石门揭煤过程煤与瓦斯突出的注液冻结防治理论及技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤与瓦斯突出是指在压力作用下,煤矿井下采掘过程中破碎的煤和瓦斯由煤体内突然向采掘空间大量喷出的一种动力现象。它是煤矿生产中所面临的一种主要的瓦斯灾害。
     石门揭煤过程煤与瓦斯突出危险程度高、强度大。随着煤矿往深部开采,我国现有石门揭煤防突措施较难通过超前抽排放瓦斯达到减少煤层瓦斯含量和降低煤层瓦斯压力而有效防突。本论文针对我国现有防突技术的优缺点,根据石门揭煤过程煤与瓦斯突出机理、煤层注水工艺过程和人工土冻结技术应用实践,提出了石门揭煤注液冻结防突方法,在理论分析、实验研究和数值模拟的基础上,对该方法的理论基础和技术的可行性进行了深入研究,其主要研究内容和成果如下:
     (1)石门揭煤过程煤与瓦斯突出的动力能量主要由弹性应变能和瓦斯膨胀能组成。瓦斯突出的主要能源来自于瓦斯的膨胀能。根据煤与瓦斯突出能量平衡式,石门揭煤过程瓦斯突出发生与否主要取决于瓦斯突出动力源与突出消耗能在动态酝酿过程中能否保持平衡。瓦斯突出能量量变或者突变到某临界能量值,其大于瓦斯流突破裂隙角联通道所需的消耗能量,瓦斯突出就能瞬时或者延时发生;
     (2)石门揭煤工作面待揭的突出煤层注水冻结后,将从增加突出煤层瓦斯吸附量V、降低突出煤层瓦斯压力P、降低突出煤层瓦斯放散初速度△p、提高突出煤层力学性能、降低卸压区瓦斯突出危险性等方面有效防突;
     (3)用改造后的WY-98A吸附常数测定仪,首次获取了低温条件下(T≤0℃)煤的CH4吸附常数a、b值。通过数据拟合,当温度T≤0℃时,煤对CH4等温吸附曲线仍属于第Ⅰ类吸附等温线,可以用Langmuir方程来表征煤对CH4的低温吸附模型。由实验结果可知:不同温度时,同一煤样在相同压力下,吸附量与温度呈近似线性负相关关系,随温度降低,煤吸附甲烷能力提高;
     (4)通过注水冻结成型煤样的单轴抗压强度实验,发现其受压后变形分为四个阶段:压密阶段、弹性阶段、塑性屈服阶段和破坏阶段。随着冻结温度的降低,成型煤样的单轴抗压强度和弹性模量都明显增大;泊松比的变化不明显,但整体成减小趋势。冻结温度低于-20℃时,成型煤样的单轴抗压强度和弹性模量增加不明显;
     (5)通过水泥槽模型煤体冻结实验表明:冻结区形成以冻结管中心为圆心、半径为R沿径向随时间扩展的冻煤圆柱。随着冻结管不断的供冷,冻煤圆柱直径不断增加,冻煤圆柱内的温度逐步下降,槽中煤、瓦斯和水三相体最终变成坚硬冻结体,极大地提高了其抗压强度和弹性模量等力学性能。同一冻结时间,距离冻结管越近,煤体获得冷量越多,煤体温度越低;
     (6)应用东北大学气固耦合岩石破裂过程RFPA2D分析软件,建立了石门揭煤瓦斯突出过程气固耦合作用的数学模型,根据冻结区突出煤层物理力学性能参数,数值模拟了注液冻结后龙家山煤矿-400水平2号石门揭露不同温度的6冻结煤层过程。数值模拟表明:注液冻结后煤层温度下降到-15℃以下时,该石门揭煤工作面将不会发生煤与瓦斯突出;
     (7)应用ANSYS有限元程序,根据龙家山煤矿-400水平2号石门揭煤工作面施工参数,建立了冻结区温度场数值模拟计算模型,分析了不同时期冻结区温度扩展云图,得出不同冻结时间冻结区有效范围、平均温度、交圈时间及扩展速度。数值模拟表明:距离中心越近,冻结区煤层温度下降越快。把-15℃作为石门揭煤注液冻结防突工程煤层控制温度,该石门揭煤工作面大概需要35-40天冻结时间才能满足防突要求;
     (8)石门揭煤工作面待揭的突出煤层注水冻结后,将减少煤与瓦斯突出的瓦斯动力源,增加煤层抵抗瓦斯突出的阻力,从而有效防治石门揭煤过程煤与瓦斯突出。因此,结合本研究课题注液冻结法的特点和我国煤矿未来的开采深度,该方法可广泛应用于低透气性和深部开采的石门揭煤瓦斯突出工作面,这对减少我国煤矿瓦斯灾害事故具有重要的作用。
The coal and gas outburst is a kind of dynamical phenomenon, which the fragmentized coal in excavate process and the gas sprayed the work space out of the coal seam suddenly under the pressure.It is a main gas disaster faced with in coal mining in our country.
     The coal and gas outburst is the most dangerous and intensest when uncovering coal seam in cross-cut. With the mining depth increase, the existing proof-outburst measures in our country is relatively difficult to reduce coal seam gas content, release gas in advance and lower its pressure to prevent the coal and gas outburst effectively. In the paper, according to the advantages and disadvantages of the existing outburst-proof technology, based on the mechanism of the coal and gas outburst when uncovered coal seam in cross-cut, the techniques process of injecting liquid into coal seam and the application of the artificial freezing technology, a new outburst-proof method by injecting liquid and freezing is put forward when uncovered coal seam in cross-cut.Based on the theory analyses, experiment research and numerical simulation, the feasibility of its theory and technology basis is researched deeply. The mostly contents and conclusions is as follows:
     (1)The main power energy resulting in the coal and gas outburst is elastic strain energy and gas expansion energy when uncovered in cross-cut. The gas expansion energy is the main power of gas outburst among them. According to the energy equation of coal and gas outburst, the gas outburst mainly depends on the balance of the power energy and consume energy in the course of dynamic formation. When the gas outburst power energy quantitative change or mutate to a critical value, and this critical value beyond the needed consume energy while the gas-flow pass through the fracture angle joint channel, the gas outburst can occurrence instantly or later;
     (2) The new method will be proved effective on preventing the gas outburst according to the coal seam gas adsorption quantity "V" increase, the gas pressure "P" reduce and the disperse muzzle velocity "ΔP" lower, the coal mechanical properties improvement, the risk coefficient of gas outburst in discharge pressure zone decline and the elasticity energy difference reduce between the protected rock and coal seam after the coal seam to be uncoverd of work face in cross-cut is injected liquid into and frozen;
     (3)With the reformed WY-98A adsorption constant determinator, the CH4 adsorption constants "a,b" of coal seam have been obtained at a low temperature (T≤0℃) for the first time. Through data fitting, when the temperature T is below 0 celsius degree, the sorption isotherm of CH4 in the coal still belongs to "I" adsorption type. It can be used to characterize the CH4 adsorption model of coal at a low temperature for with the Langmuir equation. With the different temperatures and the same pressure of the same coal sample, the adsorption capacity and temperature was linear negative correlation approximatively between them. With the decrease of adsorption temperature, coal methane adsorption capacity increased;
     (4) By the uniaxial compressive strength experiment with the moulded samples, after injected liqiud into and frozen, their deformation is divided into four stages:compaction stage, flexible segment stage, plastic yield stage and destruction stage.With the freezing temperature falling, the uniaxial compressive strength of the test ones increases obviously; changing of Poisson's ratio is not obviously, but the whole trend is augment. The uniaxial compressive strength and elastic modulus value of the mould will be maximum at-20℃;
     (5) Through the cement trough model coal freezing experimentation, it shew that the freezing section, whose radius is R, is revolved around the freezing tube centre.the formed freezing coal column is patulous with the freezingtime. With the cold offered incessantly from the freezing tube, the radius "R" is rising incessantly, the temperature in tube is declining, the coal, gas, and water in the trough is frozen into the firm freezing structure finally, so the uniaxial compression strengths and elastic modulus of coal models and the other mechanical property will be increased. In the same freezing time, the more near to the freezing tube, the more cold will be gain by coal and the temperature is lower;
     (6)With the Rock Failure Process Analysis software-RFDA2D from Northeast University, establishing gas and solid coupling mathematics model of the outburst process when uncovering coal seam at cross-cut, setting the physics mechanical property parameters of coal seam corresponding to its freezing temperature and water content, simulating the process of uncovering the 6# freezing coal seam at 2# cross-cut of-400 level in Long Jia Shan mine under the different freezing temperature. The simulation showed that the gas outburst will not happen when the coal tempreture is frozen under-15℃;
     (7) With the ANSYS finite element, according to the construct parameters in the work face of uncovering coal seam at 2# cross-cut of-400 level in Long Jia Shan mine, establishing the numerical simulation calculate model of the temperature field in freezing section, analyzing its expand nephogram in different period, deciding the effective range, average temperature, closure time of ice zone and expand velocity. The simulation showed that the more near to the freezing center, the more fast the temperature of the 6# coal seam will decline.After 35-40 days, the 6# coal in freezing zone is strong enough to prevent coal and gas outburst;
     (8)After the coal seam injected into and frozen of the working face in uncovering at cross-cut, the gas power supply of the coal and gas outburst will reduce, the resistance to the gas outburst will rise, accordingly, it will help to effectively prevent the coal and gas outburst when uncovering coal seam at cross-cut.So, combining the advantages of injecting liquid and freezing in this research with the future exploitation depth of coal mines in our country, the method can be applied widely to the working face with low permeability and deep mining. It is important to reduce the gas disaster accidents of coal mines in our country.
引文
[1]王捷帆,李文俊.中国煤矿事故暨专家点评集(上册)[M].北京:煤炭工业出版社,2002:1295-1431.
    [2]张铁岗.矿井瓦斯综合治理技术[M].北京:煤炭工业出版社.2001.
    [3]蒋承林,俞启香.煤与瓦斯突出的球壳失稳机理及防治技术[M].徐州:中国矿业大学出版社,1998.
    [4]梁冰.煤和瓦斯突出固流耦合失稳理论[M].北京:地质出版社,2000.
    [5][苏]B.B霍多特.煤和瓦斯突出[M].宋士钊,王佑安译.北京:中国工业出版社,1982.
    [6]于不凡.煤与瓦斯突出机理[M].北京:煤炭工业出版社,1985.34-42
    [7]郑哲敏.从数量级和量纲分析看煤与瓦斯突出的机理[A].郑哲敏文集[C],2004,382-392.
    [8]俞善炳.恒稳推进的煤与瓦斯突出[J].力学学报,1988,20(2):97-106.
    [9]章梦涛,徐曾和,潘一山.冲击地压与突出的统一失稳理论[J].煤炭学报,1991,16(4):48-53.
    [10]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社,1995.
    [11]何学秋,王恩元,聂百胜,等.煤岩流变电磁动力学[M].北京:科学出版社,2003.
    [12]绍林,何继善.关键层-应力墙瓦斯突出机理[J].重庆大学学报,1999,212(6):80-84.
    [13]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [14]A.T.艾鲁尼.煤矿瓦斯动力现象的预测和预防[M].北京:煤炭工业出版社,1992.
    [15]姚宇平,周世宁.含瓦斯煤的力学性质[J].中国矿业大学学报,1988,18(1):1-7.
    [16]林柏泉.含瓦斯煤变形和渗透特性的实验研究:硕士学位论文,徐州:中国矿业大学,1986.
    [17]靳钟铭,赵阳升,贺军.含瓦斯煤层力学特性的实验研究[J].岩石力学与工程学报,1991,10(3):271-280.
    [18]何学秋,王恩元,林海燕.孔隙气体对煤体变形及蚀损作用机理[J].中国矿业大学学报,1996,25(1):6-11.
    [19]He Xueqiu, Li Zeng hua. A New Model for the Fracture Mechanism of Coal or Rock Containing Gases.In Proceedings of Western Australian Conference of Mining Geomechanics,Western Australian,1992,305-309.
    [20]张小涛,窦林名,李志华.煤岩体蠕变突变模型[J].中国煤炭,2005,31(1):37-41.
    [21]岳世权,李振华,张光耀.煤岩蠕变特性试验研究[J].河南理工大学学报,2005,24(4):271-274.
    [22]韩光,孙志文,董蕴珩.煤与瓦斯突出固气耦合方法研究[J].辽宁工程技术大学学报,2005,24(4):20-22.
    [23]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999:12-46.
    [24]姚尚文,刘泽功,杨立新.高瓦斯掘进工作面抽放技术[J].煤炭科学技术,2005,33(5):1-4.
    [25]姚尚文.高瓦斯低透性煤层强化增透抽放瓦斯技术研究:硕士学位论文.淮南:安徽理工大学,2005.
    [26]王魁军,张兴华.中国煤矿瓦斯抽采技术发展现状与前景[J].中国煤层气,2006,3(1):13-17.
    [27]刘健,刘泽功,石必明.低透气性突出煤层巷道快速掘进的试验研究[J].煤炭学报,2007,32(8):827-831.
    [28]李伟雄,周宗卫,张兴权.煤层注水技术在芙蓉煤矿的研究与应用[J].煤炭科学技术,2008,36(2):50-54.
    [29]Karev V I, Kovalenov Y F. Theoretical model of gas filtration in gassy coalseams[J].Soviet Mining Science,1989,24(6):528-536.
    [30]徐西亮.煤体固化石门揭煤防突技术研究:硕士学位论文.淮南:安徽理工大学,2007.
    [31]史学奇,黄自发,徐全伏.注浆工艺在石门揭露突出煤层中的应用[J].煤炭技术,2006,25(9):94-96.
    [32]黄华.采区石门固化揭煤施工技术[J].煤炭技术,2005,18(9):88-89.
    [33]杨志刚,宋彦波.采用注浆加固技术防止石门揭煤时煤与瓦斯突出[J].煤矿安全,2007,1:9-11.
    [34]Yunxing Cao, Dingdong HeDavid Cglick,Coal and gas outburst in footwalls of reverse faults, International Journal of Coal Geology 2001,48 (5):47-63.
    [35]HuoyinLi, Major and minor structural features of a bedding shear zone along a coal seamand related gas outburst, Pingdingshan coalfield, northern China, International Journal of Coal Geology 2001,(47):101-113.
    [36]聂百胜,何学秋,王恩元,等.煤与瓦斯突出预测技术研究现状及发展趋势[J].中国安全科学学报,2003,13(6):40-44.
    [37]于洪仕,付兴武.煤与瓦斯突出声发射的神经网络预测方法[J].黑龙江科技学院学报,2006,16(2):15-19.
    [38]柴永兴,王海锋.煤与瓦斯突出危险区域划分研究[J].煤炭技术,2006,25(6):81-83.
    [39]刘明举,刘彦伟,何学秋,等.用电磁辐射法预测煤与瓦斯突出的实验理论基础[J].安全与环境学报,2003,3(4):151-157.
    [40]王宏图,杜云贵,郭磊,等.影响工作面突出危险性预测指标确定的因素分析[J].煤矿安全,2002,33(4):151-157.
    [41]洪春生,杨连华.石门揭煤防治煤与瓦斯突出的实践[J].煤炭技术,2003,22(5):151-157.
    [42]许江,尹光志,鲜学福,等,煤与瓦斯突出潜在危险区预测的研究[M].重庆:重庆大学出版社,2004.
    [43]周世宁,鲜学福,朱旺喜.煤矿瓦斯灾害防治理论战略研讨[M].徐州:中国矿业大学出版社,2001.
    [44]鲜学福,许江,王宏图.煤与瓦斯突出潜在危险区(带)预测[M].中国工程科学,2001,3(2):39-47.
    [45]程五一,张序明,吴福昌.煤与瓦斯突出区域预测理论及技术[M].北京:煤炭工业出版社,2005:82-112.
    [46]郝吉生,韩德馨,袁崇孚.一个煤与瓦斯突出区域预测专家系统原型的开发与实现[J].焦作工学院学报,1997,16(1):23-27.
    [47]秦汝祥.煤与瓦斯突出预报研究现状综述[M].能源技术与管理,2005(1):7-9.
    [48]李成武,付京斌.煤与瓦斯突出敏感指标的确定方法[J].煤矿安全,2002.,33(5):25-30.
    [49]石必明.保护层开采覆岩变形移动特性及防突工程应用实践[M].北京:煤炭工业出版社,2008.
    [50]Lama R D, Bodziony J. Management of outburst in underground coal mines[J]. Int J Coal Geology,1998,35(1):83-115.
    [51]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [52]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004.
    [53]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003:40-51.
    [54]倪小明,郝吉生,王延斌.煤与瓦斯突出预测专家系统的设计与实现[J].矿业研究与开发,2006,26(8):15-20.
    [55]胡千庭,周世宁,周心权.煤与瓦斯突出过程的力学作用机理[J].煤炭学报,2008,33(12):1368-1372.
    [56]张国辉.煤层应力状态及煤与瓦斯突出防治研究:博士学位论文.阜新:辽宁工程技术大学,2005:2-25.
    [57]程国明,吴健,王思敬.综放开采顶煤瓦斯渗透性研究[J].湘潭工学院学报,2002,17(4):150-155.
    [58]李树刚,钱鸣高,石平五.煤样全应力应变过程中的渗透系数-应变方程[J].煤田地质与勘探,2001,29(1):22-24.
    [59]朱珍德,张爱军,徐卫亚.脆性岩石全应力一应变过程渗流特性试验研究[J].岩土力学,2002,23(5):555-558.
    [60]彭苏萍,区洪亮,罗立平等.沉积岩石全应力应变过程的渗透性试验研究[J].煤炭学报,2000.
    [61]杨天鸿,唐春安,徐涛,等.岩石破裂过程的渗流特性:理论、模型与应用[M].科学出版社,2004.
    [62]Keller J U.Determiantion of absolution gas adsorption isotherms by comined calorimetric and dielectric measurements. Adsorption,2003,9(2):177-188.
    [63]Murata K, El-merraoui M. A new determination method of absolute adsorption isotherm of supercritical gases under high pressure with a special relevance to density-function theory study. J. Chemical Physics,2001,14(9):4196-4205.
    [64]Livermore Software Technology Corporation, Ls-Dyna Theoretical Manual, May 1998.
    [65]Keller J U.Determiantion of absolution gas adsorption isotherms by comined calorimetric and dielectric measurements.Adsorption,2003,9(2):177-188.
    [66]杨永杰,宋扬,楚俊.循环载荷作用下煤岩强度及变形特征实验研究[J].岩石力学与工程学报,2007,26(1):201-205.
    [67]苏承东,翟新献,李永明,等.煤样三轴压缩下变形和强度分析[J].岩石力学与工程学报,2006,25(增1):2963-2968.
    [68]孟召平,彭苏萍.含煤岩系岩石力学性质控制因素探讨[J].岩石力学与工程学报,2002,21(1):102-106.
    [69]许江,鲜学福,杜云贵,等.含瓦斯煤的力学特性的实验分析[J].重庆大学学报,1993,16(5):26-32.
    [70]梁冰,章梦涛.瓦斯对煤的力学性质及力学响应影响的试验研究[J].岩土 工程学报.1995,17(5):12-18.
    [71]李善旺.汪家寨矿井煤与瓦斯突出的地质因素及规律分析[M].矿业安全与环保,2002,29(6):55-59.
    [72]张许良,彭苏萍,张子戌.煤与瓦斯突出数学地质模型研究[J].煤田地质与勘探,2004,32(1):151-157.
    [73]樊孝敏,杜卫新,李祥.用地质的观点分析瓦斯赋存和运移规律[J].煤炭技术,2004,23(4):151-157.
    [74]鲜学福,辜敏,李晓红.煤与瓦斯突出的激发和发生条件[J].岩土力学,2009,30(3):577-581.
    [75]李成武,米文宝.显德汪矿瓦斯异常区域瓦斯动力灾害显现特征分析[M].煤矿安全,2005,18(6):151-157.
    [76]程建圣.立井掘进过程中的煤与瓦斯突出动力现象研究:硕士学位论文.淮南:安徽理工大学,2006.
    [77]蒋承林.爆破对矿井突出的影响分析[J].岩石力学与工程学报,1998,17(5):502-507.
    [78]杨小林,侯爱军,梁为民.隧道掘进爆破的损伤机理与振动危害[J].煤炭学报,2008,33(4):400-404.
    [79]凌同华.爆破震动效应及其灾害的主动控制:博士学位论文.长沙:中南大学,2004:39-80.
    [80]李孝林,穆太升,董鑫.频率在爆破震害中的作用及其影响因素分析[J].工程爆破,2001,7(3):15-18.
    [81]肖福坤,秦宪礼,张娟霞,等.煤与瓦斯突出过程的突变分析[J].辽宁工程技术大学学报,2004,23(4):442-444.
    [82]贾虎.爆破动载作用下邻近硐室围岩稳定性的研究:硕士学位论文.合肥:安徽理工大学,2006:14-21.
    [83]崔积弘.隧道掘进爆破振动的数值模拟研究:硕士学位论文.泰安:山东科技大学,2005:31-41.
    [84]蔡峰.煤巷掘进过程中煤与瓦斯突出机理的研究:硕士学位论文.淮南:安徽理工大学,2005.
    [85]胡千庭,孟贤正,张永将,等.深部矿井综掘面煤的突然压出机理及其预测[J].岩土工程学报,2009,31(10):1487-1492.
    [86]刘保县,鲜学福,姜德义.煤与瓦斯延期突出机理及其预测预报的研究[J].岩石力学与工程学报,2001,21(5):647-650.
    [87]朱连山.关于煤层中的瓦斯膨胀能[M].煤矿安全,1985(2):47-51.
    [88]刘明举,颜爱华,丁伟等.煤与瓦斯突出热动力过程的研究[J].煤炭学报,2003,28(1):50-54.
    [89]王汉斌,郝仲熙,牛冲槐.瓦斯涌出规律非线性系统模型理论与应用研究[M].金属矿山,2006.(4)总第358期.
    [90]李杭州,张恩强.煤体裂纹水力致裂的扩展机理[J].西安科技大学学报,2003,23(4):372-374.
    [91]张国枢.通风安全学[M].徐州:中国矿业大学出版社,2000.
    [92]蒋承林,俞启香.煤与瓦斯突出过程中能量耗散规律的研究[J].煤炭学报,1996,21(2):173-178.
    [93]崔灏,汪仁和.人工冻结粘性土的冻胀特性研究[J].安徽理工大学学报(自然科学版),2004,24(11):131-137.
    [94]姚直书,程桦.锚碳深基坑排桩冻土墙围护结构的冻胀力研究[J].岩石力学与工程学报,2004,23(9):151-157.
    [95]张世银,汪仁和.土壤冻胀特性的试验研究[J].岩土工程界,2004,7(2):151-157.
    [96]梁冰,章梦涛,王泳嘉等.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解[J].岩石力学与工程学报,1996,15(2):135-142.
    [97]BaiMao, LsworthDerek. Coupled Processes in subsurface deformation, flow, and transport[J].American Soeicty of Civil Engineers, ASCE Press,2000.
    [98]陈瑞杰,程国栋,李述训.人工地层冻结应用研究进展和展望[J].岩土工程学报,2000,22(1):26-27.
    [99]徐士良,汪仁和.人工地层冻结温度场试验台设计和研究[J].低温建筑技术,2004:101(5):66-67.
    [100]武亚军,潘涛,唐军武.人工冻结技术在城市地下工程中的应用[J].探矿工程,2006,(6):60-63.
    [101]程知言.浅表隧道工程多冷源冻结温度、应力、水分场藕合研究:博士学位论文.长沙:中南大学,2003:12-53.
    [102]崔灏.三圈管冻结壁形成特性的试验研究:硕士学位论文.淮南:安徽理工大学,2005:21-48.
    [103]汪仁和,曹荣斌.双排管冻结下冻结壁温度场形成特征的数值分析[J].冰川冻土,2002,24(2):181-184.
    [104]赖远明.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析:博士学位论文.兰州:中国科学院兰州冰川冻土研究所,1999.
    [105]林柏泉,周世宁,张仁贵.煤巷卸压带及其在煤和瓦斯突出危险性预测中 的应用[J].中国矿业大学学报,1993,22(4):44-52.
    [106]尹光志.两种含瓦斯煤样变形特性与抗压强度的实验分析[J].岩石力学与工程学报,2009,28(2):410-417.
    [107]孟宪明.煤孔隙结构和煤对气体吸附特性研究:硕士学位论文.泰安:山东科技大学分院,2007.
    [108]李建明,吴锡令.根据压汞曲线建立砂岩储层渗透率估算模型[J].中国石油勘探,2007,(1):72-76.
    [109]王玉珑,曹振雷,王燕忠.采用汞压入法测量纸张微孔分布和孔隙率[J].中国造纸,2006,25(3):19-21.
    [110]夏春.汞压法对水泥浆和掺合料水泥浆孔隙分析[M].混凝土,2004,(3):36-39.
    [111]鲜晓红.微孔填充理论研究无烟煤煤炭对甲烷的吸附特性[J].重庆大学学报,2001,21(2):75.
    [112]张力,何学秋.煤吸附特性的研究[J].太原理工大学学报,2001,32(4):449-452.
    [113]张庆玲,崔永君,曹利戈.煤的等温吸附实验中各因素影响分析[M].煤田地质与勘探,2004,32(2):16-19.
    [114]张占存.水份对煤的瓦斯吸附特性影响的试验研究:硕士学位论文.抚顺:煤科总院抚顺分院,2004.
    [115]陈昌国,辜敏,鲜学富.煤的原子分子结构及吸附甲烷机理研究进展[M].煤炭转化,2004,26(4):5-11.
    [116]Clarkson C.R, Busitin R M.Binary gas dsorption/desorptionisotherms:effect of moisture and coal composition upon carbon dioxide selecttivity over methane. Int J Coal Geol,2000,42:241.
    [117]Murata K, El-merraoui M.A new determination method of absolute adsorption isotherm of supercritical gases under high pressure with a special relevance to density-function theory study. J.Chemical Physics,2001,14(9),4196-4205.
    [118]钟玲文,张慧,员争荣等.煤的比表面积、孔体积及其对煤吸附能力的影响[J].煤田地质与勘探,2002,30(3):26-28.
    [119]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(5):552-556.
    [120]欧成华,李士伦,郭平等.储层孔隙介质气体吸附理论模型研究探讨[J].西南石油学院学报,2002,24(1):53-56.
    [121]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002:15-19.
    [122]欧成华,李士伦,杜建芬,等.煤层气吸附机理研究的发展与展望[J].西南石油学院学报,2003,25(5):57-61.
    [123]Livermore Software Technology Corporation, Ls-Dyna Keyword User's Manual Version 970, April 2003.
    [124]Livermore Software Technology Corporation, Ls-dyna Examples Manual, June 2001.
    [125]赵志根,唐修义.对煤吸附CH4的Langmuir方程的讨论[J].焦作工学院学报(自然科学版)2002(1),1-4.
    [126]李建武,白公正,雷宝林等.哈密盆地煤层的吸附性及其影响因素[J].煤田地质与勘,2001,29(2):30-32.
    [127]Chikamarla Laxmia. PeterJ. Crosdale. Role of coal type and rank on methane sorption characteristics of Bowen Basin[C].Australia coals.International Journal of Coal geology 1999,40:309-325.
    [128]董红,侯俊胜,王浩,等.煤层煤质和含气量的测井评价方法及其应[J].物探与化探,2004,25(2):37-71.
    [129]骆祖江,杨锡禄.煤层CH4气藏数值模拟[J].煤田地质与勘探,1997,25(2):35-38.
    [130]张春雷,李太任.煤岩结构与煤体裂隙分布特征的研究[J].煤田地质与勘探,2000,28(5):26-30.
    [131]苏春立,唐书桓等.煤层气的赋存运移机理及产出特征[J].河北建筑科技学院学报,1999,16(3):67-71.
    [132]Buseh A,Krooss B M,et al.High-Pressure adsorption of methane, carbon dioxide and their mixtures on coals with a special focus on the Preferential sorption behaviour[J],Journal of Geochemical Exploration,2003,78-79.
    [133]于洪观,范维唐.煤对超临界甲烷的吸附与解吸特性研究团,煤炭转化,2004,27(2):37-40.
    [134]胡宝林,车遥,杨起,等.鄂尔多斯盆地煤储层低温氮等温吸附特征分析[J].煤田地质与勘探,2003,31(2):20-23.
    [135]Goodman A L, Buseh A, et al.An inter-laboratory comparison of CO2 is otherms measured on Argorme premium coal samples[J],Energy & Fuels, 2004,18:1175-1182.
    [136]琚宜文,姜波.华北南部构造煤纳米级孔隙结构演化特征及作用机理[J],地质学报,2005,79(2):269-284.
    [137]刘辉,吴少华等.快速热解褐煤焦的低温氮吸附等温线形态分析[J].煤炭 学报,2005,30(4):507-510.
    [138]张占存.煤的吸附特征及煤中孔隙的分布规律[J].煤矿安全,2006,37(9):1-3.
    [139]Cao Y X,He D D,Glick D C.Coal and gas outburst in footwalls of reverse faults[J].Int J Coal Geology,2001,48(1/2):47-63.
    [140]Karacan. C.Heterogeneous Sorption and Swelling in a Collfined Stressed Coal during CO2 ection,Enelgy&Fuels,2003,17(6):1595-1608.
    [141]Clarson C R, Bustin B M. Binary gas adsorption/desorption isotherm:effect of moisture and coal composition upon carbon dioxid selectivity over methane[J], International Journal of Coal Geology,2000,42:241-271.
    [142]Krooss B M, Van Bergen F. High-Pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J], International Journal of Coal Geology,2002,51:69-91.
    [143]谈慕华,黄蕴愿.表面物理化学[M].北京:中国建筑工业出版社,1985.
    [144]Pro DR HAB.CO2 and CH4 Displacement Sorption In Rank Grade Coal Under Low Gas Pressure, Archives of Mining Sciences 2001,46(1).
    [145]Prinz D, pyckhout-Hintzen Wlittke R. Development of the meso-and macroporous structure of coals with rank as analysed with small angle neutron scattering and adsorption experiments[J],Fuel,2004,83:547-556.
    [146]Rachel Walker, Miram Glikson,Maria Mastalerz, Relations between coal petrology and gas content in the Upper Newlands Seam, central Queensland, Australia, International Journal of Coal Geology 2001,46(3):83-92.
    [147]姜耀东,祝捷,赵毅鑫,等.基于混合物理论的含瓦斯煤本构方程[J].煤炭学报,2007,32(11):1132-1137.
    [148]唐春安,刘红元.石门揭煤突出过程的数值模拟研究[J].岩石力学与工程学报,2002,21(10):1467-1472.
    [149]齐黎明,林伯泉,支晓伟.基于RFPA-Flow的马家沟矿突出数值模拟[J].西安科技大学学报,2006,26(2):167-169.
    [150]徐涛,唐春安.含瓦斯煤岩破裂过程流固耦合数值模拟[J].岩石力学与工程学报,2005,24(10).
    [151]St Geolge J D, Barakat M A. The change in effective stress associated with shrinkage from gas deportation in coal, International Jourmal of Coal Geology[J],2001,45(2-3):105-113.
    [152]徐涛.煤岩破裂过程固气耦合数值试验:博士学位论文.沈阳:东北大 学,2004.
    [153]穆朝民.潘三矿煤巷掘进中煤与瓦斯突出过程的数值模拟:硕士学位论文.淮南,安徽理工大学,2006.
    [153]杨天鸿,徐涛,唐春安,等.脆性岩石破裂过程渗透性演化试验研究[J].东北大学学报,2003,24(10):974-977.
    [154]张朝晖.ANSYS 8.0热分析教程与实例解析[M].北京:中国铁道出版社,2005.
    [155]唐兴伦,范群波,张朝辉,等.ANSYS工程应用教程-热与电磁学篇[M].北京:中国铁道出版社,2003.
    [156]叶先磊,史亚杰.ANSYS工程分析软件应用实例[M].北京:清华大学出版社,2003,42-56.
    [157]张胜民.基于有限元软件ANSYS7.0的结构分析[M].北京:清华大学出版社,2003.
    [158]Mikkola, M.and J.Hartikainen. Computational aspects of soil freezing problem[A].in Fifth World Congress on Computational Mechanics[C].2002. Vienna, Austria.
    [159]程桦,臧华.人工地层水平冻结冻胀效应准耦合数值分析[J].岩土工程学报2003,25(1):87-90.
    [160]张学富,赖远明,张淑娟,等.寒区隧道三维温度场数值分析[M].铁道学报,2003,25(3):84-90.
    [161]汪仁和,李晓军.冻结温度场的叠加计算与计算机方法[J].安徽理工大学学报(自然科学版),2003,23(1):25-29.
    [162]刘高典.温度场的数值模拟[M].重庆:重庆大学出版社,1990.
    [163]Mikkola,M.and J. Hartikainen, Mathematical model of soil freezing and its numerical implementation[J].International Journal for numerical methods in engineering,2001,52:543-557.
    [164]程国栋.冻土力学与工程的国际研究进展[J].地球科学进展,2001,16(3):293-299.
    [165]柴军瑞.韩群柱.岩体渗流场与温度场耦合的连续介质模型[J].地下水,1997,19(2):59-62.
    [166]胡世权,闰化浩.青藏铁路多年冻土区冻胀的危害与防治[J].中国农村水利水电,2004,(8):57-58.
    [167]陈继,程国栋,张喜发.分层冻胀量的观测方法研究[J].冰川冻土,2004,26(4):131-137.
    [168]马琳.地基土冻胀融沉变形对民房建筑的破坏及治理[J].西部探矿工程,2003,15(12):131-137.
    [169]杨利民,李晓东,张波,等.深季节冻土区地基土的冻胀性[J].低温建筑技术.2003,(6)总第96.
    [170]杨天鸿,徐涛,刘建新,等.应力-损伤-渗流耦合模型及在深部煤层瓦斯卸压实践中的应用[J].岩石力学与土程学报,2005,24(16):151-157.
    [171]张忠亭,罗居剑.分级加载下岩石蠕变特性研究[J].岩石力学与工程学报,2004,23(2):218-222.
    [172]Livermore Software Technology Corporation, Ls-Dyna Database Binary Output Files, January 1994, Revised May 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700