angiogenesis in gastric cancer[J]. Cancer Res,2003,63:7724-32.
    55. O'CONNOR D.S., WALL N.R., PORTER A.C., et al., A p34(cdc2) survivalcheckpoint in cancer[J]. Cancer Cell,2002,2:43-54.
    56. GIODINI A., KALLIO M.J., WALL N.R., et al., Regulation of microtubulestability and mitotic progression by survivin[J]. Cancer Res,2002,62:2462-7.
    57. ALTIERI D.C., The case for survivin as a regulator of microtubule dynamics andcell-death decisions[J]. Curr Opin Cell Biol,2006,18:609-15.
    58. BOLTON M.A., LAN W., POWERS S.E., et al., Aurora B kinase exists in acomplex with survivin and INCENP and its kinase activity is stimulated bysurvivin binding and phosphorylation[J]. Mol Biol Cell,2002,13:3064-77.
    59. WHEATLEY S.P., CARVALHO A., VAGNARELLI P., et al., INCENP isrequired for proper targeting of Survivin to the centromeres and the anaphasespindle during mitosis[J]. Curr Biol,2001,11:886-90.
    60. SAMPATH S.C., OHI R., LEISMANN O., et al., The chromosomal passengercomplex is required for chromatin-induced microtubule stabilization and spindleassembly[J]. Cell,2004,118:187-202.
    61. GASSMANN R., CARVALHO A., HENZING A.J., et al., Borealin: a novelchromosomal passenger required for stability of the bipolar mitotic spindle[J]. JCell Biol,2004,166:179-91.
    62. ALTIERI D.C., Survivin, versatile modulation of cell division and apoptosis incancer[J]. Oncogene,2003,22:8581-9.
    63. DOHI T., BELTRAMI E., WALL N.R., et al., Mitochondrial survivin inhibitsapoptosis and promotes tumorigenesis[J]. J Clin Invest,2004,114:1117-27.
    64. LACASSE E.C., BAIRD S., KORNELUK R.G., et al., The inhibitors of apoptosis(IAPs) and their emerging role in cancer[J]. Oncogene,1998,17:3247-59.
    65. MARUSAWA H., MATSUZAWA S., WELSH K., et al., HBXIP functions as acofactor of survivin in apoptosis suppression[J]. EMBO J,2003,22:2729-40.
    66. SCHMALHOFER O., BRABLETZ S., and BRABLETZ T., E-cadherin,beta-catenin, and ZEB1in malignant progression of cancer[J]. Cancer MetastasisRev,2009,28:151-66.
    67. MALL A.S., Analysis of mucins: role in laboratory diagnosis[J]. J Clin Pathol,2008,61:1018-24.
    68. BALDUS S.E., ENGELMANN K., and HANISCH F.G., MUC1and the MUCs: afamily of human mucins with impact in cancer biology[J]. Crit Rev Clin Lab Sci,2004,41:189-231.
    69. MARIONI G., BERTOLIN A., GIACOMELLI L., et al., Expression of theapoptosis inhibitor protein Survivin in primary laryngeal carcinoma and cervicallymph node metastasis[J]. Anticancer Res,2006,26:3813-7.
    70. OSAKA E., SUZUKI T., OSAKA S., et al., Survivin as a prognostic factor forosteosarcoma patients[J]. Acta Histochem Cytochem,2006,39:95-100.
    71. SHARIAT S.F., ASHFAQ R., KARAKIEWICZ P.I., et al., Survivin expression isassociated with bladder cancer presence, stage, progression, and mortality[J].Cancer,2007,109:1106-13.
    72. HO S.B., NIEHANS G.A., LYFTOGT C., et al., Heterogeneity of mucin geneexpression in normal and neoplastic tissues[J]. Cancer Res,1993,53:641-51.
    73. BALDUS S.E., MONIG S.P., HANISCH F.G., et al., Comparative evaluation ofthe prognostic value of MUC1, MUC2, sialyl-Lewis(a) and sialyl-Lewis(x)antigens in colorectal adenocarcinoma[J]. Histopathology,2002,40:440-9.
    74. RABASSA M.E., CROCE M.V., PEREYRA A., et al., MUC1expression andanti-MUC1serum immune response in head and neck squamous cell carcinoma(HNSCC): a multivariate analysis[J]. BMC Cancer,2006,6:253.
    75. SILK A.W., SCHOEN R.E., POTTER D.M., et al., Humoral immune response toabnormal MUC1in subjects with colorectal adenoma and cancer[J]. Mol Immunol,2009,47:52-6.
    76. PINHEIRO S.P., HANKINSON S.E., TWOROGER S.S., et al., Anti-MUC1antibodies and ovarian cancer risk: prospective data from the Nurses' HealthStudies[J]. Cancer Epidemiol Biomarkers Prev,2010,19:1595-601.
    77. VARELA J.C., ATKINSON C., WOOLSON R., et al., Upregulated expression ofcomplement inhibitory proteins on bladder cancer cells and anti-MUC1antibodyimmune selection[J]. Int J Cancer,2008,123:1357-63.
    78. BARND D.L., LAN M.S., METZGAR R.S., et al., Specific, majorhistocompatibility complex-unrestricted recognition of tumor-associated mucins byhuman cytotoxic T cells[J]. Proc Natl Acad Sci U S A,1989,86:7159-63.
    79. KESHAVIAH A., DELLAPASQUA S., ROTMENSZ N., et al., CA15-3andalkaline phosphatase as predictors for breast cancer recurrence: a combinedanalysis of seven International Breast Cancer Study Group trials[J]. Ann Oncol,2007,18:701-8.
    80. RAKHA E.A., BOYCE R.W., ABD EL-REHIM D., et al., Expression of mucins(MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognosticsignificance in human breast cancer[J]. Mod Pathol,2005,18:1295-304.
    81. ALTIERI D.C., Validating survivin as a cancer therapeutic target[J]. Nat RevCancer,2003,3:46-54.
    82. ZHU K., QIN H., CHA S.C., et al., Survivin DNA vaccine generated specificantitumor effects in pancreatic carcinoma and lymphoma mouse models[J].Vaccine,2007,25:7955-61.
    83. XIANG R., MIZUTANI N., LUO Y., et al., A DNA vaccine targeting survivincombines apoptosis with suppression of angiogenesis in lung tumor eradication[J].Cancer Res,2005,65:553-61.
    84. FUESSEL S., MEYE A., SCHMITZ M., et al., Vaccination of hormone-refractoryprostate cancer patients with peptide cocktail-loaded dendritic cells: results of aphase I clinical trial[J]. Prostate,2006,66:811-21.
    85. OTTO K., ANDERSEN M.H., EGGERT A., et al., Lack of toxicity oftherapy-induced T cell responses against the universal tumour antigen survivin[J].Vaccine,2005,23:884-9.
    86. WOBSER M., KEIKAVOUSSI P., KUNZMANN V., et al., Complete remission ofliver metastasis of pancreatic cancer under vaccination with a HLA-A2restrictedpeptide derived from the universal tumor antigen survivin[J]. Cancer ImmunolImmunother,2006,55:1294-8.
    87. ALTIERI D.C., Survivin, cancer networks and pathway-directed drug discovery[J].Nat Rev Cancer,2008,8:61-70.
    88. TSURUMA T., HATA F., TORIGOE T., et al., Phase I clinical study ofanti-apoptosis protein, survivin-derived peptide vaccine therapy for patients withadvanced or recurrent colorectal cancer[J]. J Transl Med,2004,2:19.
    89. TSURUMA T., IWAYAMA Y., OHMURA T., et al., Clinical and immunologicalevaluation of anti-apoptosis protein, survivin-derived peptide vaccine in phase Iclinical study for patients with advanced or recurrent breast cancer[J]. J Transl Med,2008,6:24.
    90. WANG R., WANG X., LI B., et al., Tumor-specific adenovirus-mediated PUMAgene transfer using the survivin promoter enhances radiosensitivity of breast cancercells in vitro and in vivo[J]. Breast Cancer Res Treat,2009,117:45-54.
    91. NOTO H., TAKAHASHI T., MAKIGUCHI Y., et al., Cytotoxic T lymphocytesderived from bone marrow mononuclear cells of multiple myeloma patientsrecognize an underglycosylated form of MUC1mucin[J]. Int Immunol,1997,9:791-8.
    92. REDDISH M., MACLEAN G.D., KOGANTY R.R., et al., Anti-MUC1class Irestricted CTLs in metastatic breast cancer patients immunized with a syntheticMUC1peptide[J]. Int J Cancer,1998,76:817-23.
    93. MUKHERJEE P., GINARDI A.R., MADSEN C.S., et al., MUC1-specific CTLsare non-functional within a pancreatic tumor microenvironment[J]. Glycoconj J,2001,18:931-42.
    94. GONG J., CHEN D., KASHIWABA M., et al., Reversal of tolerance to humanMUC1antigen in MUC1transgenic mice immunized with fusions of dendritic andcarcinoma cells[J]. Proc Natl Acad Sci U S A,1998,95:6279-83.
    95. GONG J., AVIGAN D., CHEN D., et al., Activation of antitumor cytotoxic Tlymphocytes by fusions of human dendritic cells and breast carcinoma cells[J].Proc Natl Acad Sci U S A,2000,97:2715-8.
    96. GONG J., APOSTOLOPOULOS V., CHEN D., et al., Selection andcharacterization of MUC1-specific CD8+T cells from MUC1transgenic miceimmunized with dendritic-carcinoma fusion cells[J]. Immunology,2000,101:316-24.
    97. WIERECKY J., MULLER M.R., WIRTHS S., et al., Immunologic and clinicalresponses after vaccinations with peptide-pulsed dendritic cells in metastatic renalcancer patients[J]. Cancer Res,2006,66:5910-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700