带状线法透波材料高温介电性能测试技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁波透波材料广泛应用于各种电子设备中,材料的电磁特性对整个电子系统的性能有着至关重要的影响。当透波材料应用在天线罩,天线窗以及大功率器件中时,由于工作环境的影响,使用温度会发生变化,材料的电磁参数也会发生改变。特别是火箭、导弹等高速飞行器上的天线罩(窗),空气的气动加热会使其温度达到上千摄氏度,高温将导致材料电磁性能的恶化,会严重影响飞行器的通讯、探测、瞄准等电子设备的工作性能。
     为了使飞行器中的电子设备在大气层高速飞行时产生的高温环境中能正常工作,就要保证制作天线罩的透波材料在高温环境中具有优良的电磁性能并掌握其随温度变化的规律。因此就必须要建立一套能够在高温环境下检测材料电磁参数性能指标的测试系统,用以评价材料在不同温度,不同频率下电磁参数性能的好坏,本文以此为研究课题,在广泛调研国内外相关领域发展动态的基础上,结合本课题的具体情况,选用了带状线谐振腔进行指定频段的高温宽频复介电性能测试技术研究。
     本文首先根据高温测试的实际情况,通过腔体多点测试温度进行线性插值,得到腔体纵向上的温度梯度分布。提出了在腔体纵向根据温度分布采用分段计算的方法,建立了变温测试非等横截面腔体的物理模型,推导出了带状线谐振腔材料复介电性能变温测试理论,为利用带状线谐振腔进行材料的变温测试提供了理论基础。
     研制了高温宽带测试腔体和高温、隔热、冷却微波传输线和密封转换接头。通过对测试腔体的优化设计和腔体材料以及表面处理工艺的研究选择,使其高温微波性能更加优异,测试结果更加准确可靠。
     为保证高温测试的顺利进行,设计加工了真空保护系统,选用了超音频感应加热设备对测试腔体和样品进行升温,减小了对隔热防护的要求,使系统更加易于维护和操作。
     在高温校准和测试过程中,通过对腔体不同位置的温度进行实时采集,用线性插值的方法进行计算,通过变温校准得到了各个温度下腔体的热膨胀系数和微波表面电导率,对腔体的模型进行了实时修正,研究了变温过程中的校准方法,降低了由于温度改变导致的腔体热不稳定性对测试结果的影响,提高了高温测试结果的准确性和稳定性。
     最后集成了整个测试系统,编写了测试软件,制作了一批高温材料样品,进行了大量的测试,并对测试数据进行分析对比。对该套系统的测试误差进行了理论分析,确定了各个误差源和权重,进行了误差综合,编写了误差分析软件,推导出了测试系统的测试误差。
     本文所建立的系统可以对透波材料进行宽频带(0.5~8GHz),大温度范围(室温~1500℃)的复介电性能测试,其测试结果具有较好的准确性和稳定性。攻克了透波材料高温宽频测试的难题,填补了国内相关测试领域的空白,同时也为透波材料的理论研究和生产制造提供重要的参考数据。
Wave-transparent materials are widely applied in electronic device. The complex permittivity of materatials plays an important role on performance of the device. When the wave-transparent materials are used in radomes, antenna windows, and high-power devices, due to the impact of the environment, the electromagnetic parameters of materials will change as a function of temperature. Particularly while aerospace are flying at a very high speed in atmosphere, high temperature and high speed air flow will occur. It is an important factor of instability or performance deterioration in those electronic systems.
     In order to work properly in these situations, we must know the different microwave dielectric properties of the transparent materials at different temperatures. Therefore, it is very necessary to build a test system to measure the dielectric properties of materials as a function of temperature and frequencies. Based on the development of dielectric property test methods at home and abroad, combined with the specific requirements of this research, stripline cavity was chosen in the study of high temperature broadband dielectric property test techniques.
     An improved resonance method at high temperature for determining complex dielectric properties of low-loss materials was developed. The calculation process was given by a physical model of the stripline resonator cavity at high temperature. The paper brought forward the method of segmentation calculation according to the temperature changes over the cavity, which matched the actual situation and offer theoretical foundation for high temperature measurements.
     High temperature coaxial line, cooling coaxial line and adapter were designed and fabricated. In this work, we have performed sensitivity analysis in an effort to find the optimum stripline aperture dimensions to obtain both the high quality factor and easy to distinguish working modes. The physical size of the cavity was obtained after optimization and simulation.
     Vacuum furnace was designed to avoid oxidation for high temperature measurements, supersonic induction heating method was used in the microwave high temperature complex permittivity measurements, making the test system easier to maintain and operate.
     During the calibration and testing process, temperatures were real-time measured by the thermocouples buried in the ground boards of the cavity, we use the new method of segmentation calculation to analyze the resonant frequency and quality factor considering the temperature differences along the stripline resonator cavity, conductivity and thermal expansion constant of the cavity metal as function of temperature are calculated. The heat instability of the caity was reduced, and the measurement accuracy and stability at high temperature were improved.
     The whole test system was built and the measurement software was compiled. The microwave parameters at high temperatures and stability of the resonant system were tested. We have verified the proposed method from measurements of some typical samples with the available reference data in the literature. The measurement errors were analyzed based on the measurement theory. Error sources were analyzed and uncertainties were obtained with the program.
     Finally a system has been developed for measuring the complex permittivity of low loss materials at frequencies from 500MHz to 8GHz and over a temperature range up to 1500℃using stripline resonator cavity method. We solved the difficult technical problem of high temperature broadband measurement of microwave transparent material and filled the gap of this field in domestic. Such a test system has a significant guiding effect to the theoretical research and manufacture of wave-transparent materials.
引文
[1]孙目珍.电介质物理基础.广州:华南理工大学出版社,2000,77-85
    [2]张良莹,姚熹.电介质物理.西安:西安交通大学出版社,1991,32-53
    [3]张军,张恒沈,献民,闫耀辰.电磁透波功能复合材料的研究.材料导报,2003,17(7):64-66
    [4]黎义,张大海,陈英,高文.航天透波多功能材料研究进展.宇航材料工艺,2000,30(5):1-5
    [5]袁海根,周玉玺.透波复合材料研究进展.化学推进剂与高分子材料,2006,4(5):30-36
    [6]仝毅,周馨我.微波透波材料的研究进展.材料导报,1997,11(3):1-5
    [7]张扬,洪旭辉.新型透波复合材料的研究.第十五届全国复合材料学术会议论文集,中国,黑龙江,哈尔滨,2008:223-225
    [8]李希峰.透波材料的透波原理及现状分析.山西建筑,2010,36(29):157-158
    [9]高冬云,王树海,潘伟,赵浩.高速导弹天线罩用无机透波材料.现代技术陶瓷,2005,26(4):33-36
    [10]苏震宇,周洪飞.天线罩用耐高温复合材料的研究.玻璃钢/复合材料,2005,(6):35-37
    [11]刘梦媛,白树成,崔溢,陈梦怡,张华,嵇培军.超宽频带、高透波率机头天线罩研制.第三届中国航空学会青年科技论坛文集,中国,贵州,贵阳,2008:575-581
    [12]刘梦媛,王清海,蔡良元,白树成.大功率、高透波率吊舱天线罩研制.第十八届玻璃钢/复合材料学术年会论文集,中国,北京,2010:135-136
    [13]王小群,杜善义,韩杰才.高速宽频带防空导弹天线罩研制探讨.宇航材料工艺.1998,28(2):17-23
    [14]范小虎,杨波,孙涛.高超音速导弹天线罩透波材料研究进展.济南大学学报然科学版,2011,25(1):1-5
    [15]黎义,李建保,张大海,敖明.航天透波多功能复合材料的介电性能分析.宇航材料工艺,2001,31(6):4-9
    [16]韩桂芳,陈照峰,张立同,成来飞,徐永东.高温透波材料研究进展.航空材料学报,2003,23(1):57-62
    [17]李超,刘建超,陈青.航天透波复合材料的研究进展.高科技纤维与应用,2003,28(6):34-39
    [18]孙银宝,张宇民,韩杰才.耐高温透波材料及其性能研究进展.宇航材料工艺,2008,(3):11-14
    [19]张煜东,苏勋家,侯根良.高温透波材料研究现状和展望.飞航导弹,2006,(3):56-58
    [20]李金刚,曹茂盛,张永,林海波.国外透波材料高温电性能研究进展.材料工程,2005,(2):59-62
    [21]艾涛,王汝敏.航天透波材料最新研究进展.材料导报,2004,(18)11:12-15
    [22]李仲平.防热复合材料发展与展望.复合材料:创新与可持续发展.中国,湖南,长沙,2010:3-11
    [23] M. S. Venkatesh, G. S. V. Raghavan. An overview of dielectric properties measuring techniques. Canadian Biosystems Engineering, 2005, 47(7):15-30
    [24] L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, V. K. Varadan. Microwave Electronics:Measurement and Materials Characterization, John Wiley & Sons, Ltd, 2004, 37-42
    [25] J. Krupka. Frequency domain complex permittivity measurements at microwave frequencies. Measurement Science and Technology, 2006, 17(6):55-70
    [26] J. Sheen. Study of microwave dielectric properties measurements by various resonance techniques. Measurement, 2005, 37(2):123-130
    [27] H. L. Bassett. A Free-Space Focused Microwave System to Determine the Complex Permittivity of Materials to Temperatures Exceeding 2000°C. Review of Scientific Instruments, 1971, 42(2):200-204
    [28] V. V. Varadan, R. D. Hollinger, D. K. Ghodgaonkar, V. K. Varadan. Free-space, broadband measurements of high-temperature, complex dielectric properties at microwave frequencies. IEEE Transactions on Instrumentation and Measurement, 1991, 40(5): 842-846
    [29] A. Bretenoux, C. Marzat, R. Sardos. Turnstile reflecto-polarimeter using the principal incidence method: Determination of permittivities up to 1200°C and industrial applications. IEEE Transactions on Microwave Theory and Techniques, 1993, 41(11):1945-1949
    [30] C. H. Mueller, F. A. Miranda. High temperature permittivity measurements of Alumina Enhanced Thermal Barrier(AETB-8) material for CEV antenna radomes. 2010 IEEE Antennas and Propagation Society International Symposium (APSURSI), 2010:1-4
    [31] A. M. Nicolson, G. F. Ross. Measurement of Intrinsic Properties of Materials by Time Domain Techniques. IEEE Transactions on Instrument and Measurement, 1970, 19(6):377-382
    [32] W. B. Weir. Automatic Measurement of Complex Dielectric Constant and Permeability at Microwave Frequencies. Proceedings of the IEEE, 1974, 62(1):33-36
    [33] J. Baker-Jarvis, E. J. Vanzura, W. A. Kissck. Improved techniques for determining complex permittivity with the transmission/reflection method. IEEE Transactions on Microwave Theory and Techniques, 1990, 38(8):1096-1103
    [34] J. Baker-Jarvis. Transmission/reflection and short-circuit line permittivity measurements. NIST Technical Note 1341, 1990
    [35] T. Hauschild, R. Knochel. Measurement of complex permittivity of solids up to 1000°C. IEEE MTT-S International, 1996, 3:1687-1690
    [36] A. P. Gregory, S. Etzel, R. N. Clarke. Precise measurements on dielectric reference liquids over the temperature range 5-50°C using coaxial line methods. Precision Electromagnetic Measurements Digest, Conference on 2000:455-456
    [37] Gaofeng Guo, En Li, Qishao Zhang. Measurement of complex permittivity and permeability of high loss dielectric materials as a function of temperature. 5th International Symposium on Test and Measurement, 2003, 3:2415-1418
    [38]李恩.吸波材料电磁参数在X波段的变温测试:[硕士学位论文].成都:电子科技大学, 2003
    [39] M. Kent, W. Meyeri. Complex permittivity spectra of protein powders as a function of temperature and hydration. Appl. Phys., 1984, 17(8):1687-1698
    [40] J. Baker-Jarvis, M. Janezic, B. Riddle. Dielectric and conductor-loss characterization and measurements on electronic packaging materials. NIST Technical Note 1520, 2001
    [41] M. Arai, J. G. P. Binner, G. E. Carr, T. E. Cross. High temperature dielectric property measurements of engineering ceramics, Ceram. Trans., 1993, 36:483-492
    [42] M. Arai, J. G. P. Binner, T. E. Cross. Correction of errors owing to thermal elongation of high temperature coaxial probe for microwave permittivity measurement. Electronics Letters, 1995, 31(14):1138-1139
    [43] M. Arai, J. G. P. Binner, T. E. Cross. Estimating errors due to sample surface roughness in microwave complex permittivity measurements obtained using a coaxial probe. Electronics Letters, 1995, 31(2):115-117
    [44] M. Arai, J. G. P. Binner, T. E. Cross. Comparison of techniques for measuring high-temperature microwave complex permittivity: measurements on an alumina/zircona system. Journal of Microwave Power and Electromagnetic Energy, 1996, 31(1):12-18
    [45] S. Bringhurst, M. F. Iskander, M. J. White. Broadband, high-temperature dielectric properties measurements of thin substrates using open-ended probes. 1997 IEEE Antennas and Propagation Society International Symposium, 1997, 4:2312-2315
    [46] S. Bringhurst, M. F. Iskander, P. Gartisde. Design and FDTD analysis of open-ended coaxial probes for broadband high-temperature dielectric properties measurements. 1994 AP-S Antennas and Propagation Society International Symposium, 1994, 2:706-709
    [47] S. Bringhurst, M. F. Iskander. Open-ended metallized ceramic coaxial probe for high-temperature dielectric properties measurements. IEEE Transactions on Microwave Theory and Techniques, 1996, 44(6):926-935
    [48] S. Bringhurst, M. F. Iskander, M. J. White. Thin-sample measurements and error analysis of high-temperature coaxial dielectric probes. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(12):2073-2083
    [49] D. L. Gershon, J. P. Calame, Y. Carmel, T. M. Antonsen, R. M. Hutcheon. Open-ended coaxial probe for high-temperature and broad-band dielectric measurements. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(9):1640-1648
    [50] Namgon Kim, Jeonghoon Yoon, Dongki Kim, Jeiwon Cho, Changyul Cheon, Youngwoo Kwon. A High-Temperature Capable Planar-type Coaxial Probe for Complex Permittivity Measurements Up to 40 GHz. 2007 IEEE/MTT-S International Microwave Symposium, 2007:519-522
    [51] Namgon Kim, Jeonghoon Yoon, Dongki Kim, Jeiwon Cho, Changyul Cheon, Youngwoo Kwon. An Optimum Design Methodology for Planar-Type Coaxial Probes Applicable to Broad Temperature Permittivity Measurements. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(3):684-692
    [52] D 2520-01, Standard Test Methods for Complex Permittivity(Dielectric Constant) of Solid Electrical Insulating Materials at Microwave Frequencies and Temperatures to 1650°C, American National Standard, 2001
    [53] P. Friederich, R. L. Moore, J. W. Larsen. Elevated temperature measurements of permittivity and permeability at temperatures above 1000°C. 1991 AP-S Antennas and Propagation Society International Symposium, 1991, 3:1672-1675
    [54] J. P. Calame, D. K. Abe, B. Levush, B. G. Danly. Variable temperature measurements of the complex dielectric permittivity of lossy AlN–SiC composites from 26.5–40 GHz. Journal of Applied Physics, 2001, 89(10):5618-5621
    [55] Gaofeng Guo, En Li, Zhongping Li, Qishao Zhang, Fengmei He. A test system for complex permittivity measurements of low-loss materials at high temperatures up to 2000℃. Measurements science and technology, 2011, 22(4):1-6
    [56] I. BADY, T. Collins. Dielectric Constant Ferrites and Loss Tangent of Microwave at Elevated Temperatures. IEEE Transactions on Microwave Theory and Techniques, 1963, 11(4):222-226
    [57] M. R. Ollivon. Dynamic Measurements of Complex Permittivity and Temperature During Microwave Heating. 1985 IEEE MTT-S International Microwave Symposium Digest, 1985:645-646
    [58] R. M. Hutcheon, M. S. de Jong, F. P. Adams, L. Hunt, F. Iglesias, G. W. Wood, G. Parkinson. A technique for rapid Scoping measurement of RF properties up to 1000°C. Electromagnetic Energy Reviews, 1989, 2(4):46-50
    [59] R. M. Hutcheon, M. S. de Jong, P. Lucuta, J. E. McGregor, B. H. Smith, F. P. Adams. Measurements of high-temperature RF and microwave properties of selected aluminas and ferrites used in accelerators. IEEE Particle Accelerator Conference, 1991, 2:795-797
    [60] R. M. Hutcheon, M. S. de Jong, F. P. Adams. A System for Rapid Measurements of RF and Microwave Properties up to 1400°C Part 1: Theoretical Development of the Cavity Frequency- Shift Data Analysis Equations. Journal of Microwave Power and Electromagnetic Energy, 1992, 27(2):87-92
    [61] R. M. Hutcheon, M. S. de Jong, F. P. Adams, G. Wood, J. E. McGregor, B. H. Smith. A System for Rapid Measurements of RF and Microwave Properties up to 1400°C Part 2: Description of Apparatus. Journal of Microwave Power and Electromagnetic Energy, 1992, 27(2):93-102
    [62] T. A. Baeraky. Microwave Measurements of the Dielectric Properties of Silicon Carbide at High Temperature. Egyptian Journal of Solids, 2002, 25(25):263-273
    [63] T. A. Baeraky. Microwave Measurements of Dielectric Properties of Zinc Oxide at High Temperature. Egyptian Journal of Solids, 2007, 30(1):13-18
    [64] H. R. Garner, J. L. Kaae, R. B. Stephens, A. C. Lewis, A. J. Lieber, W. J. DeHope. Measurement of permittivity at elevated temperatures using cavity perturbation and CO2 laser irradiation. Review of Scientific Instruments, 1990, 61(7):1832-1834
    [65] Binshen Meng, John Booske, Reid Cooper. A system to measure complex permittivity of low loss ceramics at microwave frequencies and over large temperature ranges. Review of Scientific Instruments, 1995, 60(2):1068-1071
    [66] Georges Roussy, Jean-Marie Thiebaut, Francis Ename-Obiang, Eric Marchal. Microwave Broadband Permittivity Measurement with a Multimode Helical Resonator for Studying Catalysts. Measurement Science and Technology, 2001, 12(4):542-547
    [67] M. Garven, J. P. Calame, B. Myers, D. Lobas. Variable temperature measurements of the dielectric properties of lossy materials in W-band. The Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, 2005:174-175
    [68] A. J. Canos, F. L. Penaranda-Foix, J. M. Catala-Civera, B. Garcia-Banos. Measurement of dielectric properties at high-temperatures in real-time with cylindrical cavity. 2010 IEEE MTT-S International Microwave Symposium Digest, 2010:1044-1047
    [69] Yong Guan, Takamichi Nakayama, Yoshio Nikawa. Study on complex permittivity of materials with temperature change by microwave heating. Proceedings of Asia-Pacific Microwave Conference, 2006:1449-1453
    [70] Yoshio Nikawa. Dynamic Measurement of Temperature Dependent Complex Permittivity of Material by Microwave Heating Using Cylindrical Cavity Resonator. 2007 Asia-Pacific Microwave Conference, 2007:1-4
    [71] Yoshio Kobayashi, Hiroshi Nakai, Fumio Suzuki, Zhewang Ma. Frequency and Temperature Dependence Measurements of Complex Permittivity of Dielectric Rods Using Some TM0m0 Modes in a Circular Cavity. 2007 Asia-Pacific Microwave Conference, 2007:1-4
    [72] W. B. Westphal, J. Iglesias. Dielectric Measurements on High-Temperature Materials. Laboratory for Insulation Research, Massachusetts Institute of Technology Cambridge, AD873038, 1971
    [73]黎义,李建保,何小瓦.采用谐振腔法研究透波材料的高温介电性能.红外与毫米波学报,2004,23(2):157-160
    [74] Y. Kobayashi, J. Yu. Temperature-dependence measurement of anisotropic complex permittivity for microwave dielectric substrate. 1992 Asia-Pacific Microwave Conference, 1992:859-862
    [75] En Li, Zaiping. Nie, Gaofeng Guo, Qishao Zhang. Broadband measurements of dielectric properties of low-loss materials at high temperatures using circular cavity method. Progress In Electromagnetics Research, 2009, 92:103-120
    [76] Gang Zhang, Susumu Nakaoka, Yoshio Kobayashi. Millimeter wave measurements of temperature dependence of complex permittivity of dielectric plates by the cavity resonance method. 1997 Asia-Pacific Microwave Conference, 1997:913-916
    [77] Yoshio Kobayashi, Takashi Shimizu. Millimeter Wave Measurements of Temperature Dependence of Complex Permittivity of Dielectric Plates by a Cavity Resonance Method. 1999 IEEE MTT-S International Microwave Symposium Digest, 1999:1885-1888
    [78] Takashi Shimizu, Yoshio Kobayashi. 50GHz Measurements of Temperature Dependence of Complex Permittivity of Dielectric Plates by a Cut-off Circular Waveguide Method. Third Topical Symposium on Millimeter Waves, 2001:163-166
    [79] Takashi Shimizu, Yoshio Kobayashi. Millimeter Wave Measurements of Temperature Dependence of Complex Permittivity of GaAs Plates by a Circular Waveguide Method. 2001 IEEE MTT-S International Microwave Symposium Digest, 2001:2195-2198
    [80] J. M. Heinola, K. P. Latti, P. Silventoinen, J. P. Strom, M. Kettunen. A new method to measure dielectric constant and dissipation factor of printed circuit board laminate material in function of temperature and frequency. 9th International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2004. Proceedings, 2004:235-240
    [81] Gaofeng Guo, En Li, Zengchao Xu. Stripline resonator method to measure complex permittivity of dielectric substrate as a function of temperature. 7th International Symposium on Test and Measurement, 2007, 2:1908-1910
    [82] J. Baker-Jarvis, M. Janezic, B. Riddle. Dielectric and conductor-loss characterization and measurements on electronic packaging materials. NIST Technical Note 1520, 2001
    [83] J. Krupka, K. Derzakowski, B. Riddle, J. Baker-Jarvis. A dielectric resonator for measurements of complex permittivity of low loss dielectric materials as a function of temperature. Measurement Science and Technology, 1998, 9(10):1751-1756
    [84] J. Krupka, K. Derzakowski, A. Abramowicz, M. E. Tobar, R. G. Geyer. Use of whispering-gallery modes for complex permittivity determinations of ultra-low-loss dielectric materials. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(6):752-759
    [85] B. Riddle, J. Baker-Jarvis, J. Krupka. Complex permittivity measurements of common plastics over variable temperatures. IEEE Transactions on Microwave Theory and Techniques, 2003, 51(3):727-733
    [86]冯丽萍,韦高.Ku波段开腔电介质高温自动测量系统.强激光与粒子束,2006,18(8):1323-1326
    [87] J. Sheen. Comparisons of microwave dielectric property measurements by transmission/reflection techniques and resonance techniques. Measurement Science and Technology, 2009, 20(4):1-12
    [88] J. Sheen, W. L. Mao, W. Liu. Study on the Measurements Techniques of Microwave Dielectric Properties. NST2007, 2007:349-352
    [89] R. A. Waldron. Theory of a strip-line cavity for measurement of dielectric constants and gyromagnetic-resonance line-widths, IEEE Transactions on Microwave Theory and Technology, 1964, 12(1):123-131
    [90] R. A. Waldron. Theory of the strip-line cavity resonator. Marconi Rev., 1964, 27:30-42
    [91] S. Maxwell. A stripline cavity resonator for measurement of ferrites. Microwave J., 1966, 9:99-102
    [92] S. Maxwell. Strip-line cavity resonator for measurement of magnetic and dielectric properties of ferrites at low microwave frequencies. Marconi Rev., 1964, 27:22-29
    [93] H. M. Musal. Demagnetization effect in strip-line cavity measurements. IEEE Transactions on Magnetics, 1992, 28(5):3129-3131
    [94] C. A. Jones. Permeability and permittivity measurements using stripline resonator cavities: A comparison. IEEE Transactions on Instrumentation and Measurement, 1999, 48(4):843-848
    [95] C. M. Weil, C. A. Jones, Y. Kantur, J. H. Grosvenor. On RF material characterization in the stripline cavity. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(2):266-275.
    [96] Y. Kantor, C. A. Jones, J. H. Grosvenor, M. D. Janezic. Demagnetization corrections applied to permeability measurements in a stripline resonator. 1998. MELECON 9th Mediterranean Electrotechnical Conference, 1998:106-110
    [97] H. Howe. Stripline Circuit Design. Artech House, Dedham, Mass., 1974
    [98] H. A. Wheeler. Transmission-line properties of a strip line between parallel planes. IEEE Transactions on Microwave Theory and Techniques, 1978, 26(11):866-876
    [99] S. B. Cohn. Characteristic Impedance of the Shielded-Strip Transmission Line. IEEE Transactions on Microwave Theory and Technology, 1954, 2(2): 52-57
    [100] I. J. Bahl, R. Garg. A Designer's Guide to Stripline Circuits. Microwave J., 1978, 17(1):90-96
    [101] R. M. Chisholm. The Characteristic Impedance of Trough and Slab Lines. IEEE Transactions on Microwave Theory and Technology, 1956, 4(3):1666-172
    [102] S. B. Cohn. Problems in Strip Transmission Lines. IEEE Transactions on Microwave Theory and Technology, 1955, 3(2):119-126
    [103]郑兆翁.同轴式TEM模通用无源器件.北京:人民邮电出版社,1983,38-56
    [104] W. Baier. The Calculation of TEM-, TE- and TM-Waves in Shielded Strip Transmission Lines. 1968 G-MTT International Microwave Symposium, 1968:21-31
    [105]张克潜,李德杰.微波与光电子学中的电磁理论.北京:电子工业出版社,2001,274-277
    [106]中华人民共和国国家技术监督局, GB5597-1998.固体电介质微波复介电常数的测试方法.北京:中国标准出版社,1998
    [107] T. E. MacKenzie, A. E. Sanderson. Some fundamental design principle for the development of precision coaxial standards and component. IEEE Transactions on Microwave Theory and Techniques, 1966, 14(1):29-39.
    [108] P. I. Somlo. The computation of coaxial line step capacitances. IEEE Transactions on Microwave Theory and Techniques, 1967, 15(1):48-53.
    [109] J. R. Whinnery, H. W. Jamieson, T. E. Robbins. Coaxial-line discontinuities. Proceedings of the IRE, 1944, 32(11):695-709.
    [110] R. Fuks. New dielectric bead for millimeter-wave coaxial components. Microwave Journal, 2001, 44(5):318-329.
    [111] J. F. Shackelford, W. Alexander. CRC materials and engineering handbook. CRC Press, 2001
    [112]费业泰.误差理论与数据处理(第6版).北京:机械工业出版社,2010,1-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700