锈蚀钢筋混凝土构件粘结性能及承载性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土结构耐久性是工程领域广为关注的问题之一,在正常使用期间,由于各种原因会引起钢筋锈蚀,钢筋锈蚀不仅造成钢筋有效截面面积削弱和钢筋性能改变,而且还导致钢筋与混凝土的粘结性能发生退化,从而严重影响结构构件的承载性能。研究锈蚀钢筋与混凝土的粘结性能,建立锈蚀钢筋混凝土受弯构件承载力计算方法,对准确评估既有结构的耐久性能具有重要的理论意义和实际意义。
     论文采用试验研究和理论分析相结合的方法,深入研究了锈蚀钢筋与混凝土的粘结性能,在此基础上,建立了考虑不同位置(边中、角部)保护层锈胀开裂形态差异的锈蚀钢筋混凝土受弯构件承载力计算方法。主要工作内容如下:
     采用梁式粘结试验方法和钢筋内贴应变片试验手段,进行了36根锈蚀钢筋混凝土梁式粘结试验,分析了钢筋锈蚀率、混凝土强度、钢筋直径、保护层厚度等因素对粘结性能的影响,建立了锈蚀钢筋与混凝土的粘结滑移本构关系和极限粘结应力的计算模型。结果表明:钢筋锈蚀率越大、混凝土强度越小时,自由端开始滑移所需施加的荷载越小,同一荷载下加载端和自由端滑移、跨中挠度、自由端钢筋应变越大,加载端钢筋应变越小,粘结应力沿锚固位置传递越快、分布越平缓。
     进行了4根锈蚀钢筋混凝土受弯构件的承载力试验,分析了钢筋锈蚀程度对构件荷载-跨中挠度关系、跨中混凝土应变分布及荷载-自由端滑移关系等的影响,研究了角部钢筋和边中钢筋应变分布的差异,对比了纯弯段和弯剪段混凝土应变、不同钢筋锈蚀率梁极限荷载的差异。结果表明:随钢筋锈蚀率增大,受弯构件的极限荷载和刚度降低;边中钢筋应变值较角部钢筋大5%左右,且角部钢筋应变较边中钢筋降低幅度大;纯弯段混凝土应变较弯剪段增长速度快,跨中混凝土应变沿梁高满足平截面假定。
     采用有限元软件分别建立了锈蚀钢筋混凝土梁式粘结构件和受弯构件分析模型,研究了锈蚀钢筋混凝土受弯构件的承载力、荷载-跨中挠度关系和不同位置(角部、边中)钢筋应变的分布规律,分析了钢筋与混凝土应变不协调系数随锈蚀率的变化规律。
     结合锈蚀钢筋混凝土承载力试验和数值分析,建立了考虑不同位置(边中、角部)保护层锈胀开裂形态差异的锈蚀钢筋混凝土受弯构件承载力计算方法,分析了锈蚀钢筋混凝土受弯构件承载力随钢筋锈蚀率的变化规律。
The durability of concrete structure is one of the problems widely concerned incivil engineering. Rebar corrosion often appears during normal use due to various kindsof reasons. Rebar corrosion not only makes reinforced effective section area decreaseand reinforced performance alteration, but also leads to the bond properties degradationbetween steel and concrete, thereby affects gravely bearing capacity of structuralmembers. There is significant theoretical meaning and practical value for estimatingaccurately durability of existing structure member in analyzing bond properties betweencorroded rebar and concrete and in establishing calculation method of bearing capacityof flexural member.
     Combined with theoretic analysis and experimental research, bond propertiesbetween corroded rebar and concrete are analyzed intensively. On this basis calculationmethod of bearing capacity of flexural member is established considering crackingforms of covers in different situation (midside or corner). Following respects are mainlyincluded in the research:
     Through beam bond test methods and embedded strain gauge means in rebar36corroded beam test members are tested. Influence on bond properties induced bycorrosion rate, concrete strength, diameter and cover thickness are analyzed. Theformulas of ultimate bond strength and bond-slip constitutive relation between corrodedrebar and concrete are established. Experiments results are shown: the more corrosionratio is or the less concrete strength is, the less required load of free end initiate slip is,the less slip of free end and loading end, mid-span deflection are, and at the same timethe more rebar strain in free end is and the less rebar strain in loading end is, the fasterbond stress transmit and the milder bond stress distribution is.
     Bearing capacity tests of4corroded reinforced concrete flexural members areconducted. Influence on load-deflection curve, strain distribution of midspan concreteand load-free end slip curve induced by corrosion ratio of rebar are analyzed.Discrepancy of strain distribution between corner rebar and midside rebar areresearched. Comparation of concrete strain between pure bending segment andbending-shear segment are made. Differences of ultimate load of flexural member with different corrosion ratio are proposed. The results are shown that ultimate load andstiffness of flexural member will degrade along with amplify of corrosion ratio of rebar,and rebar strain of in identical location will lower under the same load, and that strain ofmidside rebar is more5%than the same of corner rebar, and that strain reduce extend ofcorner rebar is more than the same of midside rebar when corrosion ratio increases, andthat concrete strain of pure bending segment increase more faster than that ofbending-shear segment. The last result is that concrete strain distribution of midspanalong beam height meets plane section assumption.
     Analysis model of corroded reinforced concrete beam test and flexural membersadopting finite element software are established separately. Bearing capacity ofcorroded reinforced concrete flexural members, load-midspan deflection relation, andstrain distribution of midside and corner rebar are researched. Strain imcompatibilitycoefficients between rebar and concrete strain based on corrosion ratio are analyzed.
     Combined with the bearing capacity experiment and numerical analysis ofcorroded reinforced concrete member, calculation method of bearing capacity ofcorroded reinforced concrete flexural members considering cracking forms discrepancyof covers in different situation (midside or corner) is established. Bearing capacity ofcorroded reinforced concrete flexural members based on corrosion ratio is analyzed.
引文
[1]陈肇元.混凝土结构的耐久性设计方法[J].建筑技术,2003(05):328-333.
    [2]仲伟秋.既有钢筋混凝土结构的耐久性评估方法研究[D].大连:大连理工大学.2003.
    [3]罗福午主编.建筑结构缺陷事故的分析及防止[M].北京:清华大学出版社.1996.
    [4] G. C. Hoff. Integrating durability into the design process. International Congress on Creating withConcrete Dundee. Scotland, U.K.1999.9:101-114
    [5]洪定海.混凝土中钢筋的腐蚀与防护[M].北京:科学出版社.1998.
    [6]日本土木学会编,张富春译.混凝土构筑物的维护、修补与拆除[M].北京:中国建筑工业出版社.1990.
    [7] B. M.莫斯克文等著,倪继淼译.混凝土和钢筋混凝土的腐蚀及其防护方法[M].北京:化学工业出版社.1988.
    [8] Rasheeduzzafar,F. H. Dakhil,A. S. Gahtani. Corrosion of reinforcement in concrete structures in theMiddle East [J]. Concrete International,1985(9):48-55.
    [9] P.K.Mehta. Concrete durability-fifty years progress [J]. Proc. of2nd inter. Conf. On ConcreteDurability,ACI SP126-1,1991:1-31.
    [10]林志伸,惠云玲.我国工业厂房混凝土结构耐久性的宏观调研[J].工业建筑,1997(06):1-5,53.
    [11]王胜年,黄君哲,张举连,潘德强.华南海港码头混凝土腐蚀情况的调查与结构耐久性分析[J].水运工程,2000(06):8-12.
    [12]张恺,包琦玮.北京地区立交桥梁耐久性调查分析.土建结构的安全性与耐久性.北京.2001:
    [13]王玲,田陪,姚燕,北京西直门旧桥混凝土破坏原因分析,重点工程混凝土耐久性的研究与工程应用,王媛俐,姚燕主编.北京:中国建筑工业出版社.2001.
    [14]冯乃谦,蔡军旺,牛全林,张树河.山东沿海钢筋混凝土公路桥的劣化破坏及其对策的研究[J].混凝土,2003(01):3-6.
    [15]李家康,董攀.混凝土结构中钢筋腐蚀的分析[J].工业建筑,1998(01):12-15.
    [16]邸小坛,周燕.旧有建筑物的检测加固与维修[M].北京:地震出版社.1991.
    [17]张伟平,顾祥林,金贤玉,金南国.混凝土中钢筋锈蚀机理及锈蚀钢筋力学性能研究[J].建筑结构学报,(S1).
    [18]惠云玲,郭永重,李小瑞.混凝土结构中钢筋锈蚀机理、特征及检测评定方法[J].工业建筑,2002(2):5-7.
    [19]马良哲,白常举.钢筋锈蚀后力学性能的试验研究.第五届全国混凝土耐久性学术交流会.2000:112-118
    [20]惠云玲.锈蚀钢筋力学性能变化初探[J].工业建筑,1992(10):33-36.
    [21]王军强.大气环境下锈蚀钢筋力学性能试验研究分析[J].徐州建筑职业技术学院学报,2003.3(3):25-27.
    [22]吴胜兴.钢筋混凝土结构锈裂损伤研究综述[J].工程力学增刊,2002:70-88.
    [23]刘西拉,苗澍柯.混凝土结构中的钢筋腐蚀及其耐久性计算[J].土木工程学报,1990(04):69-78.
    [24]洪乃丰.钢筋锈蚀电化学综合评定法.第四届亚太地区腐蚀会议论文集(2).1985.
    [25] Ch.Alk.Apostolopoulos, M.P.Papadopoulos, Sp.G.Pantelakis. Tensile behavior of conodedreinforcing steel bars BSt500sPl [J]. Construction and Bufldmg Materials,2006(20):782-789.
    [26]张平生,卢梅,李晓燕.锈损钢筋的力学性能[J].工业建筑,1995.25(9):41-44.
    [27]惠云玲,林志伸,李荣.锈蚀钢筋性能试验研究分析[J].工业建筑,1997(06):6-13.
    [28]袁迎曙,贾福萍,蔡跃.锈蚀钢筋的力学性能退化研究[J].工业建筑,2000.30(01):43-46.
    [29]杨淑慧.腐蚀对钢筋力学性能影响的研究[D].郑州大学.2002.
    [30]孙维章,梁宋湘,罗建群.锈蚀钢筋剩余承载能力的研究[J].水利水运工程学报,1993(02):169-178.
    [31]吴庆,袁迎曙.锈蚀钢筋力学性能退化规律试验研究[J].土木工程学报,2008.41(12):42-47.
    [32] Maslehuddin M,Allam I a,Ai-Sulainmani G J. Effect of rusting of reinforcing steel on itsmechanical properties and bond with concrete[J]. Materials Journal,1990.87(5):496-502.
    [33]管品武,孟会英,李丽.钢筋与混凝土间粘结锚固性能及粘结作用机理[J].郑州工业大学学报,2001(9):65-66.
    [34]王传志,滕智明.钢筋混凝土结构原理[M].北京:中国建筑工业出版社.1985.254-295.
    [35]小林丰治.混凝土中钢筋锈蚀的机理[J].混凝土与建筑构件,1982(1):46-50.
    [36] Saeed Mirza Lamya Amleh. Corrosion Influence on Bond Between Steel and Concrete [J]. ACIStructural Journal,1999.96(3):415-423.
    [37] B.Johnston,K.C.Cox. The bond strength of rusted deformed bars[J]. ACI Journal,1941.37:57-72.
    [38] E. Kemp, Brezny F., Unterspan, J. Effect of Rust and Scale on the Bond Characteristics of DeformedReinforcing Bars[J]. ACI, September1968:743-756.
    [39] Khaled Soudkin. Bond Behavior of Corroded Steel Reinforcement in Concrete Wrapped with CarbonFiber Reinforced Sheet[J]. ASCE Journal of Material in civil designing, August2003:359-370.
    [40] Chun Qing Li. Initiation of Chloride-Induced Reinforcement corrosion in Concrete StructuralMembers-Experimentation[J]. ACI structure Journal,2001.98(4):502-510.
    [41]韩继云,蔡鲁生钢筋混凝土构件中钢筋锈蚀实验研究.中国建筑科学研究院结构所,1991
    [42] Andres a Torres-Acostsa. Residual Life of Corroding Reinforced Concrete Structures in MarineEnvironment[J]. Journal of Materials in Civil Engineering ASCE,2003234-253.
    [43]江传良,冼巧玲.钢筋混凝土结构非线性有限元分析[J].科学技术与工程,2005(9):1323-1324,1328.
    [44]康清梁.钢筋混凝土有限元分析[M].中国水利水电出版社.1996.19-46.
    [45] Rilem-Fip-Ceb.Tentative Recommendation-Bond test for Reinforcing Steel[J]. Materials andStructures,1973(32).
    [46] M G.J.Al-Sulaimani, Kaleemullsh. Influence of Corrosion and Cracking on Bonding Behavior andStrength of Reinforced Concrete Members[J]. ACI Structural Journal,1990.87(2):220.
    [47] P. S. MangatM. S. Elgarf. Bond characteristics of corroding reinforcement in concrete beams[J].Materials and Structures,1999.32(216):89-97.
    [48] J.G.Cabrera. Deterioration of Concrete Due to Reinforcement Steel Corrosion[J]. Cement&ConcreteComposites,1996(18):47-59.
    [49]车宏业,颜德垣,程文襄.混凝土结构(上册)[M].北京:中国建筑工业出版社.1998.33-34.
    [50]叶见曙.结构设计原理[M].北京:人民交通出版社.1991.17.
    [51]赵军,金朝晖,马玉欣.混凝土结构中钢筋的粘结锚固[J].平顶山工学院学报,2003(9):3-4.
    [52]陈留国,方从启,寇新建,陈兵.受腐蚀钢筋混凝土的粘结性能[J].工业建筑,2004(05):15-17.
    [53] Castellani a Berra M, Coronelli D. Bond in reinforced concrete and corrosion of bars. FORDE M.Structural Faults&Repair. Edinburgh: Engineering Technics Press.1997:349-356
    [54]张伟平.混凝土结构的钢筋锈蚀损伤预测及其耐久性评估[D].上海:同济大学.1999.
    [55]赵羽习.钢筋混凝土结构粘结性能和耐久性的研究[D].杭州:浙江大学.2001.
    [56] Yubun Auyeung.Bond properties of corroded reinforcement with and without confinement[D].theState University of New Jersey.2001.
    [57] K.Hooton Stanish, R. D.Pantazopoulou, S. J. Corrosion effects on bond strength in reinforcedconcrete[J]. ACI Structural Journal,1999.96(6):915-921.
    [58] P.Balaguru Yubun Auyeung, Lan Chung. Bond Behavior of Corroded Reinforced Bars[J]. ACIMaterial Journal,2000.97(2):214.
    [59]范颖芳,黄振国,李健美,郭乐工.受腐蚀钢筋混凝土构件中钢筋与混凝土粘结性能研究[J].工业建筑,1999(08):49-51.
    [60]赵羽习,金伟良.锈蚀钢筋与混凝土粘结性能的试验研究[J].浙江大学学报(工学版),2002(04):352-355.
    [61]张誉,蒋利学,张伟平.混凝土结构耐久性概论[M].上海:上海科学技术出版社.2003.
    [62]何世钦,贡金鑫.钢筋混凝土梁中锈蚀钢筋粘结性能的试验研究[J].哈尔滨工业大学学报,2006(12):2167-2170.
    [63]何世钦.氯离子环境下钢筋混凝土构件耐久性能试验研究[D].大连理工大学.2004.
    [64]袁迎曙,贾福萍,蔡跃.锈蚀钢筋混凝土梁的结构性能退化模型[J].土木工程学报,2001(03):47-52,96.
    [65] D. Coronelli. Corrosion cracking and bond strength modeling for corroded bars in reinforcedconcrete[J]. Aci Structural Journal,2002.99(3):267-276.
    [66] X. H. WangX. L. Liu. Modelling effects of corrosion on cover cracking and bond in reinforcedconcrete[J]. Magazine of Concrete Research,2004.56(4):191-199.
    [67]王林科,陶峰,王庆霖,杨兰生.锈后钢筋混凝土粘结锚固的试验研究[J].工业建筑,1996(04):14-16.
    [68]赵羽习,金伟良.钢筋与混凝土粘结本构关系的试验研究[J].建筑结构学报,2002(01):32-37.
    [69]袁迎曙,余索,贾福萍.锈蚀钢筋混凝土的粘结性能退化的试验研究[J].工业建筑,1999(11):47-50.
    [70]张伟平,张誉.胀裂后锈蚀钢筋与混凝土粘结性能退化规律的试验研究[J].建筑结构,2002(01):31-33,19.
    [71]郑晓燕.锈蚀钢筋与混凝土动态粘结性能研究[D].南京:河海大学.2004.
    [72]张国学,宋建夏,刘晓航.钢筋锈蚀对钢筋混凝土构件粘结力的影响[J].工业建筑,2000(02):37-39.
    [73] K. Lundgren. Modelling the effect of corrosion on bond in reinforced concrete[J]. Magazine ofConcrete Research,2002.54(3):165-173.
    [74]全明研.老化和损伤的钢筋混凝土构件的性能[J].工业建筑,1990(02):15-19.
    [75] Kazuo Kobayashi Kiyoshi Okada, Toyoaki Miyagawa. Influence of longitudinal cracking due toreinforcement corrosion on characteristics of reinforced concrete members[J]. ACI Structural Journal,1988.85(2):134-140.
    [76] A.Castel. Mechanical behavior of corroded reinforced concrete beam:Part1-Experimental study ofcorroded beams[J]. Materials and Structures,2000.33(11):539-544.
    [77] A.Castel. Mechanical behavior of corroded reinforced concrete beam:part2-bond and notch effects[J].Materials and Structures,2000.33(11):545-551.
    [78]王庆霖,池永亮,牛荻涛.锈后无粘结钢筋混凝土梁的模拟试验与分析[J].建筑结构,2001(04):51-53,55.
    [79]牛荻涛,卢梅,王庆霖.锈蚀钢筋混凝土梁正截面受弯承载力计算方法研究[J].建筑结构,2002(10):14-17.
    [80]王小惠,刘西拉.无腹筋锈蚀钢筋混凝土梁承载能力的计算[J].建筑技术开发,2003.30(6):1-4.
    [81]吴谨.海洋环境下钢筋混凝土结构锈裂损伤评估研究[D].南京:河海大学.2003.
    [82] Tachibana Yoshihiro,Maeda Ken-Ichi,Kajikawa Ya Suo,Kawamura Mitsunori. Mechanicalbehaviour of RC beams damaged by corrosion of reinforcement Third international Symposium onCorrosion of Reinfiorcement in Concrete Construction. Wishaw,UK.1990:178-187
    [83] H. S. Lee, T. NoguchiF. Tomosawa. Evaluation of the bond properties between concrete andreinforcement as a function of the degree of reinforcement corrosion[J]. Cement and ConcreteResearch,2002.32(8):1313-1318.
    [84]惠卓,王庆霖.受损构件承载力的计算机模拟[J].西安建筑科技大学学报(自然科学版),1997(04):430-434.
    [85]郭子雄杨勇基于ANSYS程序的钢筋混凝土梁非线性数值模拟[J].福州工程学院学报,2005.3(6):628-632.
    [86]范颖芳,周晶,张京英.应用人工神经网络预测锈蚀钢筋与混凝土粘结性能[J].工业建筑,2002(09):48-50.
    [87]韩洪胜.海水腐蚀钢筋混凝土结构构件承载力的试验研究及人工神经网络理论的应用[D].天津:天津大学.2001.
    [88]惠云玲,林志伸,李荣,混凝土受弯构件腐蚀前后构件性能试验研究报告.1995.7,冶金工业部建筑研究总院国家工业建筑诊断与改造工程技术研究中心.
    [89]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社.2003.
    [90]任宝双,钱稼茹,聂建国.在用钢筋混凝土简支桥面梁受弯承载力估算[J].工业建筑,2000.30(11):29-33.
    [91]徐善华.混凝土结构退化模型与耐久性评估[D].西安:西安建筑科技大学.2003.
    [92] Pritpal S.Mangat, Mahmoud S.Elgarf. Flexural Strength of Concrete Beams with CorrodingReinforcement[J]. ACI Structural Journal,1999.96(1):149-157.
    [93] S. Soretz. A comparison of beam tests and pull-out tests [J]. Materiaux ET Construction,1972.5(28):261-264.
    [94]邓明.锈蚀钢筋混凝土构件粘结性能及裂缝特征的试验研究[D].长沙:长沙理工大学.2007.
    [95]杜锋,肖建庄,高向玲.钢筋混凝上粘结锚性能的试验研究[J].结构工程师,2006.22(2):93-97.
    [96]徐有邻.变形钢筋—混凝土粘结锚固性能的试验研究[D].北京:清华大学.1990.
    [97]栾军编著.实验设计的技术与方法[M].上海:上海交通大学出版社.1986.
    [98].王显利,郑建军.钢筋混凝土结构锈胀开裂及裂缝扩展试验研究[J].大连理工大学学报,2009.49(2):246-253.
    [99]赵羽习,金伟良.钢筋锈蚀导致混凝土构件保护层胀裂的全过程分析[J].水利学报,2005(08):939-945.
    [100] E.L.Kemp,W.J Wilhelm. Investigation of the parameters influencing bond cracking[J]. ACIJournal,1979.76(1):47-71.
    [101]赵恒宝.混凝土电阻率影响因素及钢筋混凝土锈蚀损伤形态研究[D].大连:大连理工大学.2008.
    [102]何更新.粉煤灰混凝土导电性能研究[D].重庆:重庆大学.2006.
    [103]洪小健,赵鸣.加载速率对锈蚀钢筋与混凝土粘结性能的影响[J].同济大学学报(自然科学版),2002.30(07):792-796.
    [104]沈剑华.计算数学基础[M].上海:同济大学出版社.1993.
    [105]郑晓燕,吴胜兴.钢筋混凝土粘结滑移本构关系建立方法的研究[J].四川建筑科学研究,2006(01):18-21.
    [106]滕志明主编.钢筋混凝土基本构件第二版[M].北京:清华大学出版社.1987.
    [107]张伟平,张誉.锈胀开裂后钢筋混凝土粘结滑移本构关系研究[J].土木工程学报,2001(05):40-44.
    [108]王艺霖.钢筋与混凝土粘结性能的若干问题研究[D].武汉:华中科技大学.2005.
    [109]高向玲.高性能混凝土与钢筋粘结性能的试验研究及数值模拟[D].上海:同济大学.2003.
    [110]S. SomayajiS.P. Shah. Bond stress versus slip relationship and cracking response of tensionmembers[J]. ACI Journal,1981.78(3):217-224.
    [111] Nilsonan..lnternal measurement of bond-sliP[J].ACI.1972.
    [112]江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社.1994.
    [113] ANSYS Therory Reference,Electronic Release.SAS IP,Inc.,1998
    [114] ANSYS Modeling and Meshing Reference,Electronic Release.SAS IP,Inc.1998
    [115] ANSYS BasicAnalysis Procedures Reference.Electronic Release.SAS IP,Inc.,1998
    [116] ANSYS Element Reference,Electronic Release.SAS IP,Inc.1998
    [117]郑晓燕,吴胜兴.锈蚀钢筋与混凝土动态粘结性能的试验研究[J].四川建筑科学研究,2008(02).
    [118]金芷生,朱万福,庞同和.钢筋与混凝土粘结性能试验研究[J].南京工程学院学报,1985(2):94-100.
    [119]潘振华,牛荻涛,王庆霖.锈蚀率与极限粘结强度关系的试验研究[J].工业建筑,2000(05):9-12.
    [120] GB50010-2002.混凝土结构设计规范[S].北京:中国建筑工业出版社.2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700