介孔涂层包覆镁合金材料的制备、降解和生物性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为新一代可降解骨修复材料,镁合金具备良好的力学性能、生物相容性以及可降解特性,近年来引起了广泛关注和研究。但是,镁合金在生理体液环境中的初期腐蚀速度较快,限制了其临床应用。通过制备保护涂层,可以有效保护镁合金基体,控制其腐蚀行为。与传统涂层材料相比,介孔材料具备窄的孔径分布、大的比表面积以及良好的亲水性等特点,可以显著提高材料的生物性能。为此,在镁合金表面制备介孔涂层有望获得具有良好综合性能的骨修复材料。
     本文采用溶胶凝胶法结合浸渍提拉的工艺分别在载玻片和镁合金表面制备出介孔羟基磷灰石涂层以及添加45S5玻璃陶瓷的介孔羟基磷灰石/45S5玻璃陶瓷复合涂层,优化出结构均匀、无缺陷裂纹涂层的制备工艺。以CTAB或F127做为模板剂制备的介孔羟基磷灰石,可通过改变pH值或模板剂浓度调控其介孔结构;其中,使用0.192g/mL的F127模板剂制得了孔径、孔容和比表面积分别为3.17nm,0.38cc/g,211.7m2/g的介孔羟基磷灰石,并在镁合金表面制得了厚度约为1.0μm,结构均匀、无裂纹的介孔涂层。
     以模拟体液为腐蚀介质,研究了不同结构和组成的包覆涂层对材料降解行为的影响,并探索了介孔涂层抑制镁合金基体快速降解的作用机理。结果表明:介孔结构的存在可以降低涂层的弹性模量,减小残余应力对涂层失效的影响,避免介孔涂层在浸泡初期的开裂、剥落,延长涂层对镁合金基体的保护作用。介孔涂层包覆的镁合金,在浸泡10d后仅出现部分涂层的剥落,腐蚀速率为0.050mm/d,表现出较好的耐蚀性能。添加45S5玻璃陶瓷可以减小涂层和基体之间热膨胀系数的差异,降低复合涂层中的热应力。介孔复合涂层在浸泡10d后只开裂而未剥落,试样的腐蚀速率为0.012mm/d,进一步提高了对基体的保护。
     同时,研究了介孔涂层的结构对材料亲水性和生物性能的影响。引入介孔结构提高了羟基磷灰石涂层的比表面积和表面粗糙度,使涂层的水接触角从67.8°下降到30.1°。在体外细胞实验中,介孔涂层比表面积的增大和亲水性的改善促进了材料对培养基中蛋白质的吸附,有利于成骨细胞在涂层表面的黏附、伸展和增殖,以及骨相关蛋白的表达。在一定的培养周期后,介孔涂层试样的细胞密度和蛋白质浓度显著高于非介孔涂层试样(*p<0.05)。
     综上所述,介孔结构在延缓涂层的开裂、剥落的同时,提高了涂层的亲水性和细胞相容性,介孔涂层包覆的镁合金具有良好的耐蚀性能和生物性能,有望作为骨修复材料使用。
Due to the good mechanical properties, in vitro and in vivo biocompatibility, anddegradability, magnesium (Mg) and its alloys have been regarded as the candidate forthe application as the biodegradable bone repair materials recently. However, theclinic use of Mg alloys is mainly restricted owing to the too fast initial corrosion ratein body fluids. Surface modification is an efficient way to protect Mg alloys andcontrol their corrosion behavior. Compared with the conventional coatings materials,mesoporous materials have the narrow distribution of pore size, large specific surfacearea and enhanced surface wettability, which favor for the promotion of biologicalproperties of the substrates. It could be hypothesized that Mg alloys coated withmesoporous coatings would exhibit suitable properties for bone repair.
     In this paper, mesoporous hydroxyapatite (HA) and mesoporous HA/45S5glass-ceramic composite coatings were respectively prepared on the glass or Mg alloysubstates using a sol-gel dip-coating method, and the process was optimized toprepare the uniform and crack-free coatings. Mesoporous HA with different porestructure was prepared using CTAB or F127as the templates by varing pH value andtemplate concentration. Therein, the mesoporous HA prepared using0.192g/mL ofF127template achieved the mesopores sized in3.17nm, and its pore volume andspecific surface area were0.38cc/g and211.7m2/g. The uniform and crack-freemesoporous coating with the thickness in~1.0μm was prepared on Mg alloysubstrate.
     Using simulated body fluids (SBF) as the corrosion medium, the influence of theporous structure and composition of the coatings on the corrosion behavior of Mgalloy was studied, and the mechanism of the mesoporous coatings to prevent Mg alloyfrom rapid corrosion was explored. The immersion tests showed that the presence ofmesoporous structure would decline the elastic modulus of the coating and the effectof residual stress on its breakdown, preventing the rapid cracking and peeling of HAcoating in the initial soaking stage and promoted the protection of the mesoporous HAcoating to the substrate. After soaking in SBF for10days, the corrosion rate of themesoporous HA coated Mg alloy was0.050mm/d, revealing that the coated sample has good corrosion resistance. Furthermore, the addition of glass-ceramic into themesoporous coating would decrease the difference of thermal expansion coefficientsbetween the coatings and substrates. Due to the downtrend of the residual stress, themesoporous composite coating didn’t peel after immersed in SBF for10days andprovided the enhanced protection to the substrate, that is, the corrosion rate of themesoporous composite coating coated Mg alloy was decreased to0.012mm/d.
     Meanwhile, the effect of the mesoporous structure on the surface wettability andbiological properties of the coatings was evaluated. The introduction of mesoporespromoted the specific surface area and surface roughness of the coatings, which led tothe decrease of water contact angle from67.8°to30.1°. In vitro cell assay revealedthat the improved surface area and wettability favored for the adsorption of proteins inculture media, being beneficial for the adhesion, spreading, proliferation ofosteoblasts and bone-related proteins expression. After being cultured for designedperiods, the cell density and proteins concentration in the mesoporous groups weremarkedly higher than those of the non-mesoporous group (*p<0.05).
     In conclusion, the mesoporous structure could prevent the rapid cracking andpeeling of the coatings, and promote their surface wettability and in vitrocytocompatibility. Therefore, the mesoporous coatings coated Mg alloy, being withgood corrosion resistance and biological properties, could be used as the bone repairmaterials.
引文
[1] Barrère F, Mahmood TA, de Groot K, et al. Advanced biomaterials for skeletaltissue regeneration: Instructive and smart functions. Materials Science andEngineering R,2008,59(1-6):38~71
    [2] Hunziker EB. Articular cartilage repair: basic science and clinical progress. Areview of the current status and prospects. Osteoarthritis and Cartilage,2002,10(6):432~463
    [3] Lalan S, Pomerantseva I, Vacanti JP. Tissue engineering and its potential impacton surgery. World journal of surgery,2001,25(11):1458~1466
    [4]郝强,赵丽,关继奎,等,人工骨材料在骨缺损修复中的应用,中国组织工程研究与临床康复,2009,13(34):6745~6748
    [5] Hench LL, Polak JM. Third-generation biomedical materials. Science,2002,295(5557):1014~1017
    [6] Mollazadeh S, Javadpour J, Khavandi A. In situ synthesis and characterization ofnano-size hydroxyapatite in poly (vinyl alcohol) matrix. Ceramics International,2007,33(8):1579~1583
    [7] Stevens MM, George JH. Exploring and engineering the cell surface interface.Science,2005,310(5751):1135~1138
    [8]艾永平,谢世坤,蒋芬,等,可降解骨内固定材料研究进展,中国组织工程研究与临床康复,2008,12(49):9735~9738
    [9]俞耀庭,生物医用材料,天津:天津大学出版社,2000.12~16
    [10]Breme HJ, Biehl V, Helsen JA. Metals and implants, in: Metals as Biomaterials.John Wiley&Sons Ltd, Chichester,1998,37~71
    [11]Williams DF. The Williams Dictionnary of Biomaterials. Liverpool UniversityPress, Liverpool,1999,27~28
    [12]赵荻,黄文旵,骨修复用生物玻璃复合材料研究进展,功能材料,2008,39(3):353~354,357
    [13]陈琦,王大平,刘建全,纳米羟基磷灰石-聚乳酸复合材料制备及生物相容性研究,国际骨科学杂志,2010,31(6):349~351
    [14]Balamurugan A, Rajeswari S, Balossier G, et al. Corrosion aspects of metallicimplants-An overview. Materials and Corrosion,2008,59(11):855~869
    [15]杨化娟,杨柯,张炳春,医用不锈钢的发展及展望,材料导报,2005,19(6):56~59
    [16]Ren Y, Yang K, Zhang B, et al. Nickel-free Stainless Steel for MedicalApplications. Journal of Materials Science and Technology,2004,20(5):571~573
    [17]Kuroda D, Takemoto S, Hanawa T, et al. Characterization of the Surface OxideFilm on an Fe-Cr-Mo-N System Alloy in Environments Simulating the HumanBody. Materials Transactions,2003,44(12):2671~2677
    [18]Albertini M, Herrero-Climent M, Lázaro P, et al. Comparative study on AISI440and AISI420B stainless steel for dental drill performance. Materials Letters,2012,79:163~165
    [19]夏亚一,刘文忠,李强,等,NiTi记忆合金弹性固定对家兔骨折愈合的影响,临床骨科杂志,2007,10(1):67~69
    [20]王蕴贤,张小农,孙康,NiTi合金的生物医用性能及其在医学领域的应用,稀有金属,2006,30(3):385~389
    [21]Hang R, Ma S, Ji V, et al. Corrosion behavior of NiTi alloy in fetal bovine serum.ElectrochimicaActa,2010,55(20):5551~5560
    [22]Nie FL, Zheng YF, Cheng Y, et al. In vitro corrosion and cytotoxicity onmicrocrystalline, nanocrystalline and amorphous NiTi alloy fabricated by highpressure torsion. Materials Letters,2010,64(8):983~986
    [23]崔永鹏,何国求,刘晓山,医用多孔NiTi形状记忆合金的研究进展,上海金属,2006,28(6):37~40,45
    [24]董大伟,闫景龙,钛金属在骨组织工程中的应用进展,医学综述,2012,18(9):1383~1385
    [25]王艳玲,惠松骁,叶文君,等,新型医用钛合金Ti-39Nb-6Zr显微组织和力学性能的研究,材料热处理技术,2009,38(14):36~40
    [26]尹东方,黄一飞,医用钛合金的生物相容性研究,医学研究杂志,2008,37(10):96~97
    [27]刘岩,马信龙,人工骨修复材料及金属钛材料在骨组织工程中的应用,中国组织工程研究,2012,16(12):2229~2232
    [28]Zhan Y, Li C, Jiang W. β-type Ti-10Mo-1.25Si-xZr biomaterials for applicationsin hard tissue replacements. Materials Science and Engineering C,2012,32(6):1664~1668
    [29]Cimpean A, Mitran V, Ciofrangeanu CM, et al. Osteoblast cell behavior on thenew beta-type Ti-25Ta-25Nb alloy. Materials Science and Engineering C,2012,32(6):1554~1563
    [30]杜娟,姜焕焕,莫嘉骥,等,钛表面形貌和亲水性表面对成骨细胞增殖、分化的影响,中国口腔颌面外科杂志,2012,10(3):182~187
    [31]谢加兵,徐祝军,钛植入材料表面生物化改性研究进展,国际骨科学杂志,2012,33(1):52~54
    [32]Datta N, Holtorf HL, Sikavitsas VI, et al. Effect of bone extracellular matrixsynthesized in vitro on the osteoblastic differentiation of marrow stromal cells.Biomaterials,2005,26(9):971~977
    [33]刘宣勇,硬组织植入材料表/界面研究进展,无机材料学报,2011,26(1):1~11
    [34]Kim EJ, Jeong YH, Choe HC, et al. Surface phenomena of HA/TiN coatingson the nanotubular-structured beta Ti-29Nb-5Zr alloy for biomaterials. AppliedSurface Science,2012,258(6):2083~2087
    [35]Farnoush H, Mohandesi JA, Fatmehsari DH, et al. Modification ofelectrophoretically deposited nano-hydroxyapatite coatings by wire brushing onTi-6Al-4V substrates. Ceramics International,2012,38(6):4885~4893
    [36]Zhao L, Hong Y, Yang D, et al. The underlying biological mechanisms ofbiocompatibility differences between bare and TiN-coated NiTi alloys.Biomedical Materials2011,6(2):025012
    [37]黄晶晶,杨柯,镁合金的生物医用研究,材料导报,2006,20(4):67~69
    [38]Song Y, Shan D, Chen R, et al. Biodegradable behaviors of AZ31magnesiumalloy in simulated body fluid. Materials Science and Engineering C,2009,29(3):1039~1045
    [39]Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloysand the associated bone response. Biomaterials,2005,26(17):3557~3563
    [40]Quach NC, Uggowitzer PJ, Schmutz P. Corrosion behaviour of an Mg-Y-RE alloyused in biomedical applications studied by electrochemical techniques. ComptesRendus Chimie,2008,11(9):1043~1054
    [41]Hanzi AC, Gunde P, Schinhammer M, et al. On the biodegradation performanceof an Mg-Y-RE alloy with various surface conditions in simulated body fluid.Acta Biomaterialia,2009,5(1):162~171
    [42]Li Z, Gu X, Lou S, et al. The development of binary Mg-Ca alloys for use asbiodegradable materials within bone. Biomaterials,2008,29(10):1329~1344
    [43]Xu L, Zhang E, Yin D, et al. In vitro corrosion behaviour of Mg alloys in aphosphate buffered solution for bone implant application. Journal of MaterialsScience: Materials in Medicine,2008,19(3):1017~1025
    [44]Zhang SX, Zhang XN, Zhao CL, et al. Research on an Mg-Zn alloy as adegradable biomaterial. Acta Biomaterialia,2010,6(2):626~640
    [45]张佳,宗阳,袁广银,等,新型医用Mg-Nd-Zn-Zr镁合金在模拟体液中的降解行为,中国有色金属学报,2010,20(10):1989~1997
    [46]彭友霖,周丽丽,周艳红,镁合金作为生物医用植入材料的临床应用,中国组织工程研究与临床康复,2011,15(42):7923~7926
    [47]袁广银,章晓波,牛佳林,等,新型可降解生物医用镁合金JDBM的研究进展,中国有色金属学报,2011,21(10):2476~2488
    [48]Staigera MP, Pietaka AM, Huadmai J, et al. Magnesium and its alloys asorthopedic biomaterials: Areview. Biomaterials,2006,27(9):1728~1734
    [49]Xin Y, Hu T, Chu PK. In vitro studies of biomedical magnesium alloys in asimulated physiological environment: A review. Acta Biomaterialia,2011,7(4):1452~1459
    [50]Song GL. Control of biodegradation of biocompatible magnesium alloys.Corrosion Science,2007,49(4):1696~1701
    [51]Liu Z, Gao W. Electroless nickel plating on AZ91Mg alloy substrate. Surface andCoatings Technology,2006,200(16-17):5087~5093
    [52]Hornberger H, Virtanen S, Boccaccini AR. Biomedical coatings on magnesiumalloys-Areview. Acta Biomaterialia,2012,8(7):2442~2455
    [53]高家诚,李龙川,王勇,镁表面改性及其在仿生体液中的耐蚀行为,中国有色金属学报,2004,14(9):1508~1513
    [54]高家诚,李龙川,王勇,等,碱热处理镁及其在仿生模拟体液中耐蚀性能,金属热处理,2005,30(4):38~42
    [55]Yan T, Tan L, Xiong D, et al. Fluoride treatment and in vitro corrosion behaviorof an AZ31B magnesium alloy. Materials Science and Engineering C,2010,30(5):740~748
    [56]李绮,刘新杰,颜廷亭,等,氟处理对AZ31B镁合金生物耐蚀降解行为的影响,稀有金属材料与工程,2011,40(10):1859~1863
    [57]姜海英,闫征斌,张照,等,氟处理AZ31B生物可降解镁合金材料的细胞相容性,中国组织工程研究,2012,16(16):2922~2926
    [58]冯爱玲,憨勇,生物医用镁的表面处理技术研究进展,化工进展,2011,30(8):1778~1784
    [59]Xue D, Yun Y, Schulz MJ, et al. Corrosion protection of biodegradablemagnesium implants using anodization. Materials Science and Engineering C,2011,31(2):215~223
    [60]尚伟,温玉清,李秀广,等,AZ91D镁合金微弧氧化电参数对其耐蚀性的影响,表面技术,2012,41(1):37~40
    [61]Wang YM, Wang FH, Xu MJ, et al. Microstructure and corrosion behavior ofcoated AZ91alloy by microarc oxidation for biomedical application. AppliedSurface Science,2009,255(22):9124~9131
    [62]Gu XN, Li N, Zhou WR, et al. Corrosion resistance and surface biocompatibilityof a microarc oxidation coating on a Mg-Ca alloy. Acta Biomaterialia,2011,7(4):1880~1889
    [63]龚沛,王欣宇,郭洁,仿生法制备纯镁/羟基磷灰石复合涂层的研究,生物骨科材料与临床研究,2008,5(4):39~42
    [64]Keim S, Brunner J, Fabry B, et al. Control of magnesium corrosion andbiocompatibility with biomimetic coatings. Journal of Biomedical MaterialsResearch Part B: Applied Biomaterials,2011,96B (1):84~90
    [65]Shadanbaz S, Dias GJ. Calcium phosphate coatings on magnesium alloys forbiomedical applications: Areview. Acta Biomaterialia,2012,8(1):20~30
    [66]Rogers K, Etok S, Scott R. Structural characterisation of apatite coatings. Journalof Materials Science,2004,39(18):5747~5754
    [67]崔彤,管仁国,电沉积制备镁合金HA涂层的组织及其可降解性能,材料热处理学报,2011,32(9):146~150
    [68]Guan RG, Johnson I, Cui T, et al. Electrodeposition of hydroxyapatite coating onMg-4.0Zn-1.0Ca-0.6Zr alloy and in vitro evaluation of degradation, hemolysis,and cytotoxicity. Journal of Biomedical Materials Research Part A,2012,100A(4):999~1015
    [69]高亚丽,熊党生,医用镁合金等离子喷涂羟基磷灰石涂层研究,材料热处理学报,2011,32(1):109~113
    [70]钱建刚,张家祥,李淑青,等,镁合金表面等离子喷涂Al涂层及激光重熔研究,稀有金属材料与工程,2012,41(2):360~363
    [71]Tan A, Soutar A, Annergren I, et al. Multilayer sol-gel coatings for corrosionprotection of magnesium. Surface and Coatings Technology,2005,198(1–3):478~482
    [72]张丽丽,姚军,袁小玉,Sol-gel法镁合金表面制备SiO2涂层及其腐蚀性能研究,材料热处理技术,2011,40(6):134~136
    [73]Zhong X, Li Q, Hu J, et al. Characterization and corrosion studies of ceria thinfilm based on fluorinated AZ91D magnesium alloy. Corrosion Science,2008,50(8):2304~2309
    [74]Zhang Y, Bai K, Fu Z, et al. Composite coating prepared by micro-arc oxidationfollowed by sol-gel process and in vitro degradation properties. Applied SurfaceScience,2012,258(7):2939~2943
    [75]Hu J, Zhang C, Cui B, et al. In vitro degradation of AZ31magnesium alloycoated with nano TiO2film by sol-gel method. Applied Surface Science,2011,257(21):8772~8777
    [76]Wang S, Guo X, Xie Y, et al. Preparation of superhydrophobic silica film onMg-Nd-Zn-Zr magnesium alloy with enhanced corrosion resistance by combiningmicro-arc oxidation and sol-gel method. Surface and Coatings Technology,2012,213:192~201
    [77]Amaravathy P, Rose C, Sathiyanarayanan S, et al. Evaluation of in vitrobioactivity and MG63Oesteoblast cell response for TiO2coated magnesiumalloys. Journal of Sol-Gel Science Technology,2012,64(3):694~703
    [78]Gao JH, Shi XY, Yang B, et al. Fabrication and characterization of bioactivecomposite coatings on Mg-Zn-Ca alloy by MAO/sol-gel. Journal of MaterialsScience: Materials in Medicine,2011,22(7):1681~1687
    [79]李明欧,肖秀峰,刘榕芳,等,溶胶凝胶法合成含锌羟基磷灰石粉体,稀有金属材料与工程,2009,38(S1):183~187
    [80]杨建华,郭灵虹,李晖,溶胶-凝胶法制备纳米羟基磷灰石超薄薄膜及其表征,生物医学工程学杂志,2006,23(5):1075~1079
    [81]张宏泉,闫玉华,李世普,生物医用复合材料的研究进展及趋势,北京生物医学工程,2000,19(1):55~59
    [82]Chai YC, Kerckhofs G, Roberts SJ, et al. Ectopic bone formation by3D porouscalcium phosphate-Ti6Al4V hybrids produced by perfusion electrodeposition.Biomaterials,2012,33(16):4044~4058
    [83]Arcos D, Izquierdo-Barba I, Vallet-Regí M. Promising trends of bioceramics inthe biomaterials field. Journal of Materials Science: Materials in Medicine,2009,20(2):447~455
    [84]Fujishiro Y, Hench LL, Oonishi H. Quantitative rates of in vivo bone generationfor Bioglass and hydroxyapatite particles as bone graft substitute. Journal ofMaterials Science: Materials in Medicine,1997,8(11):649~652
    [85]沈卫,顾燕芳,刘昌胜,等,羟基磷灰石的表面特性,硅酸盐通报,1996,1:45~52
    [86]Song YW, Shan DY, Han EH. Electrodeposition of hydroxyapatite coating onAZ91D magnesium alloy for biomaterial application. Materials Letters,2008,62(17-18):3276~3279
    [87]Yang JX, Jiao YP, Cui FZ, et al. Modifcation of degradation behavior ofmagnesium alloy by IBAD coating of calcium phosphate. Surface and CoatingsTechnology,2008,202(22-23):5733~5736
    [88]王勇平,何耀华,朱兆金,等,Mg-Nd-Zn-Zr镁合金体外降解行为及生物相容性,科学通报,2012,57(32):3109~3116
    [89]Zou C, Weng W, Deng X, et al. Preparation and characterization of porous β-tricalcium phosphate/collagen composites with an integrated structure.Biomaterials,2005,26(26):5276~5284
    [90]耿芳,谭丽丽,贺永莲,等,多孔镁表面生物活性β-TCP涂层的制备及其细胞相容性研究,稀有金属材料与工程,2009,38(2):318~322
    [91]马玉春,陈民芳,由臣,等,Mg-Zn-Zr表面磷酸钙涂层的制备及其耐蚀性能研究,稀有金属材料与工程,2011,40(S2):592~595
    [92]付玉平,郭磊,管俊林,等,磷酸三钙涂层镁合金材料的细胞相容性研究,中国生物工程杂志,2012,32(2):45~49
    [93]Hench LL. The story of Bioglass. Journal of Materials Science: Materials inMedicine,2006,17(11):967~978
    [94]Juhasz JA, Best SM. Bioactive ceramics: processing, structures and properties.Journal of Materials Science,2012,47(2):610~624
    [95]Kokubo T, Ito S, Shigematsu M, et al. Mechanical properties of a new type ofapatite-containing glass-ceramic for prosthetic application. Journal of MaterialsScience,1985,20(6):2001~2004
    [96]Br mer H, Deutscher K, Blenke B, et al. Properties of the bioactive implantmaterial. Ceravital Science of Ceramics,1977,9:219~225
    [97]Vogel W, H land W. The development of bioglass ceramics for medicalapplications. Angewandte Chemie International Edition,1987,26(6):527~544
    [98]Daniela C, David MP, Jonathan K, et al. A structural study of sol-gel andmelt-quenched phosphate-based glasses. Journal of Non-Crystalline Solids,2007,353(18-21):1759~1765
    [99]Daniela C, Jonathan CK, Mark ES, et al. Synthesis and structural characterizationof P2O5-CaO-Na2O sol-gel materials. Journal of Non-Crystalline Solids,2007,353(11-12):1141~1149
    [100]Li XD, Cai S, Zhang WJ, et al. Effect of pH values on surface modification andsolubility of phosphate bioglass-ceramics in the CaO-P2O5-Na2O-SrO-ZnOsystem. Applied Surface Science,2009,255(22):9241~9243
    [101]姜伟,蔡舒,张文娟,CaO-P2O5-SrO-MgO-Na2O玻璃陶瓷的析晶控制和微观结构的研究,稀有金属材料与工程,2009,38(S2):814~817
    [102]Rahaman MN, Day DE, Bal BS, et al. Bioactive glass in tissue engineering. ActaBiomaterialia,2011,7(6):2355~2373
    [103]Seitz JM, Collier K, Wulf E, et al. Comparison of the corrosion behavior ofcoated and uncoated magnesium alloys in an in vitro corrosion environment.Advanced Engineering Materials,2011,13(9): B313~B323
    [104]Douglas T, Pamula E, Hauk D, et al. Porous polymer/hydroxyapatite scaffolds:characterization and biocompatibility investigations. Journal of MaterialsScience: Materials in Medicine,2009,20(9):1909~1915
    [105]Pieske O, Kaltenhauser F, Pichlmaier L, et al. Clinical benefit ofhydroxyapatite-coated pins compared with stainless steel pins in external fixationat the wrist: a randomised prospective study. Injury,2010,41(10):1031~1036
    [106]Hartmann M. Ordered mesoporous materials for bioadsorption and biocatalysis.Chemistry of Materials,2005,17(18):4577~4593
    [107]Hartono SB, Qiao SZ, Jack K, et al. Improving adsorbent properties of cage-likeordered amine functionalized mesoporous silica with very large pores forbioadsorption. Langmuir,2009,25(11):6413~6424
    [108]Sevimli F, Y lmaz A. Surface functionalization of SBA-15particles foramoxicillin delivery. Microporous and Mesoporous Materials,2012,158:281~291
    [109]Tabasi O, Falamaki C, Khalaj Z. Functionalized mesoporous silicon fortargeted-drug-delivery. Colloids and Surfaces B: Biointerfaces,2012,98:18~25
    [110]Zhu Y, Wu C, Ramaswamy Y, et al. Preparation, characterization and in vitrobioactivity of mesoporous bioactive glasses (MBGs) scaffolds for bone tissueengineering. Microporous and Mesoporous Materials,2008,112(1-3):494~503
    [111]Lin H, Ma J, Li X, et al. A co-templated approach to hierarchicallymesoporous-macroporous bioactive glasses (MMBG) scaffolds for bone tissueregeneration. Journal of Sol-Gel Science and Technology,2012,62(2):170~176
    [112]薛士壮,朱海霖,陈建勇,等,介孔生物活性玻璃/脱钙骨复合支架的制备及性能研究,无机材料学报,2011,26(10):1068~1072
    [113]冯志远,刘斌,冉海琼,等,钛合金表面介孔二氧化钛涂层的制备及表征,中国组织工程研究,2012,16(8):1439~1442
    [114]Xia W, Grandfield K, Hoess A, et al. Mesoporous titanium dioxide coating formetallic implants. Journal of Biomedical Materials Research Part B: AppliedBiomaterials,2012,100B (1):82~93
    [115]Guo Y, Zhou Y, Jia D. Fabrication of hydroxycarbonate apatite coatings withhierarchically porous structures.Acta Biomaterialia,2008,4(2):334~342
    [116]赵森林,廖立兵,介孔羟基磷灰石研究进展,有色金属,2009,61(2):55~60
    [117]Wang H, Zhai L, Li Y, et al. Preparation of irregular mesoporous hydroxyapatite.Materials Research Bulletin,2008,43(6):1607~1614
    [118]Zhao YF, Ma J. Triblock co-polymer templating synthesis of mesostructuredhydroxyapatite. Microporous and Mesoporous Materials,2005,87(2):110~117
    [119]Zhao H, He W, Wang Y, et al. Biomineralizing synthesis of mesoporoushydroxyapatite-calcium pyrophosphate polycrystal using ovalbumin asbiosurfactant. Materials Chemistry and Physics,2008,111(2-3):265~270
    [120]Zhang J, Liu G, Wu Q, et al. Novel mesoporous hydroxyapatite/chitosancomposite for bone repair. Journal of Bionic Engineering,2012,9(2):243~251
    [121]Wu X, Song X, Li D, et al. Preparation of mesoporous nano-hydroxyapatiteusing a surfactant template method for protein delivery. Journal of BionicEngineering,2012,9(2):224~233
    [122]Lin DY, Wang XX. A novel method to synthesize hydroxyapatite coating withhierarchical structure. Colloids and Surfaces B: Biointerfaces,2011,82(2):637~640
    [123]Kirkland NT, Birbilis N, Walker J, et al. In-vitro dissolution of magnesium-calcium binary alloys: Clarifying the unique role of calcium additions inbioresorbable magnesium implant alloys. Journal of Biomedical MaterialsResearch Part B: Applied Biomaterials,2010,95B (1):91~100
    [124]ASTM Standards, ASTM Standard G31-90, Standard practice for laboratoryimmersion corrosion testing of metals, Philadelphia, PA, USA,1990
    [125]ASTM Standards, ASTM Standard G1-90, Standard practice for preparing,cleaning, and evaluating corrosion test specimens, Philadelphia, PA, USA,1990
    [126]Lopez-Heredia MA, Weiss P, Layrolle P. An electrodeposition method ofcalcium phosphate coatings on titanium alloy. Journal of Materials Science:Materials in Medicine,2007,18(2):381~390
    [127]Ribeiro AA, Marques RFC, Guastaldi AC, Campos JSD. Hydroxyapatitedeposition study through polymeric process on commercially pure Ti surfacesmodified by laser beam irradiation. Journal of Materials Science,2009,44(15):4056~4061
    [128]Emadi R, Tavangarian F, Esfahani SIR, et al. Nanostructured forsterite coatingstrengthens porous hydroxyapatite for bone tissue engineering. Journal of theAmerican Ceramic Society,2010,93(9):2679~2683
    [129]Xiong JY, Li YC, Hodgson PD, et al. In vitro osteoblast-like cell proliferation onnano-hydroxyapatite coatings with different morphologies on a titanium-niobiumshape memory alloy. Journal of Biomedical Materials Research Part A,2010,95A(3):766~773
    [130]Park JW, Kim YJ, Jang JH, et al. Effects of phosphoric acid treatment oftitanium surfaces on surface properties, osteoblast response and removal oftorque forces. Acta Biomaterialia,2010,6(4):1661~1670
    [131]Patel S, Kurpinski K, Quigley R, et al. Bioactive nanofibers: Synergistic effectsof nanotopography and chemical signaling on cell guidance. Nano Letters,2007,7(7):2122~2128
    [132]Ochsenbein A, Chai F, Winter S, et al. Osteoblast responses to different oxidecoatings produced by the sol-gel process on titanium substrates. ActaBiomaterialia,2008,4(5):1506~1517
    [133]Yang PP, Quan ZW, Li CX, et al. Bioactive, luminescent and mesoporouseuropium-doped hydroxyapatite as a drug carrier. Biomaterials,2008,29(32):4341~4347
    [134]Shum HC, Bandyopadhyay A, Bose S, et al. Double emulsion droplets asmicroreactors for synthesis of mesoporous hydroxyapatite. Chemistry ofMaterials,2009,21(22):5548~5555
    [135]Bouyer E, Gitzhofer F, Boulos MI. Morphological study of hydroxyapatitenanocrystal suspension. Journal of Materials Science: Materials in Medicine,2000,11(8):523~531
    [136]Liu DM, Troczynski T, Tseng WJ. Aging effect on the phase evolution ofwater-based sol-gel hydroxyapatite. Biomaterials,2002,23(4):1227~1236
    [137]Carta D, Knowles JC, Smith ME, et al. Synthesis and structural characterizationof P2O5-CaO-Na2O sol-gel materials. Journal of Non-Crystalline Solids,2007,353(11-12):1141~1149
    [138]Eshtiagh-Hosseini H, Housaindokht MR, Chahkandi M. Effects of parameters ofsol-gel process on the phase evolution of sol-gel-derived hydroxyapatite.Materials Chemistry and Physics,2007,106(2-3):310~316
    [139]宋琳,朱大章,孙晓宇,等,介孔球状纳米羟基磷灰石的多级组装合成,化学学报,2009,67(23):2697~2702
    [140]Zhou T, Mo S, Zhou S, et al. Mn3O4/worm-like mesoporous carbon synthesizedvia a microwave method for supercapacitors. Journal of Materials Science,2010,46(10):3337~3342
    [141]Natarajan UV, Rajeswari S. Influence of calcium precursors on the morphologyand crystallinity of sol-gel-derived hydroxyapatite nanoparticles. Journal ofCrystal Growth,2008,310(21):4601~4611
    [142]Yao J, Tjandra W, Chen YZ, et al. Hydroxyapatite nanostructure materialderived using cationic surfactant as a template. Journal of Materials Chemistry,2003,13(12):3053~3057
    [143]Huo Q, Margolese DI, Ciesla U, et al. Organization of organic molecules withinorganic molecular species into nanocomposite biphase arrays. Chemistry ofMaterials,1994,6(8):1176~1191
    [144]王连洲,禹剑,施剑林,等,合成条件对介孔氧化硅材料孔径尺寸的影响,硅酸盐学报,1999,27(1):22~27
    [145]Park JH, Schwartz Z, Olivares-Navarrete R, et al. Enhancement of surfacewettability via the modification of microtextured titanium implant surfaces withpolyelectrolytes. Langmuir,2011,27(10):5976~5985
    [146]Martines E, Seunarine K, Morgan H, et al. Superhydrophobicity andsuperhydrophilicity of regular nanopatterns. Nano Letters,2005,5(10),2097~2103
    [147]Li JN, Cao P, Zhang XN, et al. In vitro degradation and cell attachment of aPLGA coated biodegradable Mg-6Zn based alloy. Journal of Materials Science,2010,45(22):6038~6045
    [148]Fu H, Rahaman MN, Day DE, et al. Hollow hydroxyapatite microspheres as adevice for controlled delivery of proteins. Journal of Materials Science: Materialsin Medicine,2011,22(3):579~591
    [149]Puleo DA, Nanci A. Understanding and controlling the bone-implant interface.Biomaterials,1999,20(23-24):2311~2321
    [150]Zeng H, Chittur KK, Lacefield WR. Analysis of bovine serum albuminadsorption on calcium phosphate and titanium surface. Biomaterials,1999,20(4):377~384
    [151]Shen JW, Wu T, Wang Q, et al. Molecular simulation of protein adsorption anddesorption on hydroxyapatite surfaces. Biomaterials,2008,29(5):513~532
    [152]Arima Y, Iwata H. Effect of wettability and surface functional groups on proteinadsorption and cell adhesion using well-defined mixed self-assembledmonolayers. Biomaterials,2007,28(20):3074~3082
    [153]Dolatshahi-Pirouz A, Jensen THL, Kolind K, et al. Cell shape and spreading ofstromal (mesenchymal) stem cells cultured on fibronectin coated gold andhydroxyapatite surfaces. Colloids and Surfaces B: Biointerfaces,2011,84(1):18~25
    [154]Zhang Y, Bai K, Fu Z, et al. Composite coating prepared by micro-arc oxidationfollowed by sol–gel process and in vitro degradation properties. Applied SurfaceScience,2012,258(7):2939~2943
    [155]Soler-Illia GJDA, Crepaldi EL, Grosso D, et al. Block copolymer-templatedmesoporous oxides. Current Opinion in Colloid and Interface Science,2003,8(1):109~126
    [156]Lee KW, Bae CM, Jung JY, et al. Surface characteristics and biological studiesof hydroxyapatite coating by a new method. Journal of Biomedical MaterialsResearch Part B: Applied Biomaterials,2011,98B(2):395~407
    [157]Malaval L, Liu F, Roche P, et al. Kinetics of osteoprogenitor proliferation andosteoblast differentiation in vitro. Journal of Cell Biochemical,1999,74(4):16~27
    [158]Becker D, Gei ler U, Hempel U, et al. Proliferation and differentiation of ratcalvarial osteoblasts on type I collagen-coated titanium alloy. Journal ofBiomedical Materials Research,2002,59(3):516~527
    [159]Wang C, Duan Y, Markovic B, et al. Phenotypic expression of bone-relatedgenes in osteoblasts grown on calcium phosphate ceramics with different phasecompositions. Biomaterials,2004,25(13):2507~2514
    [160]Feliu S, Maffiotte C, Samaniego A, et al. Effect of the chemistry and structure ofthe native oxide surface film on the corrosion properties of commercial AZ31and AZ61alloys. Applied Surface Science,2011,257(20):8558~8568
    [161]Li M, Chen Q, Zhang W, et al. Corrosion behavior in SBF for titania coatings onMg-Ca alloy. Journal of Materials Science,2011,46(7):2365~2369
    [162]Tomozawa M, Hiromoto S. Growth mechanism of hydroxyapatite-coatingsformed on pure magnesium and corrosion behavior of the coated magnesium.Applied Surface Science,2011,257(19):8253~8257
    [163]宋光铃,镁合金腐蚀与防护,北京:化学工业出版社,2006.310~311
    [164]Corkovic S, Whatmore RW, Zhang Q. Development of residual stress in sol-gelderived Pb(Zr, Ti)O3films: An experimental study. Journal of Applied Physics,2008,103(8):084101
    [165]Chiu KY, Wong MH, Cheng FT, et al. Characterization and corrosion studies offluoride conversion coating on degradable Mg implants. Surface and CoatingsTechnology,2007,202(3):590~598
    [166]Hu JH, Zhang CL, Cui BH, et al. In vitro degradation of AZ31magnesium alloycoated with nano TiO2film by sol-gel method. Applied Surface Science,2011,257(21):8772~8777
    [167]Hsiung CHH, Pyzik AJ, De Carlo F, et al. Microstructure and mechanicalproperties of acicular mullite. Journal of the European Ceramic Society,2013,33(3):503~513
    [168]Tang H, Guo Y, Jia D, et al. High bone-like apatite-forming ability ofmesoporous titania films. Microporous and Mesoporous Materials,2010,131(1-3):366~372
    [169]Wen C, Guan S, Peng L, et al. Characterization and degradation behavior ofAZ31alloy surface modified by bone-like hydroxyapatite for implantapplications. Applied Surface Science,2009,255(13-14):6433~6438
    [170]Hou SS, Zhang RR, Guan SK, et al. In vitro corrosion behavior of Ti-O filmdeposited on fluoride-treated Mg-Zn-Y-Nd alloy. Applied Surface Science,2012,258(8):3571~3577
    [171]Jamesh M, Kumar S, Narayanan TSNS. Corrosion behavior of commerciallypure Mg and ZM21Mg alloy in Ringer’s solution-Long term evaluation by EIS.Corrosion Science,2011,53(2):645~654
    [172]Li HF, Wang YB, Cheng Y, et al. Surface modification of Ca60Mg15Zn25bulkmetallic glass for slowing down its biodegradation rate in water solution.Materials Letters,2010,64(13):1462~1464
    [173]Kastena P, Luginbühl R, van Griensven M, et al. Comparison of human bonemarrow stromal cells seeded on calcium-deficient hydroxyapatite, β-tricalciumphosphate and demineralized bone matrix. Biomaterials,2003,24(15):2593~2603
    [174]Best SM, Porter AE, Thian ES, et al. Bioceramics: past, present and for thefuture. Journal of the European Ceramic Society,2008,28(7):1319~1327
    [175]Liu J, Miao X. Sol-gel derived bioglass as a coating material for porous aluminascaffolds, Ceramics International,2004,30(7):1781~1785
    [176]钱军民,徐明辉,张伟,生物形态45S5玻璃陶瓷的仿生制备和结构表征,硅酸盐学报,2011,39(9):1472~1476
    [177]Ma J, Chen CZ, Wang DG, et al. Influence of the sintering temperature on thestructural feature and bioactivity of sol-gel derived SiO2-CaO-P2O5bioglass.Ceramics International,2010,36(6):1911~1916
    [178]Lefebvre L, Chevalier J, Gremillard L, et al. Structural transformations ofbioactive glass45S5with thermal treatments. Acta Materialia,2007,55(10):3305~3313
    [179]Chen QZ, Li Y, Jin LY, et al. A new sol-gel process for producingNa2O-containing bioactive glass ceramics. Acta Biomaterialia,2010,6(10):4143~4153
    [180]Sepulveda P, Jones JR, Hench LL. In vitro dissolution of melt-derived45S5andsol-gel derived58S bioactive glasses. Journal of Biomedical Materials Research,2002,61(2):301~311

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700