浙江人工红树林对关键环境因子的生态响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
造林试验表明,温度、盐度和滩位是浙江人工红树林造林成功与否的主要限制因子。开展红树植物对温度、盐度和滩位的生态响应研究,将为人工红树林树种选择适宜的立地条件提供理论依据与技术支撑。在我国红树植物引种的北缘地区——浙江,开展人工红树林对关键环境因子的生态响应研究,具有重要科学价值。本文以我国亚热带地区优势红树植物秋茄(Kandelia obovata)及近几年浙江引种的桐花树(Aegiceras corniculatum)、无瓣海桑(Sonneratia apetala)等10种红树植物为材料,通过野外造林试验和温室模拟实验,采用野外调查监测和实验室分析、定性和定量相结合、单项指标和综合分析的方法,比较受试植物的形态指标、滩位适应度、寒害指数、生理指标、光合指标的变化,分析其在浙南海岸对环境因子的适应能力,系统研究了温度、盐度、滩位等关键环境因子对浙江人工红树林发展的影响,以及不同滩位生境中不同林龄秋茄种群结构和生物量模型。研究结果明确了全球气候变化背景下适宜浙江引种的红树植物种类和宜林生境。
     (1)在全球气候变化背景下,对浙江红树林分布状况进行了预测。若年均温升温1.8℃,我国红树植物分布北界由福建福鼎向北推延至浙江舟山,分布到浙江的红树植物将达到3种,为秋茄、白骨壤(Avicennia marina)、桐花树。若升温4.0℃℃,我国红树植物分布北界将向北推延至南京,分布到浙江的红树植物将达到12种,为秋茄、白骨壤、桐花树、海漆(Excoecaria agallocha)、无瓣海桑等。该工作对浙江人工红树林造林树种的引选具有理论指导意义。
     (2)浙江人工红树林造林树种对温度的响应。低温尤其是极端低温严重影响红树植物的生长。随着温度的降低,受试植物叶片相对电导率(RE)、脯氨酸含量(PRO)、超氧化物歧化酶活性(SOD)、丙二醛含量(MDA)逐渐增大。越冬后,拉关木(Laguncularia racemosa)和白骨壤全部死亡(寒害指数,Cii>3),无瓣海桑部分死亡(Cii=2.76),桐花树和秋茄的寒害指数与乡土植物无柄小叶榕(Ficuas concinna var. subsessilis)相似(1.08-1.14),无冻害现象。-4℃C极端低温过后,保存率依次为秋茄(77%)>桐花树(73%)>海漆(70%)>无瓣海桑(25%),拉关木、木榄(Bruguiera gymnorhiza)、尖瓣海莲(Bruguiera sexangula var. rhynchopetala)、红海榄(Rhizophora stylosa)、老鼠簕(Acanthus ilicifolius)、白骨壤均死亡。综合生理指标、寒害指数、保存率,10种受试植物的抗寒能力依次为:秋茄>桐花树>海漆>无瓣海桑>其它。生长能力依次为:无瓣海桑>拉关木>秋茄>桐花树>白骨壤。秋茄、桐花树、海漆和无瓣海桑可作为发展浙江人工红树林的优选树种。研究结果印证了全球变化背景下对浙江人工红树林造林树种引选的预测结果。
     (3)浙江人工红树林造林树种对盐度的响应。盐度对红树植物光合作用的影响主要通过影响色素的合成、改变气孔运动、影响磷酸核酮糖羧化酶最大羧化效率和饱和光强下电子传递效率,以及影响光能捕获效率和电子传递量子效率等途径来实现。秋茄的盐度适生范围较无瓣海桑广,其在≦340 mM NaCl的盐度生境均能较好生长,170 mM NaCl是最佳盐度生境;无瓣海桑生境盐度应低于170 mMNaC。
     (4)浙江人工红树林造林树种对潮汐浸淹的响应。以秋茄、无瓣海桑和桐花树为材料,研究了潮汐浸淹对其生长的影响。这三种红树植物均在中滩位保存率最高,秋茄和无瓣海桑在高滩位保存率高于低滩位,桐花树相反。以SOD活性、PRO含量、RE为参数分析受试红树植物对滩位的适应度(adp),相对于中滩位(adp=0),秋茄和桐花树在高滩位适应度降低(adp=—0.8204,adp=—0.7050),无瓣海桑稍有升高(adp=0.4795);秋茄和无瓣海桑在低滩位适应度明显降低(adp= 3.4776,adp=—3.3934),而桐花树无变化(adp=—0.0988)。秋茄和无瓣海桑适应于中、高滩位,而桐花树适应于中、低滩位。
     (5)不同滩位人工秋茄种群结构和生物量研究。滩位和林龄影响了种群特征,树高、冠幅和种群大小结构与树龄成显著正相关,与潮汐浸淹时间成显著负相关。种群密度与树龄成显著负相关,与潮汐浸淹时间成正相关。秋茄为基部多分枝型红树植物,通过测定其近地面分枝树干直径(D)与生物量,建立叶片(WL)、树干(WS)、地下部分(WB)及植株总生物量(WT)与树干直径D的异速生长式:WL=0.187×D1.855,Ws=O.267×D1.906,WB=4.6×D1.136,WT=3.614×D1.446。3年、5年和10年龄秋茄种群生物量分别为7.13±1.06、11.32±1.27和24.35±3.40 t/hm2,地下生物量占43.7%。
A large number of afforestation practices showed that temperature, salinity and intertidal position are the major limiting factors for mangrove forestation success. Therefore, study on the ecological responses of mangroves to temperature, salinity and intertidal position would provide theoretical basis and technical support to mangrove forestation in species and habitat selection. It has important location values in academic research on the study that ecological response of artificial mangroves to key environmental factors in Zhejiang Province, north area of mangrove introduction of China. In this study, field and greenhouse experiments were carried out to investigate to changes in plant growth, adaptation, survival, chilling injury index, photosynthesis and physiological parameters of 10 mangrove species, such as Kandelia obovata etc., in responding to key environmental factors, temperature, salinity and intertidal position, in order to clarify the adaptability of these mangroves to environmental factors though the methods of qualitative and quantitative analyses, the single index and the comprehensive analyses. Moreover, population structure and biomass were also investigated to provide theoretical basis for assessment of mangrove population dynamics and biomass of different ages in responding to intertidal position. The main results are as follows:
     (1) Under the background of global climate change, the present paper forecasts for the introduction of artificial mangrove species in Zhejiang province:if the average temperature increased by 1.8℃, mangrove plants will achieve 3 species, K. obovata, Aegiceras corniculatum, distributed to Zhejiang Province. If the average temperature increased by 4℃, twelve mangrove species including to K. obovata, Avicennia marina, A. corniculatum, Sonneratia apetala etc, can be distributed to Zhejiang. It has important theoretical values on forecasts of Zhejiang artificial mangrove species selection.
     (2) Response of Zhejiang artificial mangrove species to temperature: low temperature, especially extreme low temperature affected growth of mangroves. Relative electrolyte conductance (RE), malondiadehyde (MDA), proline (PRO) and superoxide dismutase (SOD) of experimental plants leaves increased with a decreasing temperature. After winter, plants of L. racemosa and A. marina were all dead (chilling injury index, Cii>3), some individuals of S. apetala were dead (Cii=2.76), while A. corniculatum, K. obovata and native species Ficuas concinna var. subsessilis were survival, with the similar values of Cii (1.08-1.14). After extreme low temperature (-4℃), the survival rate were K. obovata (77%)> A. corniculatum (73%)> E. agallocha (70%)> S. apetala (25%), whereas the other six mangrove species, including L. racemosa, B. gymnorhiza, B. sexangula var. rhynchopetala, R. stylosa, A. ilicifolius and A. marina, were all dead. As a result, cold tolerance of the experimental mangrove species as follows: K. obovata> A. corniculatum> E. agallocha> S. apetala > the other six mangrove species. Therefore, K. obovata, A. corniculatum, E. agallocha and S. apetala can be used as the main mangrove species in the artificial mangrove forestation in Zhejiang province, confirmed the context of mangrove species selection of Zhejiang artificial mangrove introduction.
     (3) The effects of salinity on growth and photosynthesis were investigated in the two mangroves, S. apetala and K. obovata, under cultured conditions. The results showed that salinity affected plant photosynthesis by pigment synthesize, stomata changes, the values of the maximum rate of carboxylation by Rubisco and the PAR saturated electron transport rate, and the effective quantum yield etc. Kandelia obovata had a wider range of suitable salinity than S. apetala, which could grow well in≦340 Mm NaCl salinity habitats, with the optimum salinity of 170 Mm NaCl; whereas S. apetala had a strong low salinity preferences, with the salinity of its habitat should be less than 170 Mm NaCl.
     (4) The effects of intertidal position on growth of K. obovata, S. apetala and A. corniculatum were tested, and the results were as followed: the three mangroves had the highest survival rate in middle intertidal position. The survival rate was higher in high than low intertidal position for K. obovata and S. apetala, and A. corniculatum opposite. The value of adaptation (adp) was estimated by the parameters of SOD, PRO and RE. The value of adp of K. obovata and A. corniculatum decreased,-0.8204 and -0.7050 for K. obovata and A. corniculatum, respectively, but increased for S. apetala (adp=0.4795) in high intertidal position compared to the adp value in middle intertidal position (adp =0). The adp values of K. obovata (adp=3.4776) and S. apetala (adp=-3.3934) in low intertidal position significantly decreased in comparison to middle intertidal position, while adp value did not change for A. corniculatum (adp=-0.0988). Therefore, K. obovata and S. apetala adapted to be planted in relative higher intertidal position, while A. corniculatum adapted to be planted in relative lower intertidal position.
     (5) An experiment was conducted to investigate the population characteristics and biomass in artificial K. obovata mangrove in different intertidal position. The results showed that population characteristics such as height, canopy, and size structure positive relative to population age, but negative to intertidal position (tide-flooding time). Population density was negative to population age, while positive to tide-flooding time. Diameters of stems were used as variable for estimate plant biomass (leaf, WL; stem, Ws; belowground parts, WB; and total dry weight, WT). Allometric equations as followed: WL=0.187D1.855; Ws=0.267D1.906; WB=4.6D1.136; WT=3.614D1.446. Population biomass of 3-,5- and 10-year K. obovata was estimated at 7.13,11.32 and 24.35 t hm-2, with an average of 43.7% corresponding to belowground biomass.
引文
1. 陈桂葵,陈桂珠.中国红树林植物区系分析[J].生态科学,1998,17(2):19-23.
    2. 陈鹭真,林鹏,王文卿.红树植物对淹水胁迫响应研究进展[J].生态学报,2006,26(2):586-591.
    3. 陈鹭真,王文卿,林鹏.潮汐淹水时间对秋茄幼苗生长的影响[J].海洋学报,2005,27(2):141-147.
    4. 陈鹭真,王文卿,张宜辉,黄丽,赵春磊,杨盛昌,杨志伟,陈粤超,徐华林,钟才荣,苏博,方柏州,陈乃明,曾传志,林光辉.2008年南方低温对我国红树植物的破坏作用[J].植物生态学报,2010,34(2):186-194.
    5. 陈树培,梁志贤,邓义.中国南海海岸的红树林[J].广西植物,1988,3(3):215-224.
    6. 陈小勇,林鹏.我国红树林对全球气候变化的响应及其作用[J].海洋湖沼通报,1999(2):11-17.
    7. 陈雪清.红树林的生态功能和生物多样性的全面认识及维护[J]. 林业资源管理,2001,21(6):65-69.
    8. 陈玉军,廖宝文,彭耀强,许松葵,郑松发,郑德璋.红树植物无瓣海桑北移引种的研究[J].广东林业科技,2003,19(2):9-12.
    9. 陈粤超,林康英,许方宏.广东湛江红树林寒害调查及灾后恢复技术探讨[J].湿地科学与管理,2008,4(3):49-50.
    10.杜峰,梁宗锁,徐学选,山仑,张兴昌.陕北黄土丘陵区撂荒草地群落生物量及植被土壤养分效应.生态学报,2007,27(5):1673-1683.
    11.杜群,陈征海,孙孟军,诸葛刚,应宝根.浙江省红树林资源调查及其发展规划[J].林业调查规划,2004,29(3):9-12.
    12.段舜山,徐景亮.红树林湿地在海岸生态系统维护中的功能[J].生态科学,2004,23(4):351-355.
    13.范航清.红树林-海岸环保卫士[M].南宁:广西科学技术出版社,2000.
    14.方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产力.生态学报,1996,16(5):497-508.
    15.符国瑗.海南东寨港红树林自然保护区的红树林[J].广西植物,1995,15(4): 340-346.
    16.郭会军,陈桂珠.适应度分析—一种从生理指标评价植物对逆境反应的方法.见范航清,梁士楚主编.中国红树林研究与管理[M].北京:科学出版社,1995.
    17.海洋大辞典编辑委员会.海洋大词典[M].辽宁人民出版社,1998.
    18.黄晓林,彭欣,仇建标,陈少波.浙南红树林现状分析及开发前景[J].浙江林学院学报,2009,26(3):427-433.
    19.蒋礼珍,黄汝红.钦州红树林寒害调查及无瓣海桑耐寒性初探[J].气象研究与应用,2008,29(3):35-38.
    20.李火根,黄敏仁.分形及其在植物研究中的应用.植物学通报,2001,18(6):684-690.
    21.李玫,廖宝文,管伟,郑松发,陈玉军.广东省红树林寒害的调查[J].防护林科技,2009,2:29-31.
    22.廖宝文,郑德璋,李云,郑松发,郑馨仁,黄仲淇.不同类型海桑-秋茄人工林地上生物量及营养元素积累与分布.应用生态学报,1999,10(1):11-15.
    23.廖宝文,郑松发,陈玉军,李玫,李意德.外来红树植物无瓣海桑生物学特性与生态环境适应性分析[J].生态学杂志,2004,23(1):10-15.
    24.廖宝文,郑松发,陈玉军,李玫.红树林湿地恢复技术的研究进展[J].生态科学,2005,24(1):61-65.
    25.廖宝文.三种红树植物对潮水淹浸与水体盐度适应能力的研究.中国林业科学研究院.博士论文,2010.
    26.廖岩,陈桂珠.三种红树植物对盐胁迫的生理适应[J].生态学报,2007,27(6):2208-2214.
    27.林金顺.福建省平潭沿海秋茄人工林群落的生物量研究.防护林科技,2005,(2):6-8.
    28.林楠.舟山地区红树植物秋茄移植技术研究.浙江海洋学院,硕士论文,2010.
    29.林鹏,傅勤.中国红树林环境生态及经济利用[M].北京:高等教育出版社,1995.
    30.林鹏,卢昌义,林光辉,陈荣华,苏辚.九龙江口红树林研究Ⅰ,秋茄群落的生物量和生产力[J].厦门大学学报(自然科学版),1985,24(4):508-514.
    31.林鹏.红树林[M].北京:海洋出版社,1984.
    32.林鹏.红树林的种类及其分布[J].林业科学,1987,23(4):481-490.
    33.林鹏.中国红树林生态系[M].北京:科学出版社,1997.
    34.林鹏.中国红树林湿地及其生态工程的几个问题[J].中国工程科学,2003,5(6):33-38.
    35.林益明,林鹏.中国红树林生态系统的植物种类、多样性、功能及其保护[J].海洋湖沼通报,2001,(3):8-16.
    36.刘小伟,郑文教,孙娟.全球气候变化与红树林[J].生态学杂志,2006,25(11):1418-1420.
    37.缪绅裕,陈桂珠,陈正桃,吴中亨.广东湛江保护区红树林种群的生物量及其分布格局[J].广西植物,1998,18(1):19-23.
    38.缪绅裕,陈桂珠.全球红树林区系地理[J].植物学通报,1996,13(3):6-14.
    39.莫竹承,范航清,何斌源.海水盐度对两种红树植物胚轴萌发的影响[J].植物生态学报,2001,25(2):235-239.
    40.潘瑞炽,董愚得,主编.植物生理学[M].第3版.北京:高等教育出版社,1995.16-17.
    41.彭逸生,周炎武,陈桂珠.红树林湿地恢复研究进展[J].生态学报,2008,28(2):786-797.
    42.彭友贵,陈桂珠,武鹏飞,缪绅裕,殷敏,佘忠明.人工生境条件下几种红树植物的净初级生产力比较研究[J].应用生态学报,2005,16(8):1383-1388.
    43.平晓燕,周广胜,孙敬松.植物光合产物分配及其影响因子研究进展[J].植物生态学报,2010,34(1):100-111.
    44.宋建阳,张汝国.珠江口红树林群落钾的累积和循环研究.土壤与环境,2000,9(2):106-109.
    45.谭晓林,张乔民.红树林潮滩沉积速率及海平面上升对我国红树林的影响[J].海洋通报,1997,16(4):29-35.
    46.王伯荪,张炜银,咎启杰,梁士楚.红树植物之诊释[J].中山大学学报(自然科学版),2003,42(3):42-46.
    47.王晶英,敖红,张杰,等.植物生理生化技术与原理[M].哈尔滨:东北林业大学出版社,2003.
    48.王韧,李晓景,蔡金标,张典铨,何东进,刘翠,王其炳,郑开基,林峰.闽东沿海秋茄天然林与人工林生物量比较.西南林学院学报,2010,30(1):16-20.
    49.王文卿,林鹏.盐度对红树植物木榄生长的影响[J].厦门大学学报(自然科学版),1999,38(2):273-279.
    50.王文卿,王瑁.中国红树林[M].北京:科学出版社,2007.
    51.温远光.广西英罗港5中红树植物群落的生物量和生产力[J].广西科学,1999,6(2):142-147.
    52.杨慧宁,徐斌,韩超群,黄志华.雷州半岛红树林资源及其效益[J].生态环境,2004,13(2):222-224.
    53.杨盛昌,林鹏.潮滩红树植物抗低温适应的生态学研究[J].植物生态学报,]998,22(1)60-67.
    54.叶勇,卢昌义,胡宏友,谭凤仪.三种泌盐红树植物对盐胁迫的耐受性比较[J].生态学报,2004,24(11):2444-2450.
    55.叶勇,卢昌义,谭凤仪.木榄和秋茄对水渍的生长与生理反应的比较研究[J].生态学报,2001,21(10):1654-1661.
    56.余叔文.植物生理学和分子生物学[M].北京:科学出版社,1992.p236-243.
    57.昝启杰,王勇军,廖宝文,郑德璋.无瓣海桑、海桑人工林的生物量及生产力研究[J]。武汉植物学研究,2001,19(5):391-396.
    58.曾雪琴,陈鹭真,谭凤仪,黄建辉,徐华林,林光辉.深圳湾引种红树植物海桑的幼苗发生和扩散格局的生态响应[J].生物多样性,2008,16(3):236-244.
    59.张乔民,于红兵,陈欣树.红树林生长带与潮汐水位的研究[J].生态学报,1997,17(3):258-265.
    60.张乔明,隋淑珍,张叶春,于红兵,孙宗勋,温孝胜.红树林宜林海洋环境指标研究[J].生态学报,2001,21(9):1427-1437.
    61.张娆挺,林鹏.中国海岸红树植物区系研究[J].厦门大学学报(自然科学版),1984,23(2): 232-239.
    62.赵晟,洪华生,张珞平,陈伟琪.中国红树林生态系统服务的能值价值[J].资源科学,2007,29(1):147-154.
    63.郑德璋,李玫,郑松发,廖宝文,陈玉军.中国红树林恢复和发展研究进展[J].广西林业科技,2003,19(1):10-14.
    64.郑德璋,李云,廖宝文.红树树种适宜温度条件的研究.见郑德璋,郑松发,廖宝文等主编.红树林主要树种造林与经营技术研究[M].北京:科学出版社,1999.
    65.郑德璋,廖宝文,郑松发.红树林造林经营技术及护岸效益.见郑德璋,廖宝文,郑松发主编,红树林主要树种造林与经营技术研究[M].北京:科学出版社,1999.
    66.郑德璋,廖宝文.海南岛清澜港和东寨港红树林及其生境的调查研究[J].林业科学研究,1989,2(5):433-441.
    67.郑海雷,林鹏.培养盐度对海莲和木榄幼苗膜保护系统的影响[J].厦门大学学报(自然科学版),1998,37(1):135-139.
    68.郑坚,王金旺,陈秋夏,许加意,李效文,卢翔,雷海清,夏海涛,郑松发.几种红树林植物在浙南沿海北移引种试验[J].西南林学院学报,2010,30(5):11-17.
    69. Allaway, W.G., Curran, M., Hollington, L.M., Ricketts, M.C., Skelton, N.J.,2001. Gas space and oxygen exchange in roots of Avicennia marina (Forssk.) Vierh.var. australasica (Walp.) Moldenke ex N.C. Duke, the Grey mangrove. Wetl. Ecol. Manag.9,211-218.
    70. Alongi, D.,2008. Mangrove forests:Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci.76,1-13.
    71. Alongi, D.M., Tirendi, F., Trott, L.A., Xuan, T.T.,2000. Benthic decomposition rates and pathways in plantations of the mangrove Rhizophora apiculata in the Mekong delta, Vietnam. Mar. Ecol. Progr. Ser.194,87-101.
    72. Andrews, T.J., Muller, G.J.,1985. Photosynthetic gas exchange of the mangrove, Rhizophora stylosa Griff., in its natural environment. Oecologia 65,449-455.
    73. Attiwill, P.M., Clough, B.F.,1980. Carbon dioxide and water vapour exchange in the white mangrove. Photosynthetica 14,40-47.
    74. Ayukai, T.,1998. Introduction: carbon fixation and storage in mangroves and their relevance to the global climate change—a case study in Hinchinbrook Channel in northeastern Australia. Mangr. Salt Marsh.2,189-190.
    75. Ball, M.C.,1988. Ecophysiology of mangroves. Trees 2,129-142.
    76. Ball, M.C., Chow, W.S., Anderson, J.M.,1987. Salinity induced potassium deficiency causes a loss of functional photosystem Ⅱ in leaves of grey mangroves, Avicennia marina, through depletion of the atrazine-binding polypeptide. Aust. J. Plant Physiol.14,351-361.
    77. Ball, M.C., Farquhar, G.D.,1984. Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions. Plant Physiol.74,1-6.
    78. Ball, M.C., Farquhar, G.D.,1984. Photosynthetic and stomatal responses of the grey mangrove to transient salinity conditions. Plant Physiol.74,7-11.
    79. Ball, M.C., Pidsley, S.M.,1995. Growth responses to salinity in relation to distribution in two mangrove species, Sonneratia alba and Sonneratia lanceolata, in northern Australia. Funct. Ecol. 9,77-85.
    80. Balmford, A., Bruner, A., Cooper, P., Costanza, R., Farber, S., Green, R.E., Jenkins, M., Jefferiss, P., Jessamy, V., Madden, J., Munro, K., Myers, N., Naeem, S., Paavola, J., Rayment, M., Rosendo, S., Roughgarden, J., Trumper, K., Turner, R.K.,2002. Economic reasons for conserving wild nature. Science 297,950-953.
    81. Barbier, E.B.2007. Valuing ecosystem services as productive inputs. Econ. Policy 22,177-229.
    82. Brockmeyer, Jr. R.E., Rey, J.R., Virnstein, R.W., Gilmore, R.G., Earnest, L.,1997. Rehabilitation of impounded estuarine wetlands by hydrologic reconnection to the Indian River Lagoon, Florida (USA). Wetl. Ecol. Manag.1997,4,93-109.
    83. Burrough P A. Fractal dimensions of landscapes and other environmental dada. Nature,1981, 294:240-242.
    84. Cabrera, M.A., Seijo, J.C., Euan, J., Perez, E.,1998. Economic values of ecological services from a mangrove ecosystem. Inter, coast. Net.32,1-2.
    85. Cheeseman, J.M.,1994. Depressions of photosynthesis in mangrove canopies. In:Baker, N.R., Bowyer, J.R. (Eds.), Photoinhibition of photosynthesis: from molecular mechanisms to the field. BIOS, Oxford, pp.377-389.
    86. Cheesman, J.M., Clough, B.F., Carter, D.R., Lovelock, C.E., Ong, J.E., Sim, R.G.,1991. The analysis of photosynthetic performance in leaves under field conditions: a case study using Bruguiera mangroves. Photosynth. Res.29,11-22.
    87. Chen L.Z., Tam, N.F.Y., Huang, J.H., Zeng, X.Q., Meng, X.L., Zhong, C.R., Wong, Y.-S., Lin, G.H.,2008. Comparison of ecophysiological characteristics between introduced and indigenous mangrove species in China. Estuar. Coast. Shelf Sci.79,644-652.
    88. Church, J., White, N.,2006. A 20th century acceleration in global sea-level rise. Geophys. Res. Lett.33, L01602.
    89. Clarke, L.D., Hannon, N.J.,1970. The mangrove swamp and salt marsh communities of the Sydney district, Ⅲ. Plant growth in relation to salinity and water logging. J. Ecol.58,351-369.
    90. Clough, B.F.,1993. Constraints on the growth, propagation and utilization of mangroves in arid regions. H Lieth and A Al Masoom (eds): Towards the rational use of high salinity tolerant plants. Kluwer Academic Publishers. Printed in the Netherlands.1,341-352.
    91. Clough, B.F., Ong, J.E., Gong, W.K.,1997. Estimating leaf area index and photosynthetic production in canopies of the mangrove Rhizophora apiculata. Mar. Ecol. Progr. Ser.159, 285-292.
    92. Comley, B.W.T., McGuinness, K.A.,2005. Above-and below-ground biomass and allometry of four common northern Australian mangroves. Aust. J. Bot.53,431-436.
    93. Conner, V.J.,1969. Growth of grey mangrove (Avicennia marina) in nutrient culture. Biotropica 1,37-40.
    94. Costanza R., d'Arge R., de Groot R.S., Farber S., Grasso M., Hannon B., Limburg K., Naeem S., O'Neil R.V., Paruelo J., Raskin R.G., Sutton P., van den Belt M.,1997. The value of the world's ecosystem services and natural capital. Nature (Lond.) 387,253-260.
    95. Cram, J.W., Torr, P.G., Ross, D.A.,2002. Salt allocation during leaf development and leaf fall in mangroves. Trees Struct. Funct.16,112-119.
    96. Cuc N T K, Ninimiya I. Allometric relationships for young Kandelia candel (L.) Blanco plantation in Northern Vietnam. Journal of Biological Sciences,2007,7(3):539-543.
    97. Curran, M., Cole, M., Allaway, W.G.,1986. Root aeration and respiration in young mangrove plants(Avicennia marina (Forssk.) Vierh.). J. Exp. Bot.37,1225-1233.
    98. Dahdouh-Guebas, F., Koedam, N.,2006. Empirical estimate of the reliability of the use of the Point-Centered Quarter Method (PCQM):solutions to ambiguous field situations and description of the PCQM+protocol. Forest Ecol. Manag.228,1-18.
    99. de Lange W.P., de Lange, P.J.,1994. An appraisal of factors controlling the latitudinal distribution of mangrove(Avicennia marina var. resinifera) in New Zealand. J. Coast. Res.10, 539-548.
    100.de Leon R.O.D., White, A.T.,1999. Mangrove rehabitation in the Philippines. In:An international perspective on wetland rehabilitation. Netherland:Kluwer Academic Publishers.
    101. Delphine, S., Alvino, A., Zacchini, M., Loreto, F.,1998. Consequence of salt stress on conductance to CO2 diffusion, Rubisco characteristics of spinach leaves. Aust. J. Plant Physiol. 25,395-402.
    102. Duke, N.C.,1992. Mangrove floristics and biogeography. In:Robertson, A.I., Alongi, D.M. (Eds.), Tropical Mangrove Ecosystems. American Geophysical Union, Washington, DC, USA, pp.63-100.
    103. Duke, N.C., Ball, M.C., Ellison, J.C.,1998. Factors influencing biodiversity and distributional gradients in mangroves. Glob. Ecol. Biogeogr. Lett.7,27-47.
    104. Duke, N.C., Meynecke, J.-O., Dittmann, S., Ellison, A.M., Anger, K., Berger, U., Cannicci, S., Diele, K., Ewel, K.C., Field, C.D., Koedam, N., Lee, S.Y., Marchand, C., Nordhaus, I., Dahdouh-Guebas, F.,2007. A world without mangroves? Science 317,41-42.
    105. Ellison, A.M., Farnsworh, E.J.,1997. Simulated sea level change alters anatomy, physiology, growth, and reproduction of red mangrove (Rhizophora mangle L.). Oecologia 112,435-446.
    106. Ellison, J.,2000. How South Pacific mangroves may respond to predicted climate change and sea level rise. In:Gillespie, A., Burns, W. (Eds.), Climate Change in the South Pacific:Impacts and Responses in Australia, New Zealand, and Small Islands States. Kluwer Academic Publishers, Dordrecht, Netherlands, (Chapter 15), pp.289-301.
    107. Ellison, J., Stoddart, D.,1991. Mangrove ecosystem collapse during predicted sea level rise: Holocene analogues and implications. J. Coast. Res.7,151-165.
    108. Elster, C.,2000. Reasons for reforestation success and failure with three mangrove species in Colombia. Forest Ecol. Manag.131,201-214.
    109. Erwin, K.L.,2009. Wetlands and global climate change:the role of wetland restoration in a changing world. Wetl. Ecol. Manag.17,71-84.
    110. Ezawa, S., Tada, Y.,2009. Identification of salt tolerance genes from the mangrove plant Bruguiera gymnorrhiza using Agrobacterium functional screening. Plant Sci.176,272-278
    111.FAO,1994. Mangrove forest management guidelines. FAO Forestry Paper 117, Food and Agriculture Organization of the United Nations, Rome.
    112. FAO,2003. Status and Trends in Mangrove Area Extent Worldwide. Food and Agriculture Organization of the United Nations, Forest Resources Division, Paris.
    113. Farquhar, G.D., Caemmerer, S.V., Berry, J.A.,1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149,78-90.
    114. Field, C.D.,1995. Impact of expected climate change on mangroves. Hydrobiologia 295,75-81.
    115. Field, T.S., Brodribb, T.,2001. Stem water transport and freeze-thaw induced embolism in conifers and angiosperms in a Tasmanian treeline heath. Oecologia 127,314-320.
    116. Flowers, T.J., Troke, P.F., Yeo, A.R.,1977. Mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol.28,89-121.
    117. Fromard, F., Puig, H., Mougin, E., Marty, G., Betoulle, J.L., Cadamuro, L.,1998. Structure above-ground biomass and dynamics of mangrove ecosystems:new data from French Guiana. Oecologia 115,39-53.
    118. Fromard, F., Vega, C., Proisy, C.,2004. Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana:a case study based on remote sensing data analyses and field surveys. Mar. Geol.208,265-280.
    119. Fu, X.H., Huang, Y.L., Deng, S.L., Zhou, R.C., Yang, G.L., Ni, X.W., Li, W.J., Shi, S.H.2005. Construction of a SSH library of Aegiceras corniculatum under salt stress and expression analysis of four transcripts. Plant Sci.169,147-154.
    120. Gilman, E., Ellison, J., Jungblat, V., VanLavieren, H., Wilson, L., Areki, F., Brighouse, G., Bungitak, J., Dus, E., Henry, M., Sauni Jr., I., Kilman, M., Matthews, E., Teariki-Ruatu, N., Tukia, S., Yuknavage, K.,2006. Adapting to Pacific Island mangrove responses to sea level rise and other climate change effects. Climate Res.32,161-176.
    121. Gilman, E.L., Ellison, J., Duke, N.C., Field, C.,2008. Threats to mangroves from climate change and adaptation options:A review. Aquat. Bot.89,237-250.
    122. Gu, L., Hanson, P.J., Mac Post, W., Kaiser, D.P., Yang, B., Nemani, R., Pallardy, S.G., Meyers, T., 2008. The 2007 Eastern US spring freeze: increased cold damage in a warming world? BioScience,58,253-262.
    123. Halley J M, Hartley S, Kallimanis A S, Kunin W E, Lennon J J, Sgardelis S P. Use and abuses of fractal methodogy in ecology. Ecology Letters,2004,7:254-271.
    124. Hikosaka, K., Sudoh, S.& Hirose, T.,1999. Light acquisition and use by individuals competing in a dense stand of an annual herb, Xanthium canadense. Oecologia 118,388-396.
    125. Hoegh-Guldberg, O., Bruno, J.F.,2010. The impact of climate change on the world's marine ecosystems. Science 328,1523-1528.
    126. Hovenden, M.J., Curran, M., Cole, M.A., Coulter, P.F.E., Skelton, N.J., Allaway, W.G.,1995. Ventilation and respiration in roots of one-year-old seedlings of grey mangrove Avicennia marina (Forssk.) Vierh. Hydrobiologia 295,23-29.
    127. IPCC (Intergovernmental Panel on Climate Change) (2007). IPCC fourth assessment report. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. eds. Climate Change in 2007:the physical science basis. Cambridge University Press, Cambridge, UK.996.
    128. Jithesh, M.N., Prashanth, S.R., Sivaprakash, K.R., Parida, A.,2006. Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant Cell Rep.25,865-876.
    129. Khan M N I, Suwa R, Hagihara A. Allometric relationships for estimating the aboveground phytomass and leaf area of mangrove Kandelia candel (L.) Druce trees in the Manko Wetland, Okinawa Island, Japan. Trees-Structure and Function,2005,19:266-272.
    130. Khan M N I, Suwa R, Hagihara A. Biomass and aboveground net primary production in a subtropical mangrove stand of Kandelia obovata (S., L.) Yong at Manko Wetland, Okinawa, Japan. Wetlands Ecology and Management,2009,17:585-599.
    131. Khan, M.A., Aziz, I.,2001. Salinity tolerance in some mangrove species from Pakistan. Wetl. Ecol. Manag.9,219-223
    132. Komiyama, A., Havanond, S., Srisawatt, W., Mochida, Y., Fujimoto, K., Ohnishi, T., Ishihara, S., Miyagi, T.,2000. Top/root biomass ratio of a secondary mangrove (Ceriops tagal (Perr.) C. B. Rob.) Forest. Forest Ecol. Manag.139,127-134.
    133. Komiyama, A., Ong, J.E., Poungparn, S.,2008. Allometry, biomass, and productivity of mangrove forests:A review. Aquat. Bot.89,128-137.
    134. Komiyama, A., Poungparn, S., Kato, S.,2005. Common allometric equations for estimating the tree weight of mangroves. J. Trop. Ecol.21,471-477.
    135. Krauss, K.W., Allen, J.A.,2003. Influences of salinity and shade on seedling photosynthesis and growth of two mangrove species, Rhizophora mangle and Bruguiera sexangula, introduced to Hawaii. Aquat. Bot.77,311-324.
    136. Krauss, K.W., Allen, J.A., Cahoon, D.R.,2003. Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuar. Coast. Shelf Sci.56,251-259.
    137. Kristensen, E., Bouillon, S., Dittmar, T., Marchand, C.,2008. Organic carbon dynamics in mangrove ecosystems:a review. Aquat. Bot.89,201-219.
    138. Krnuv, J., Glofcheski, D.J.,1992. Protectiv eeffects of aminoacids against freeze thaw damage inmammalian cells. Cryobiology 29,291-295.
    139. Lal, P.N.,1990. Conservation or conversion of mangroves in Fiji:An ecological economic analysis. Occasional Paper No.11, East-West Environment and Policy Institute, Honolulu,108 pp.
    140. Lareher, W.,1987. Physiological Plant ecology. NewYOrk:Springer-Verlag Berlin Heidelberg.
    141.Lessa, G., Masselink, G.,2006. Evidence of a mid-Holocene sea-level highstand from the sedimentary record of a macrotidal barrier and paleoestuary system in northwestern Austr. J. Coast. Res.22,100-112.
    142. Lewis III, R.R.,2005. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Engineer.24,403-418.
    143. Lewis, R.R., Marshall, M.J.,1997. Principles of successful restoration of shrimp Aquaculture ponds back to mangrove forests. Programa/resumes de Marcuba'97, September 15/20, Palacio de Convenciones de La Habana, Cuba, p.126.
    144. Li, N.Y., Chen, S.L., Zhou, X.Y., Li, C.Y., Shao, J., Wang, R.G., Fritz, E., Huettermann, A., Polle, A.,2008. Effect of NaCl on photosynthesis, salt accumulation and ion compartmentation in two mangrove species, Kandelia candel and Bruguiera gymnorrhiza. Aquat. Bot.88,303-310.
    145. Li, R.Q., Wang, J.P.,2002. Plant stress physiology. Wuhan:Wuhan University Press.
    146. Li, X.P., Bjorkman, O., Shih, C., Grossman, A.R., Rosenquist, M., Jansson, S. Niyogi, K.A., 2000. Pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403,391-395.
    147. Liao B W, Zheng D Z, Li Y, Zheng S F, Zheng X R, Huang Z Q. Above-ground biomass and nutrient accumulation and distribution in different type Sonneratia carseolaris-Kandelia obovata mangrove plantations. Chinese Journal of Applied Ecology,1999,10(1):11-15.
    148. Lin P. Biomass and element cycle of Kandelia forest, China. Journal of Wuhan Botanical Research,1989,7(3):251-257.
    149. Long, S.P., Baker, N.R., Raines, C.A.,1993. Analysing the responses of photosynthetic CO2 assimilation to long-term elevation of atmospheric CO2 concentration. Vegetation 104/105, 33-45.
    150. Lovelock, C.E., Ellison, J.C.,2007. Vulnerability of mangroves and tidal wetlands of the Great Barrier Reef to climate change. In: Johnson, J.E., Marshall, P.A. (Eds.), Climate Change and the Great Barrier Reef: A Vulnerability Assessment. Great Barrier Reef Marine Park Authority and Australian Greenhouse Office, Australia, pp.237-269.
    151. Luo, Z.K., Sun, O.J.X., Wang, E.L., Ren, H., Xu, H.L.,2010. Modeling productivity in mangrove forests as impacted by effective soil water availability and its sensitivity to climate change using Biome-BGC. Ecosystems 13,949-965.
    152.Macnae, W.,1968. A general account of the flora of mangrove swamps and forests in the Indo-West-Pacific region. Adv. Mar. Biol.6,73-270.
    153. Mark, S., Francois, B., Colin, F.,1997. World Mangrove Atlas [M]. Smith Settle, Otley, West Yorkshire, UK.
    154. Mark, S., Kainuma, M., Collins, L.,2010. World atlas of mangrove [M]. Earthscan, London,UK.
    155. Martin, C.E., Loeschen, V.S.,1993. Photosynthesis in the mangrove species Rhizophora mangle L.:no evidence for CAM-cycling. Photosynthetica 28,391-400.
    156. Massel, S.R., Furukawa, K., Brinkman, R.M.,1999. Surface wave propagation in mangrove forests. Fluid Dyn. Res.24,219-249.
    157. Mazda, Y., Magi, M., Kogo, M., Hong, P.N.,1997. Mangroves as a coastal protection from waves in the Tong King Delta, Vietnam. Mangr. Salt Marsh.1,127-135.
    158.McKee, K.L., Cahoon, D.R., Feller, I.,2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob. Ecol. Biogeogr.16,545-556.
    159. Medeiror T C C, Sampaio E V S B. Allometry of aboveground biomass in mangrove species in Itamaraca, Pernambuco, Brazil. Wetlands Ecology and Management,2008,16:323-330.
    160. Mehta, P.A., Sivaprakash, K., Parani, M., Venkataraman, G., Parida, A.K.,2005. Generation and analysis of expressed sequence tags from the salt-tolerant mangrove species Avicennia marina (Forsk) Vierh. Theor. Appl. Genet.110,416-424.
    161.Milano G.R.,1999. Restoration of coastal wetlands in southeastern Florida. Wetl. J.1999,11, 15-24,29.
    162. Millennium Ecosystem Assessment,2005. Ecosystems and Human Well Being: Synthesis. World Resources Institute, Washington, DC.
    163. Mimura, T., Kura-Hotta, M., Tsujimura, T., Ohnishi, M., Miura, M., Okazaki, Y., Mimura, M., Maeshima, M., Washitani-Nemoto, S.,2003. Rapid increase of vacuolar volume in response to salt stress. Planta 216,397-402.
    164. Mishra, S., Das, A.B.,2003. Effect of NaCl on leaf salt secretion and antioxidative enzyme level in roots of a mangrove, Aegiceras corniculatum. Indian J. Exp. Biol.41,160-165.
    165. Miyama, M., Hanagata, N.,2007. Microarray analysis of 7029 gene expression patterns in Burma mangrove under high-salinity stress. Plant Sci.172,948-957.
    166. Miyama, M., Shimizu, H., Sugiyama, M., Hanagata, N.,2006. Sequencing and analysis of 14842 expressed sequence tags of Burma mangrove, Bruguiera gymnorrhiza. Plant Sci 171,234-241.
    167. Nagelkerken, I., Blaber, S.J.M., Bouillon, S., Green, P., Haywood, M., Kirton, L.G., Meynecke, J.-O., Pawlik, J., Penrose, H.M., Sasekumar, A., Somerfield, P.J.,2008. The habitat function of mangroves for terrestrial and marine fauna: a review. Aquat. Bot.89,155-185.
    168. Nichol, C.J., Rascher, U., Matsubara, S., Osmond, B.,2006. Assessing photosynthetic efficiency in an experimental mangrove canopy using remote sensing and chlorophyll fluorescence. Trees 20,9-15.
    169. Nijs, I., Ferris, R.& Blum, H.,1997. Stomatal regulation in a changing climate:A field study using free air temperature increase (FATI) and free air CO2 enrichment (FACE). Plant Cell Envir. 20,1041-1050.
    170. Niu, S.L., Li, Z., Xia, J., Han, Y., Wu, M., Wan, S.,2008. Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China. Envir. Exper. Bot.63,91-101.
    171. Ong, J.E.,1995. The ecology of mangrove conservation and management. Hydrobiologia 295, 343-351.
    172. Ong, J.E., Gong, W.K., Wong, C.H.,2004. Allometry and partitioning of the mangrove, Rhizophora apiculata. Forest Ecol. Manage.188,395-408.
    173. Parida, A., Das, A.B., Das, P.,2002. NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. J. Plant Biol.45,28-36.
    174. Parida, A.K., Das A.B., Mittra, B.,2004b. Effects of salt on growth, ion accumulation photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees Struct. Funct.18, 167-174.
    175. Parida, A.K., Das, A.B., Mohanty, P.,2004a. Defense potentials to NaCl in a mangrove, Bruguiera parviflora: Differential changes of isoforms of some antioxidative enzymes. Plant Physiol.161,531-542.
    176. Parida, A.K., Das, A.B., Sanada, Y., Mohanty, P.,2004c. Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aquat. Bot.80,77-87
    177. Parida, A.K., Jha, B.,2010. Salt tolerance mechanisms in mangroves: a review. Trees 24, 199-217.
    178. Parida, A.K., Mittra, B., Das, A.B., Das, T.K., Mohanty, P.,2005. High salinity reduces the content of a highly abundant 23-kDa protein of the mangrove Bruguiera parviflora. Planta 221, 135-140.
    179. Pezeshki, S.R, DeLaune, R.D, Patrick Jr., W.H.,1990. Differential response of selected mangroves to soil flooding and salinity:Gas exchange and biomass partitioning. Can. J. For. Res. 20,869-874.
    180. Porra, R.J., Thompson, W.A., Kriedemann, P.E.,1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents:verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975,384-394.
    181. Primavera, J.H., Altamirano, J.P., Lebata, M.J.H.L., de los Reyes Jr., A.A., Pitogo, C.L.,2007. Mangroves and shrimp pond culture effluents in Aklan, Panay Is., central Philippines. Bull. Mar. Sci.80,795-804.
    182. Ren, H., Jian, S.G., Lu, H.F., Zhang, Q.M., Shen, W.J., Han, W.D., Yin, Z.Y., Guo, Q.F.,2008. Restoration of mangrove plantations and colonisation by native species in Leizhou bay, South China. Ecol. Res.23,401-407.
    183. Rohacek, K,2002. Chlorophyll fluorescence parameters:the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40,13-29.
    184. Ronnback, P., Crona, B., Ingwall, L.2007a. The return of ecosystem goods and services.in replanted mangrove forests-perspectives from local communities in Gazi Bay, Kenya. Environ. Conserv.34,313-324.
    185. Ronnback, P., Troell, M., Kautsky, N., Pihl, L., Soderqvist, T., Wennhage, H.,2007b. Ecosystem goods and services from temperate coastal habitats-identification, valuation and implications of ecosystem shifts. Ambio 36,534-544.
    186. Saenger, P., Siddiqi, N.A.,1993. Land from the seas: the mangrove afforestation program of Bangladesh. Ocean Coast. Manag.20,23-39.
    187. Sakaki, T., Kondo, N., Sugahara, K.,1983. Breakdown of photosynthetic pigments and lipids in spinach leaves with ozone fumigation:role of active oxygens. Physiol. Plant.59,28-34.
    188. Sanyal, P.,1998.Rehabilitation of degraded mangrove forests of the Sunderbans of India. In: Program of the International Workshop on Rehabilitation of Degraded Coastal Systems, Phuket Marine Biological Center. Thailand: Phuket.
    189. Shi P L, Yang X, Zhong Z C. Dynamics of population biomass and its density-dependent regulation in alder and cypress mixed forest. Chinese Journal of Applied Ecology,1997,8(4): 341-346.
    190. Smith Ⅲ T J, Whelan K R T. Development of allometric relations for three mangrove species in South Florida for use in the Greater Everglades Ecosystem restoration. Wetlands Ecology and Management,2006,14:409-419.
    191. Smith,Ⅲ. T.J.1987. Effect of light and intertidal position on seedling survival and growth in tropical tidal forest. J. Exp. Mar. Biol. Ecol.110,133-146.
    192. Snedaker, S.,1995. Mangroves and climate change in the Florida and Caribbean region: scenarios and hypotheses. Hydrobiologia 295,43-49.
    193. Sobrado, M.A.,2002. Effect of drought on leaf gland secretion of the mangrove Avicennia germinans L. Trees Struct Funct 16,1-4.
    194. Sobrado, M.A.,2005. Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity. Photosynthetica 43,217-221.
    195. Sobrado, M.A., Ewe, S.M.L.,2006. Linking hypersalinity to leaf physiology in Avicennia germinans and Laguncularia racemosa coexisting in a scrub mangrove forest at the Indian River Lagoon Florida. Trees 20,679-687.
    196. Spalding, M., Blasco, F., Field, C.,1997. World mangrove atlas. Okinawa, Japan:International Society for Mangrove Ecosystems.
    197. Sperry, J.S., Tyree, M.T., Donnelly, J.R.,1988. Vulnerability of xylem to embolism in a mangrove vs an inland species of Rhizophoraceae. Physiol. Plant.74,276-283.
    198. Stuart, S.A., Choat, B., Martin, K.C., Holbrook, N.M., Ball, M.C.,2007. The role of freezing in setting the latitudinal limits of mangrove forests. New Phytol.173,576-583.
    199. Sugihara, K., Hanagata, N., Dubinsky, Z., Baba, S., Karube, J.,2000. Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant Cell Physiol.41,1279-1285.
    200. Suwa, R., Analuddin, K., Khan, M.N.I., Hagihara, A.,2008. Structure and productivity along a tree height gradient in a Kandelia obovata mangrove forest in the Manko Wetland, Okinawa Island, Japan. Wetl. Ecol. Manag.16,331-343.
    201. Takemura, T., Hanagata, N., Dubinsky, Z., Karube, I.,2002. Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dismutase and catalase from Bruguiera gymnorrhiza. Trees Struct. Funct.16,94-99.
    202. Takemura, T., Hanagata, N., Sugihara, K., Baba, S., Karube, I., Dubinsky, Z.,2000. Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquat. Bot.68,15-28.
    203. Tomlinson, P.B.,1986. The Botany of Mangroves. London:Cambridge University Press.
    204. Tomlinson, P.B.,1994. The botany of mangroves. Cambridge: Cambridge University Press, pl-419.
    205. Twilley, R.R., Chen, R.H., Hargis, T.,1992. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water Air Soil Pollut.64,264-288.
    206. Valiela, I., Bowen, J.L., York, J.K.,2001. Mangrove forests: one of the world's threatened major tropical environments. Bio. Sci.51,807-815.
    207. Walters, B.B.,2004. Local management of mangrove forests: effective conservation or efficient resource exploitation? Hum. Ecol.32,177-195.
    208. Walters, B.B.,2006. Mangrove forests and environmental security. In:Innes, J.I., Edwards, I.K, Wilford, D.J. (Eds.), Forests in the balance:linking tradition and technology. Abstracts, XXII IUFRO World Congress, Brisbane, Australia, August 8-13,2005. Int. For. Rev.7(5),290.
    209. Walters, B.B., Ronnback, P., Kovacs, J.M., Crona, B., Hussain, S.A., Badola, R., Primavera, J.H., Barbier, E., Dahdouh-Guebas, F.,2008. Ethnobiology, socio-economics and management of mangrove forests:a review. Aquat. Bot.89,220-236.
    210. Wang W Q, Zhang F.S.,2001. The physiological and molecular mechanism of adaptation to anaerobiosis inhigher plants. Plant Physiol. Commun.37,63-70.
    211. Wang, W.Q., Ke, L., Tam, N.F.Y., Wong, Y.S.,2002. Changes in the main osmotica during the development of Kandelia candel hypocotyls and after mature hypocotyls were transplanted in solutions with different salinities. Mar. Biol.141,1029-1034.
    212. Wanner, L.A,, Junttila, O..,1999. Cold-induced freezing tolerance in Arabidopsis. Plant Physiol. 120,391-399.
    213.Weller D E. Self-thinning exponent correlated with allometric measures of plant geometry. Ecology,1987,68:813-821.
    214. White J. Demographic factors in populations of plants//Solbrig O. T. eds. Demographic Factors in Populations of Plants. Berkeley, CA: University of California Press,1980:21-48.
    215. Ye, Y, Tam, N.F.Y, Wong, Y.S., Lu, C.Y.2003. Growth and physiological responses of two mangrove sepices (Bruguiera gymnorrihiza and Kandelia candel) to waterlogging. Environ. Exp. Bot.49,209-221.
    216. Youssef, T.,2007. Stomatal, biochemical and morphological factors limiting photosynthetic gas exchange in the mangrove associate Hibiscus tiliaceus under saline and arid environment. Aquat. Bot.87,292-298.
    217. Youssef, T., Saenger, P.,1996. Anatomical adaptive strategies to flooding and rhizophere oxidation in mangrove seedlings. Austr. J. Bot.44,297-313.
    218. Zimmermann, U., Wagner, H.J., Heidecker, M., Mimietz, S., Schneider, H., Szimtenings, M., Haase, A., Mitlohner, R., Kruck, W., Hoffmann, R., Konig, W.,2002. Implications of mucilage on pressure bomb measurements and water lifting in trees rooting in high-salinity water. Trees 16,100-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700