增强UV-B辐射和模拟酸雨对C_4植物玉米和苋菜生长与代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类活动打破了大气平流层臭氧原有的平衡,使臭氧层变薄,直接导致辐射到地表的UV-B增强。而各国工业除尘和绿化工作的开展降低了大气颗粒物特别是碱性大颗粒物对酸雨的缓冲作用,同时紫外辐射增加有助于细粒子的形成和转化,导致大气酸性增强,使酸雨区以外的地区将来也可能面临酸雨污染问题。
     为科学评估全球气候变化背景下环境因子对植物产生的种种生物学和生态学效应,本研究选择NADP-苹果酸酶光合亚型单子叶C4植物玉米[糯玉米(Waxy corn) (Zea mays L. certain Kulesh),品种“渝糯7号”]和NAD-苹果酸酶光合亚型双子叶C4植物苋菜[edible amaranth (Amaranthus mangostanus L.),品种“红圆叶苋菜”]为试验对象,利用生态模拟的研究方法,采用自控的设施模拟酸雨处理[pH6.5(Ao),4.5(A1)和3.5(A2)]和增强UV-B辐射处理[0(Bo),2.88(B1)和5.76(B2,玉米)或4.32(B2',苋菜)kJ-m-2·d-1]处理,研究近似大田环境下,增强UV-B辐射和模拟酸雨及其复合作用对不同类型C4植物生长和种群生理生态的影响,以了解UV-B辐射增强和酸雨区面积扩大的现状下不同类型C4植物特别是重要农作物抵御环境胁迫的机理,为寻找有效手段维持和增加粮食与蔬菜产量,乃至为有关全球气候变化应对措施的研究提供参考和理论支持。本试验主要结果如下:
     1.增强UV-B辐射和模拟酸雨单独或复合作用影响玉米和苋菜生物量分配,两种作物生长发育均受到抑制。UV-B辐射下,玉米生育期的滞后主要体现在发育后期,苋菜则从抽苔期即开始发育迟缓。UV-B辐射下玉米的株高和叶面积降低,玉米发育后期株高和叶面积受UV-B辐射影响最严重,而苋菜抽苔期株高和收获期叶面积对UV-B辐射响应最大。UV-B辐射对玉米和苋菜根、茎、叶和果实生物量均有显著影响。除高强度UV-B辐射使玉米根冠比降低外,其余UV-B辐射单独处理时对两种植物根冠比均无显著影响。玉米平均UV-B胁迫反应指数小于苋菜。酸雨对玉米生育期影响最大的时期是拔节期和收获期,而在开花期和收获期对苋菜影响较大。两种植物的株高和叶面积在不同发育时期对酸雨的敏感性也不同,玉米在收获期最为敏感,而酸雨对苋菜叶面积影响最大的时期是抽苔期。玉米的根和果实生物量在酸雨胁迫下降低,而苋菜的茎、叶和果实生物量在酸雨影响下均显著下降。玉米根冠比随酸雨pH降低显著降低,轻度酸雨使苋菜低根冠降低的程度较重度酸雨的大。玉米平均酸雨胁迫反应指数亦较苋菜低。UV-B辐射和模拟酸雨复合处理时,玉米更多地表现为因子间对于生长发育延迟和生物量降低的拮抗作用,而苋菜多表现为协同效应。复合处理下玉米平均胁迫反应指数为0.85,较苋菜平均胁迫反应指数1.73小。相对于整个生长季而言,玉米对逆境因子的耐受性更好,苋菜受到的影响更大。
     2.增强UV-B辐射和模拟酸雨单独或复合作用对玉米和苋菜光合生理有较大影响。单独UV-B辐射下,玉米净光合速率随UV-B辐射强度增加显著降低。玉米在发育前期叶片内光合色素(包括叶绿素a、叶绿素b和类胡萝卜素)含量增加,发育后期有所降低;叶绿素a与叶绿素b的比率在拔节期和收获期显著下降,苗期和开花期与对照相比基本无变化;类胡萝卜素与总叶绿素的比率相比对照组无显著性差异。UV-B辐照还造成玉米PEPCase活性、RuBPCase活性,以及PEPCase舌性与RuBPCase活性比率的降低。苋菜净光合速率、光合色素含量、PEPCase舌性、RuBPCase舌性和PEPCase活性与RuBPCase活性比率均随UV-B辐射增强而显著下降,但其叶绿素a与叶绿素b的比率和类胡萝卜素与总叶绿素的比率对照相比则无显著差异。模拟酸雨单独处理时,玉米净光合速率降低,苋菜在发育前期净光合速率几乎不受酸雨影响,在开花期和抽苔期净光合速率下降。酸雨也造成玉米和苋菜叶片内光合色素含量的变化,在玉米发育前期和苋菜所有发育阶段,重度酸雨条下的光合色素含量均较轻度酸雨胁迫下的高;叶绿素a与叶绿素b的比率和类胡萝卜素与总叶绿素的比率大多不受酸雨影响。酸雨造成玉米和苋菜PEPCase活性降低;玉米除收获期外RuBPCase舌性下降,苋菜RuBPCase活性对轻度酸雨不敏感,重度酸雨下除开花期苋菜RuBPCase舌性均下降。苋菜PEPCase活性与RuBPCase舌性比率随酸雨pH值降低而减小,而玉米在发育前期两种酶活性比率上升,除收获期A1处理外其余阶段与对照相比无显著差异。UV-B辐射和模拟酸雨复合处理下更多的表现为两因子的拮抗作用,但植物自我修复能力有限,玉米和苋菜净光合速率降低,光合色素含量发生变化,PEPCase活性和RuBPCase活性下降,PEPCase活性与RuBPCase活性比率大多下降。玉米叶绿素a与叶绿素b的比率在拔节期和收获期显著下降,胡萝卜素与总叶绿素的比率与对照组相比差异不显著;而苋菜叶绿素a与叶绿素b的比率除抽苔期外与对照基本一致,除收获期A282处理外类胡萝卜素与总叶绿素的比率均显著上升。苋菜无论UV-B辐射和模拟酸雨单独或复合处理下平均光合指标的可塑性较均玉米大。UV-B辐射对玉米和苋菜光合生理指标的可塑性大于酸雨。
     3.增强UV-B辐射和模拟酸雨单独或复合作用对玉米和苋菜物质代谢有显著影响。UV-B辐射单因子作用时可使玉米和苋菜可溶性蛋白质含量下降,影响最大的时期是收获期和开花期。低强度UV-B辐照下两种作物总游离氨基酸含量除收获期玉米外均较对照有所增大,高强度UV-B辐射除收获期外对两种作物总游离氨基酸含量影响不大。两种作物的可溶性糖含量和ATP含量均随UV-B辐射增强而显著降低,而类黄酮含量和多酚含量则随UV-B辐射增强而增加。酸雨胁迫也会造成玉米和苋菜可溶性蛋白质含量下降,但玉米在拔节期和开花期对A1强度酸雨不敏感,苋菜在抽苔期对两种强度的酸雨均不敏感。酸雨胁迫下玉米和苋菜游离氨基酸含量上升,在整个发育阶段均大于对照且呈现先升后降的趋势;A1条件下两种作物游离氨基酸含量大于A2组。玉米和苋菜可溶性糖含量和ATP含量在酸雨处理时与对照组相比有所降低。酸雨对玉米叶片类黄酮含量基本无影响,对苗期到开花期的苋菜影响不大,在收获期使苋菜黄酮含量显著增加。两种作物多酚含量则随酸雨pH值降低而升高。模拟酸雨和增强UV-B辐射复合处理时在各发育阶段多表现为两因子的拮抗效应,但两种植物可溶性蛋白质含量、可溶性糖含量和ATP含量等代谢物指标仍较对照有所下降,类黄酮含量和多酚含量均增加;各指标都未能恢复到对照水平。玉米和苋菜平均代谢物指标的可塑性指数相等,但就具体的代谢物指标而言,酸雨对两种植物游离氨基酸含量的可塑性较大,而UV-B辐射对其余代谢物指标的可塑性较大。方差分析结果显示UV-B辐射对两种作物代谢的影响更显著。
     4.增强UV-B辐射和模拟酸雨单独或复合作用对玉米和苋菜活性氧代谢有明显影响,造成植物膜系统损伤。单独UV-B辐射胁迫时,玉米和苋菜叶片内细胞质膜透性随UV-B辐射的增强显著增大,在这种伤害在发育后期更为显著。两种强度的UV-B辐射均使玉米MDA含量显著增加,但对苋菜而言,高强度UV-B辐射造成MDA含量上升的幅度较低强度UV-B辐射的大。UV-B辐照下玉米SOD活性显著增加,随处理时间延长在收获期SOD活性较发育前期大幅下降,已接近对照组水平。苋菜在发育前期SOD活性显著提高,后期则显著下降。两种植物的POD活性和CAT活性均在UV-B辐射胁迫下降低。模拟酸雨下两种植物细胞质膜透性增大,叶片内MDA含量亦有不同程度的增加。酸雨条件下玉米苋菜SOD活性变化趋势与UV-B辐射胁迫下的类似,POD活性除抽苔期苋菜和开花期A1玉米外均显著降低。轻度酸雨对玉米和苋菜叶片内CAT活性的影响不大,但随着酸雨酸度进一步增加,CAT活性急剧下降。复合处理下较多地表现出因子间的拮抗作用,玉米和苋菜细胞质膜透性在各发育时期均表现为复合处理小于单独UV-B辐照处理,但细胞质膜透性仍大于对照组,MDA含量也较对照显著增加,说明植物利用多种逆境因子交互作用抵御伤害的能力有限。两种物种的保护酶SOD、POD和CAT活性可在逆境因子条件下相互影响和制约以减轻外界伤害。从两种植物平均活性氧代谢指标的可塑性指数来看,苋菜受到的伤害更大,玉米膜系统对UV-B或/和酸雨伤害的抗性较强。从平均活性氧代谢各指标的可塑性指数可以看出UV-B辐射对两种植物膜系统的伤害比酸雨更大。
     以上结果说明,增强UV-B辐射对玉米和苋菜的伤害大于酸雨,二者复合处理可在一定程度上降低UV-B辐射的伤害,但其能力有限。在复合处理下,两个因子对不同指标在不同处理时间和复合水平下,表现出一定的协同或拮抗效应可能与作物对环境变化产生一定的抗逆性和适应性有关。在不同时期两种C4植物对紫外辐射与酸雨敏感性不同。本试验条件下与苋菜相比,玉米对外界环境变化的抗性更强。
The balance of ozone layer in stratosphere was broken due to human activities, which reduced the ozone layer and increased the irradiation of ultraviolet-B (UV-B) to earth surface. However, the buffer action of atmospheric particulates on acid rain (AR), especially alkaline large particles, was lowered by industry dust removal and afforested work. Additionally, increased UV irradiation benefits the formation and transformation of fine particles and thus enhancing the acidity of atmosphere. As a result, acid rain issues might occur outside the acid ram regions.
     To scientifically estimate the biological and ecological effects of environmental factors on plants considering the global climate changing, NADP-ME C4 photosynthetic pathway monocotyledon plant waxy corn(Zea mays L. certain Kulesh) and NAD-ME C4 photosynthetic pathway dicotyledon plant edible amaranth (Amaranthus mangostanus L.) were studied through ecological simulation. The samples were treated with simulated acid rain [pH6.5 (Ao),4.5 (A1) and 3.5 (A2)] and UV-B irradiation [0 (Bo),2.88 (B,) and 5.76 (B2, maize) or 4.32 (B2, amaranth) kJ·m-2·d-1] used self-control facility. The present research aimed at explored the influences of enhanced UV-B irradiation and simulated acid rain alone or combined each other on individual growth and population physiological ecology of different C4 plants in the similar field conditions. Moreover, the mechanism on different C4 plants, especially important crops, to resist the environmental stress when UV-B irradiation increasing and acid rain area augmenting were also discussed in this dissertation. This research would provide references and theoretical supports to countermeasures of global climate changing and explore the effective means in maintaining and enhancing grains and vegetables yield. Results in this study are as follows:
     1. The biomass distributions of maize and edible amaranth were affected by enhanced UV-B irradiation, simulated acid rain or their combination, and the growth and development of both plants were inhibited. Under UV-B irradiation, maize growth period lagged in the late growth stage while that of edible amaranth was in the beginning of bolting stage. The maize height and leaf area reduced and reached the least in the late growth stage, while edible amaranth height in bolting stage and leaf area in harvesting stage showed most significant response to UV-B irradiation. UV-B irradiation significantly affected biomass of root, stem and leaf of both maize and amaranth. The UV-B irradiation had no significant effect on the root/shoot ratio of these two plants except for root/shoot ratio of maize reduced by high level UV-B irradiation. Average stress response index under UV-B stress of maize was lower than that of edible amaranth. On the other hand, acid rain had the most effects on maize in jointing stage and harvesting stage, while flowering stage and harvesting stage were the most vulnerable stages for edible amaranth. The sensitivity of two plants height and leaf area to acid rain varied in different developmental stages:maize was most sensitive in harvesting stage, while leaf area of amaranth was most significant influenced in bolting stage. Root and fruit biomass of maize decreased, and stem, leaf and fruit biomass of amaranth significantly decreased under acid rain conditions. Root/shoot ratio of maize decreased significantly with the decline of acid rain pH, while that of amaranth decreased more under mild acid rain than severe acid rain. Average stress response index in maize under acid rain stress was also less than edible amaranth. What's more, under combination of UV-B and acid rain treatments, maize displayed antagonistic effects on growth delay and biomass decline while edible amaranth showed synergistic effects. The average stress response index of maize was 0.85, lower than that of edible amaranth,1.73. In terms of the whole growth season, maize showed a better tolerance to adversity and edible amaranth was more easily to be influenced.
     2. Enhanced UV-B irradiation and simulated acid rain singly and in combination played a great role on plant photosynthesis physiological traits of maize and edible amaranth. Under single UV-B irradiation treatment, net photosynthetic rate of maize decreased with UV-B irradiation increased. In the early development stage of maize, the content of photosynthetic pigments increased, including chlorophyll a, chlorophyll b and carotenoid, but decreased at late development stage. The chlorophyll a/b ratio decreased significantly in jointing stage and harvesting stage, while there showed a stable tendency in seedling and flowering stage in contrast with the control treatment, and no significant difference was found on the ratio of carotenoid and total chlorophyll between treatment and the control treatment. In addition, PEPCase and RuBPCase activity, and the ratio of PEPCase activity/RuBPCase activity of maize decreased under UV-B irradiation. In terms of edible amaranth, net photosynthetic rate, photosynthetic pigment content, PEPCase activity, RuBPCase activity, and PEPCase activity/RuBPCase activity ratio decreased significantly with UV-B irradiation increased. However, its chlorophyll a/b ratio and carotenoid/total chlorophyll ratio had no significant difference to the control treatment. The net photosynthetic rate of maize decreased under simulative acid rain treatment. The net photosynthetic rate was hardly affected in the early development stage of edible amaranth, but decreased in flowering and bolting stage. The content of photosynthetic pigment of maize and edible amaranth influenced by acid rain, at the early development of maize and the whole growth stage of edible amaranth, the content of photosynthetic pigment was higher under severe acid rain than mild acid rain stress. The chlorophyll a/b ratio and the ratio of carotenoid and total chlorophyll were mostly uninfluenced. Under acid rain treatment, PEPCase activity of maize and edible amaranth decreased and RuBPCase activity of maize decreased except in harvesting stage. RuBPCase activity of edible amaranth was not sensitivity to mild acid rain, but it decreased under severe acid rain except in flowering stage. The ratio of PEPCase activity/RuBPCase activity of edible amaranth decreased with decreased pH of acid rain. But the ratio of PEPCase activity/ RuBPCase activity increased in early development stage of maize, except for A1 treatment in harvesting stage, the ratio of the others treatments in various stages had no significant difference. Under the combined stresses of UV-B radiation and simulated acid rain, antagonistic effects between two factors were shown. But the plant self-restoration capability was limited, net photosynthetic rate of maize and edible amaranth decreased, the content of photosynthetic pigment had changed, PEPCase activity and RuBPCase activity decreased, and the ratio of PEPCase activity/RuBPCase activity mostly decreased. The chlorophyll a/b ratio of maize decreased significantly in jointing stage and harvesting stage, the ratio of carotenoid and total chlorophyll had no significant difference compared with the control treatment. In terms of edible amaranth, the chlorophyll a/b ratio was similar to the control treatment except for bolting stage; ratio of carotenoid and total chlorophyll almost increased significantly except for A2B2 treatment in harvesting stage. The edible amaranth had larger mean plasticity index of photosynthetic traits than maize no matter under UV-B irradiation, acid rain or their combination, and the plasticity index of photosynthetic traits of maize and amaranth under UV-B irradiation was better than acid rain.
     3. Enhanced UV-B irradiation and simulated acid rain singly and in combination had significant influence on material metabolism of maize and edible amaranth. Under single UV-B irradiation treatment, soluble protein content of maize and edible amaranth decreased, and the harvesting and flowering stage were the most influenced stage. Content of total free amino acid of two crops was higher than the control treatment except for it in harvesting of maize at lower level enhanced UV-B irradiation, while those were little influenced at high level enhanced UV-B irradiation except for in harvesting both of the two plants. Content of soluble sugar and ATP decreased significantly with UV-B irradiation intensity increasing, but flavonoids and polyphenol content increased. The acid rain stress could also cause the decline of soluble protein content of maize and edible amaranth. However, maize was insensitive to A1 treatment of acid rain in jointing stage and flowering stage, while insensitivity was found in edible amaranth in two degrees of acid rain in bolting stage. Content of free amino acid increased along acid rain stress, which was larger than the control treatment in the whole growth stage, with the tendency of increased first but decreased afterwards, and it was higher under A1 condition than A2 in both two plants. It showed a less content of soluble sugar and ATP of maize and edible amaranth under acid rain than the control treatment. There was almost no influence of acid rain to flavonoids of maize leaf under single acid rain treatment, and the same with amaranth from seeding to flowering stage. However, that of edible amaranth increased significantly in harvesting stage. In addition, content of polyphenol in both of the crops increased with decreased pH of simulated acid rain. On the other hand, with the combination of enhanced UV-B irradiation and simulated acid rain, antagonistic effect between two factors was showed. Soluble protein, soluble sugar, and ATP content still had small decline compared with the control treatment, but flavonoids and polyphenol content increased. Every index failed to restore to the former level. Equal to mean plasticity index of various metabolite indices of maize and edible amaranth was found. However, in terms of specific metabolite index, acid rain had greater effect on plasticity of their free amino acid content, while UV-B had larger plasticity to other metabolite index. Variance analysis showed that UV-B irradiation has more significant influence on metabolism of the two crops.
     4. Enhanced UV-B irradiation, simulated acid rain or their combination had significant influence on active oxygen metabolism of maize and edible amaranth, damaged plant membrane system. Under single UV-B irradiation treatment, cell membrane permeability of maize and edible amaranth leaf increased significantly with the intensity of enhanced UV-B irradiation, and showed a more significant damage at later developmental stage. MDA content of maize increased significantly under the both levels of enhanced UV-B irradiation, while in terms of edible amaranth, it increased more under high level UV-B irradiation than low level irradiation. SOD activity of maize showed a significant increase under UV-B irradiation, and along with extension of the experimental treatment, SOD activity at harvesting stage, which was close to the control treatment, decreased sharply in contrast with early development stage. SOD activity of edible amaranth in early development stage increased significantly but decreased later. POD and CAT activity of two crops decreased as well. Meanwhile, under simulated acid rain stress, plasmalemma permeability of these two plants improved and leaf MAD content increased to different extents. The change of SOD activity in maize and edible amaranth experienced similar changes under single AR and UV-B treatment. POD activity decreased significantly except for that of edible amaranth in bolting stage and A1 treatment of maize in flowering stage. Light acid rain had little influence on CAT activity of maize and edible amaranth leaves. However, CAT activity decreased sharply in further decreased pH of acid rain. More antagonistic effect of two factors was indicated than additive, synergistic effects under the dual stresses (AR+UV-B). Plasmalemma permeability of maize and edible amaranth in each development stage under combined stress was lower than single UV-B treatment, whiles those still higher than the control treatment, with a same trend as MDA content, and showed a limited ability of plants to utilize interaction of multiple adversity factors to resist impairment. The activity of protective enzymes, such as SOD, POD, and CAT, could interact and alleviate the damage from outside under adversity factors. In terms of the average plasticity index of active oxygen metabolism indices between two crops, edible amaranth hurt even more, and membrane system of maize has better resistance to UV-B irradiation and/or acid rain. Moreover, each plasticity index of active oxygen metabolism indices showed more serious damages under enhanced UV-B irradiation than under on two crops'membrane system.
     In sum, the present study suggested that damages caused by enhanced UV-B irradiation on maize and edible amaranth was more serious than acid rain. Impairment from UV-B irradiation could be reduced through combined treatment to some extent, but this capability was limited. The dynamic changes of physiological and biochemical indices under the dual stresses (AR+UV-B) were not identical, and none of them showed a simple linear variation, but displayed additive, synergistic or antagonistic effects depending on the different treatment periods and/or degree of stresses, indicating that plants had different mechanisms of resistance and adaptability under different stresses. The two different C4 plants had different sensitivity to AR and UV-B treatment at different development stages. Maize was in general more tolerant to stresses than edible amaranth under the experimental conditions.
引文
[1]杨志敏,颜景义,郑有飞,万长建.紫外辐射增强对植物生长的影响[J].植物生理学通讯,1994,30(4):241-248.
    [2]Staplet AE. Ultraviolet radiation and plants:Burning questions [J]. Plant Cell.,1992,4:1353.
    [3]R.obberecht R. Environmental photobiology [A]. In:Smith KC, ed. The Science of Photobiology [M]. New York:Plenum Press,1989.135-154.
    [4]侯扶江,贲桂英,韩发,师生波,魏捷.浅析植物对太阳紫外线-B辐射的适应[J].生态学杂志,1997,16(2):31-35
    [5]Stolarski, R., R. Bojkov, L. Bishop, C. Zerefos, J.Staehelm, J. Zwodny. Measured trends in stratospheric ozone [J]. Science,1992,256:343
    [6]Caldwell M M, Robberecht R, Flint S T. Internal filters:Progress for UV-acclimation in higher Plants [J]. Physiol. Plant.,1983,58:445-450
    [7]Rozema J, Van De Staaij J, Bjorn L O, Caldwell M M. UV-B as an environmental factor in plant life:Stress and regulation [J]. Trends in Ecology & Evolution,1997,12:22-28.
    [8]白建辉,王庚辰,胡非.太阳紫外辐射在大气中衰减的探讨[J].气候与环境研究,2002,7(4):440-446.
    [9]Molina M J, Rowland F S. Stratospheric sink for chlorofluoromethanes:chlorine atom-catalyzed destruction of ozone [J]. Nature,1974,249:810-812
    [10]Russell J M, Luo M Z, Cicerone R J, Deaver L E. Satellite confirmation of the dominance of chlorofluorocarbons in the global stratospheric chlorine budget [J]. Nature,1996,379:526-529.
    [11]WMO (World Meteorological Organization). Scientific Assessment of Ozone Depletion. In: Global Ozone Research and Monitoring Project [C]//Ajavon A N, Albritton D L, Watson R T. Report No.47.Geneva, USA:World Meteorological Organization,2002.
    [12]Kerr J.B, MeElory C T. Evidence for large upward trends of UV-B radiation linked to ozone depletion [J]. Science,1993,262:1032-1034.
    [13]Haapala J K, Morsky S K, Saarnio S, Rinnan R, Suokanerva H, Kyro E, Latola K, Martikanen P J, Holopainen T, Silvola J. Carbon dioxide balance of a fen ecosystem in northern Finland under elevated UV-B radiation [J]. Global Change Biology,2009,15(4):943-954.
    [14]Madronich S, McKenzie R L, Bjorn L O, Caldwell M M. Changes in biologically active ultraviolet radiation reaching the earth's surface [J]. Journal Photochemistry and Photobiology B: Biology,1998,46:5-19.
    [15]郭世昌,琚建华,常有礼,张秀年.大气臭氧变化及其气候生态效应[M].北京:气象出版社,2002:106.
    [16]崔瑛,陈怡平.近5年增强UV-B辐射对植物影响的研究进展[J].生态毒理学报,2008,3(3):209-216.
    [17]中国气象局.酸雨观测业务规范[M].北京:气象出版社,2005:66.
    [18]张燕,刘立进.我国酸雨分布特征及控制对策[J].陕西环境,1998,5(4):39-40.
    [19]丁国安,徐晓斌,王淑凤,于晓岚,程红兵.中国气象局酸雨网基本资料数据集及初步分析[J].应用气象学报,2004,15(增刊):85-94.
    [20]马治国,林长城,王新强,王祖炉.福建东部地区酸雨的分类及其与地面的气象条件的关系分析[M]//中国气象学会2006年年会“大气成分与气候、环境变化”分会场论文集,2006:27-29.
    [21]廖正军,唐亮.重庆市酸雨成因及控制对策[J].环境保护科学.2000,04:1-5
    [22]冯砚青.中国酸雨状况和自然成因综述及防止对策探究[J].云南地理环境研究,2004,16(1):25-28.
    [23]Solomon K R, Tang X Y, Wilson S R, Zanis P, Bais A F. Changes in tropospheric composition and air quality due to stratospheric ozone depletion [J]. Photochemical & Photobiological Sciences,2003,2(1):62-67.
    [24]邓伟,刘荣花,熊杰伟,陈海波,田宏伟,杜子璇.当前国内酸雨研究进展[J].气象与环境科学,2009,32(1):82-87.
    [25]Caldwell M M, Bjorn L O, Bornman J F, Flint S D, Kulandaivelu G, Teramura A H, Tevini M. Effects of increased solar ultraviolet radiation on terrestrial ecosystems [J]. Journal of Photochemical Photobiology. B:Biology,1998,46:40-52.
    [26]石江华,王艳,李韶山.UV-B对植物分子和细胞水平的效应[J].激光生物学报,2002,11(4):315-318.
    [27]薛慧君,岳明.UV-B辐射增强对陆地植物次生代谢的影响[J].西北植物学报,2004,24(6):1131-1137.
    [28]王英利,王勋陵,岳明.UV-B及红光对大棚番茄品质的影响[J].西北植物学报,2000,20(4):590-595.
    [29]Coerria CM, Torres-Pereira MS, Torres-Pereira JMG. Growth, Photosynthesis and UV-B absorbing compounds of Portuguese Barbell wheat exposed to ultraviolet-B radiation [J]. Environ. Pollute,1999,104:383-388.
    [30]Kumgaai T, Hidema J, Kang H Sato T. Effects of supplemental UV-B radiation on the growth and yield of two cultivars of Japanese lowland rice (Oryza sativa L.) under the field in a cool rice-growing region of Japan [J]. Agr Ecosys Environ,2001,83:201-208.
    [31]Barnes P W, Flint S D and Caldwell M M. Morphological responses of crop and weed species of different growth forms to UV-B radiation [J]. Am. J. Botany,1990,77(10):1354-1360.
    [32]Newsham K K, Gerensldde P D, Kennedy VH, McLeod AR. Elevated UV-B radiation incident on Quercus robur leaf canopies enhances decomposition of resulting leaf litter in soil [J]. Global Change Biol,1999,5:403-409.
    [33]Keiller DR, Holmes M.G Effects of long-term exposure to elevated UV-B radiation on the Photosynthetic Performance of five broad-leaved tree species [J]. Photosynth Res,2001,67: 229-240.
    [34]王传海,郑有飞,何雨红,万长建,宋玉芝.紫外辐射增加对小麦群体结构的影响[J].南 京气象学院学报,2000,23(2):204-210.
    [35]Hideg E, Vass I. UV-B induced free radical production in plant leaves and isolated thoy lakoidm embranes [J]. Plant Sci,1996,115:251-260.
    [36]Strid A. Alteration in Pigment content in leaves of Pisum sativum after exposure to supplement U-B [J]. Plant Cell Physiol,1992,33(7):1015-1023.
    [37]Smirnoff N. The function and metabolism of ascorbic acid in plants [J]. Annals of Botany,1996, 78,661-669.
    [38]Teramura A H. effects of ultraviolet-B radiation on the growth and yield of crop Plants [J]. Physiol. Plant,1983,58:415-427.
    [39]Caldwell M M, Termura A H, Tevini M, Bornman J F, Bjorn L O, Kulandaiveiu G. Effects of increased solar ultraviolet radiation on terrestrial plants [J]. Ambio,1995,24:166-173.
    [40]Stephanoum, Maneta S Y. Ultraviolet-B radiation effects on the Med iterranean rud eral Dittrich ia viscose [J]. Plant Ecology,1997,128:109-112.
    [41]Nikolopoulos D, Petropoulou Y, KyParississ A, Manetas Y. Effects of enhanced UV-B radiation on the drought semi-deciduous mediterranean shrub phlomis fruticosa under field conditions are season-specific [J]. Aust. J. Plant Physiol,1995,22:737-747.
    [42]Biggs R H, kouthus S V. UV-B Biological and Climate Effects Research Final Report U.S. Department of Agriculture [M]. Forida:University of Florida Press,1978,77.
    [43]唐莉娜,林文雄,吴杏春,梁义元,陈芳育.UV-B辐射增强对水稻生长发育及其产量形成的影响[J].应用生态学报,2002,13(10):1278-1282.
    [44]李元,王勋陵.紫外辐射增加对春小麦生理、产量和品质的影响[J].环境科学学报,1998,18(5):504-509.
    [45]Flint S D, Caldwell M M. Partial inhibition of in vitro pollen germination by simulated solar UV-B radiation [J]. Ecol,1984,85:792-795.
    [46]杨晖,安黎哲,王治业,周剑平,王勋陵.UV-B辐射对番茄花粉生活力的影响与内源激素和多胺的关系[J].植物学通报,2007,24(2):161-167.
    [47]王书玉,王勋陵.UV-B辐射增强对紫露草花粉母细胞的微核效应[J].西北植物学报1997,17(5):12-17.
    [48]王传海,闵锦忠,严培君,徐星生,郑有飞.UV-B增加对小麦及玉米物候发育影响的初步研究[J].中国农学通报,2004,20(3):80-83.
    [49]颜安.增强UV-B辐射及盐胁迫对拟南芥表皮毛突变体的影响[硕十学位论文].甘肃:州大学,2010.
    [50]杨毓峰,袁红旭.紫外线UV-B辐照花生的生物效应[J].西南农业大学学报,2001,23(4):356-359.
    [51]姚银安,杨爱华,徐刚.两种栽培荞麦对日光UV-B辐射的响应[J].作物杂志,2008,6:69-73.
    [52]侯扶江,贲桂英,颜景义,韩发,师生波,魏捷.田间增加紫外线(UV)辐射对大豆幼苗生 长和光合作用的影响[J].植物生态学报,1998,22(3):256-261.
    [53]Strid A, Chow W S, Anderson J M. Effects of supplementary ultraviolet-B radiation on Photosynthesis in Pisum sativum L [J]. Biochem Biophys Acta,1990,1020(3):260-265.
    [54]Olszy KD.UV-B effect on crops:response of the irrigated rice ecosystem [J]. Plant Physiol, 1996,148:26-34.
    [55]Murphy T M. Membranes as targets of ultraviolet radiation [J]. Physiol Plant,1983,58:381.
    [56]Tevini M, Iwanzik W, Thoma U. Some effects of enhanced UV-B irradiation on the growth and composition of plants [J]. Planta,1981,153:381-388.
    [57]杨景宏,陈拓,王勋陵.增强紫外线B辐射对小麦叶绿体膜组分和膜流动性的影响[J].植物生态学报,2000,24(2):102-105.
    [58]晏斌.紫外线B对水稻叶组织中活性氧代谢及膜系统的影响[J].植物生理学报,1996,22(4):373-378.
    [59]Jhle C. Degradation and release from the thylakoid membrane of photosystems II Subunits after UV-B irradiation of the liverwort Conoen Phalum conicum [J]. Photosyn. Res.,1997,54(1): 73-78.
    [60]Braddle J R, Cappell W S and Sisson W B. Net photosynthesis, electron transports capacity and ultrasture of Pisum sativum L. exposed to UV-B radiation [J]. Plant Physical,1977,60:165-169.
    [61]Teramura A H. Implications of stratospheric ozone depletion upon Plant Production [J]. Hof, 1990,158:415-427.
    [62]Takeuehi Y, Kubo H, Kasahara H, Sakaki T. Adaptive alterations in the actives of scavengers of active oxygen in cucumber cotyledons irradiated with UV-B [J]. Physiol,996,147:589-592.
    [63]Sisson W B, Caldwell M M. Photosynthesis, dark respiration, andgroeth of Rumex patientia L. Exposed to ultraviolet irradiance (280-315 nanometers) simulating a reduced atmospheric ozone column [J]. Plant Physiol.,1976,58:563-568.
    [64]Teramura AH, Tevini M, Wanzik W. Effects of ultraviolet-B irradiation on plants during mild water stress I. Effects on diurnal stomatal resistance [J]. Physiol Plant,1983,57:175-180.
    [65]EL-Mansey H I, Salisbury F B.Bioehemical response of Xanthium leaves to ultraviolet radiation [J]. Radia. Bot.,1971,11:326-329.
    [66]Stewart J D, Hoddinott J. Photosynthetic acclimation to elevated atmospheric carbon dioxide and UV irradiation in Pinus banksiana [J]. Physiol. Plant.1993,88:493-500.
    [67]Mirecki R M, Teramura A H. Effects of ultraviolet-B irradiance on soybean. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion [J]. Plant Physiol.1984,74:475-480.
    [68]冯国宁,安黎哲.增强UV-B辐射对菜豆蛋白质代谢的影响[J].植物学报,1999,41(8):833-836.
    [69]Nedunchezhian N. Induction of heat short-like proteins in Vigna siriensis seedlings growing under UV-B enhanced radiation [J]. Physiol Plant,1992,85:503-506.
    [70]Tevini M, Iwanzik W and Thoma U. Some effects of enhanced UV-B radiation on the growth and composition of plants [J]. Plant Physiol,1981,50:479-487.
    [71]Murphy T M, Willekens H. Inhibition of protein in cultured tobacco cells by radiation [J]. Photochem Photobiol,1975,21:219-225.
    [72]Britt A B. DNA damage and repair in plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:75-100.
    [73]Culligan K, Tissier A, Brilt A:ATR regulates a G2-phase cell cycle checkpoint in Arabidopsis thaliana [J]. Plant Cell,2004,16:1091-1104.
    [74]Jordan B R, He J and Chow W H. Changes in mRNA levels and polypeptide subunits of ribulose 1,5-bisphophate carbonylase in response to supplementary ultraviolet-B radiation [J]. Plant Cell Environ,1992,15:91-98.
    [75]Strid A. Alteration in expression of defense genes in Pisum sativum after expression to supplementary ultraviolet-B radiation [J]. Plant Cell Physio,1993,34 (6):949-953.
    [76]Chappell J H, Halbrock K. Transcription of plant defense genes in response to UV light or fungal elicitor [J]. Nature,1984,311(1):76-78.
    [77]Walbot V, Stapleton A. Reactivation potential of epigenetically inactive Mu transposable elements of Zea mays L. decreases in successive generations [J]. Maydica,1998,43(3):183-193.
    [78]彭祺,周青.植物次生代谢响应UV-B辐射胁迫的生态学意义[J].中国生态农业学报,2009,17(3):610-615.
    [79]Caldwell M M, Teramura A and Tevini M. The changing solar ultraviolet climate and the
    ecological consequences for higher plants [J]. Trends in Ecology and Evolution,1989,4:363-367.
    [80]Beggs C J, Kronenberg GH. Photo control of Flavonoid Biosynthesis. Kendrict RE eds. Photomorphogenesis in Plant [J]. Kluwer Academic Dordredt,1994,2:733-750.
    [81]董铭,李海涛,廖迎春,梁涛,卢存福.大田条件下模拟UV-B辐射滤减对水稻生长及内源激素含量的影响[J].中国生态农业学报,2006,14(3):123-125.
    [82]Predieril S, Norman H A, Krizek D T, Pillai P, Mirecki R M, Zimmerman R H. Influence of UV-B radiation on membrane lipid composition and ethylene evolution in'Doyenne d'Hiver' pear shoots grown in vitro under different photosynthetic photon fluxes [J]. Environmental and Experimental Botany,1995,35(2):151-160.
    [83]Predieri S, Krizek D T, Wang C Y, Mirecki R M, Zimmerman R H. Influence of UV-B radiation on developmental changes, ethylene, CO2 flux and polyamines in cv. Doyenne d'Hiver pear shoots grown in vitro [J]. Physiologia Plantarum,1993,87(2):109-117.
    [84]Jordan B R, Hofmann R W. UV-B radiation effects on plants [J]. The International Plant Propagators Society Combined Proceedings,2004,54:91-95.
    [85]Murphy T F. Membranes as targets of ultraviolet radiation [J].Plant Physio,1983,58:381-38.
    [86]Longstreth J D, Gruijl F R and Kripke M L. Effects of increased solar ultraviolet radiation on human health [J]. Ambio,1995,24:153-165.
    [87]Herndl, G. J., A., Brugger, S. Hager, E. Kaiser, I. Obernosterer, B. Reitner, and D. Slezak. Role of ultraviolet-B radiation on bacterioplankton and the availability of dissolved organic matter [J]. Plant Ecology,1997,128:42-51.
    [88]Li Y, Yue M and Wang X L. Competition and sensitivity of wheat and wild oat exposed to enhanced UV-B radiation at different densities under field condition [J]. Environ Exp Bot,1999, 41:47-55.
    [89]Gehrke C, Johanson U, Callaghan T V, Chadwick D, Robinson C H. The impact of enhanced ultraviolet-B radiation on litter quality and decomposition processes in Vaccinium leaves from the Subarctic [J]. Oikos,1995,72(2):213-222.
    [90]Santas R, Hader D P and Lianou C. Effects of solar UV radiation on diatom assemblages of the Mediterranean [J]. Photochem Photobiol,1996,64 (3):435-439.
    [91]Ziska L H, Teramura A H. CO2 enhancement of growth and photosynthesis in rice(Oryza sativa) Modification by increased ultraviolet-B radiation [J]. Plant Physiol.,1992,99:473-481.
    [92]Sullivan J H, Termura A H. The effects UV-B radiation on loblolly pine:3, interaction with CO2 enhancement [J]. Plant Cell Environ,1994,17:311-317.
    [93]Sonesson M, Callaghan T V, Carlsson B A. Effects of enhanced ultraviolet radiation and carbon dioxide concentration on the mass Hylocomium sp lenddens [J]. Global Change Biol.,1996,2: 67-73.
    [94]Visser A J, Tosserams M, Groen M W, Kalis G, Kwant R, Magendans G W H, Rozema J. The combined effects of CO2 concentration and enhanced UV-B radiation on faba bean.3. Leaf optical properties, pigments, stomatal index and epidermal cell density [J]. Plant Ecology,1997, 128:208-222.
    [95]Wand S J E, Midgley, Musil C F. Physiological and growth response of two African species, Acacia karroo and Themeda triandra, to combined increases in CO2 and UV-B radiation [J]. Physiol Plant,1996,98:882-890.
    [96]Caldwell M M, Robberecht R, Flints D. Internal filters:Prospects for UV acclimation in higher plants [J]. Physiol. Plant.,1983,58:445-450.
    [97]Groth J V, Krupa S V. Crop ecosystem response to climate change:interactive effects of ozone, ultraviolet-B radiation, sulphur dioxide and carbon dioxide on crops [A]. In:Reddy, K. R., Hodges, H. F. (Eds.), Climate Change and Global Crop Productivity [M]. CAB International, Wallingford,2000,387-405.
    [98]Miller J E, Booker F L, Fiscus E L, Heagl E A S. Ultraviolet-B radiation and ozone effects on growth, yield, and photosynthesis of soybean [J]. Journal of Environmental Quality,1994,23 (1): 83-91.
    [99]Rail C, Tyagi B, Raipk, Mallick N. Interactive effects of UV-B and heavy metals (Cu and Pb) on nitrogen and phosphorus metabolism of a N2-fixing cyanobacterium Anabaena doliolum [J]. Environ. Experi. Botany,1998,39 (3):221-231.
    [100]Westl J, Li K,Greenbery B M, Smith R E. Combined effects of copper and ultraviolet radiation on a microscopic green alga in natural soft lake waters of varying dissolved organic carbon content [J]. Aquatic Toxicology,2003,64 (1):39-52.
    []01]梁婵娟,黄晓华,陶文沂,周青.稀土对UV-B辐射伤害植物的影响-Ⅰ. Ce(Ⅲ)对UV-B胁迫下油菜幼苗生长及光合作用影响[J].中国稀土学报,2005,23(3):351-356.
    [102]梁婵娟,黄晓华,周青.Ce对UV-B辐射胁迫下大豆幼苗光合作用影响:Ⅱ.对光合量子效率与羧化效率的影响[J].农业环境科学学报,2006,25(3):580-583.
    [103]Liang B, Huang X H. Effect of Lanthanum on Plants under Supplementary Ultraviolet-B Radiation:Effect of Lanthanum on Flavonoid Contents in Soybean Seedlings Exposed to Supplementary Ultraviolet-B Radiation [J]. Journal of Rare Earths,2006, (24):613-616.
    [104]薛隽,刘文,张光生,周青.La对UV-B辐射下大豆幼苗NRA和可溶性蛋白的影响[J].中国油料作物学报,2006,28(3):298-301.
    [105]Xue T L, Hartikainen H, Piironrn V. Antioxidative and growth promoting effects of selenium on senescing lettuce [J]. Plantsoil,2001,237:55-61.
    [106]Deckmyn G, Impens I. The ratio UV-B/photosynthetically active radiation (PAR) determines the sensitivity of rye to increased UV-B radiation [J]. Environ. Exp. Bot.,1997,37(1):3-12.
    [107]Adamse P, Britz S J. Amelioration of UV-B damage under high irradiance.1. Role of photosynthesis [J]. Photochem. Photobiol,1992,56(5):645-650.
    [108]Adamse P, Britz S J.Rapid fluence dependent response to UV-B radiation in cucumber leaves: the role of UV absorbing pigments in damage protection [J]. Plant Physiol.,1996,148:57-62.
    [109]冯虎元,安黎哲,陈书燕,王勋陵,程国栋.增强UV-B辐射与干旱复合处理对小麦幼苗生理特性的影响[J].生态学报,2002,22(9):1564-1568.
    [110]Bjorn L O. Effects of ozone depletion and increased UV-B on terrestrial ecosystem [J]. Intern J. Environ. Studies,1996,51:217-243.
    [111]Premkumar A, Eswaran K, Kulandaivelu G. Growth, biochemical and photosynthetic responses of green gram seedlings under water stress to ultraviolet-B radiation [J]. Plant Physiol. Biochem.,1993,20:31-35.
    [112]聂磊,刘鸿先,彭少麟.长期UV-B处理和水分胁迫对柚生理特征的影响[J].植物资源与环境学报,2001,10(3):19-24.
    [113]Ren J, Dai W, Xuan Z, Yao Y, Korpelainen H, Li C. The effect of drought and enhanced UV-B radiation on the growth and physiological traits of two contrasting poplar species [J]. Forest Ecology and Management,2007,239:112-119.
    [114]Suzuki T, Honda Y, Mukasa Y. Effects of UV-B radiation, cold and desiccation stress on rut in concentration and rutin glucosidase activity in tartary buckwheat (Fagopyrum tataricum) leaves [J]. Plant Science,2005,168(5):1303-1307.
    [115]Mark U, Tevini M. Combination effects on UV-B radiation and temperature on flower (Helianthus annuns cv. Pllastar) and maize (Zea mays L. cv. Zenit2000) seedling [J]. Plant Physiol,1996,148:49-56.
    [116]Tevini M, Mark U, Sail E, Mark M. Effects of enhanced solar UV-B radiation on growth and function of crop plant seedlings [J].Curr. Top. Plant Biochem. Physiol.,1991,10:13-31.
    [117]Caldwell C R. Modification of t he cellular heat sensitivity of cucumber by growth under supplements UV-B radiation [J].Plant Physiol.,1994,104:395-399.
    [118]Hunt J E, Mcneil D L. Nitrogen status affects UV-B sensitivity of cucumber [J].Aust. J. Plant Physioi.,1998,25(1):79-86.
    [119]Correia C M, Coutinho J F, Bjorn L O, Torres J M G. Ultraviolet-B radiation and nitrogen effects on growth and yield of maize under Mediterranean field conditions [J]. European Journal of Agronomy,2000,12:117-125.
    [120]Correia C M, Pereira J M M, Coutinho J F, Bjorn L O. Ultraviolet-B radiation and nitrogen affect the photosynthesis of maize:a Mediterranean field study [J]. Europ. J. Agronomy,2005, 22:337-347.
    [121]Lauts L, Eno G, Goldstein G, Smith C, Christopher D A. Ambient levels of UV-B in Hawaii combined wit h nutrient deficiency decrease photosynthesis in near-isogenic maize lines varying in leaf flavonoids:Flavonoids decrease photoinhibition in plants exposed to UV-B [J]. Photosynthetica,2006,44(3):394-403.
    [122]Murali N S, Teramura A H. Effects of ultraviolet-B irradiance on soybean. Biomass and concentration and uptake of nutrients at varying P supply [J]. J. Plant Nutr.,1985,8:177-192.
    [123]Premkumar A, Kulandaivelu G. Influence of ultraviolet-B enhanced solar radiation on growth and photosynthesis of potassium deficient cowpea seedlings [J]. Photosynthetica,1996,32: 521-528.
    [124]Takeuchi A, Yamaguchi T, Hidema J, Strid A, Kumagai T. Changes in synthesis and degradation of Rubicon and LHC II with leaf age in rice (Oryza sativa L.) growing under supplementary UV-B radiation [J]. Plant, Cell and Environment,2002,25:695-706.
    [125]Renu P, Radhika T, Sugunan S. Characterization and catalytic activity of vanadia supported on rice husk silica promoted Samaria [J]. Catalysis Communications,2008,9:584-589.
    [126]李海涛,廖迎春,董铭,梁涛.田间可调式UV-B辐射增强对籼型杂交稻“协优432”生长及产量的影响[J].中国农学通报,2006,22(6):349-355.
    [127]Sarma Annamraju D, Rameshwar S. Purification and characterization of UV-B induced phenylalanine ammonialyase from rice seedlings [J]. Photochemistry,1999,50:729-737.
    [128]Markham K R, Tanner G J, Caasi L M, Whitecross M 1, Murali N, Mitchell K A, Nayudu M. Possible protective role for 3,4-dihydroxyflavones induced by enhanced UV-B in a UV-tolerant rice cultivar [J]. Phytochemistry,1998,49(7):1913-1919.
    [129]黄少白,戴秋杰,刘晓忠,彭少兵,Vergara B S.水稻对UV-B辐射增强的生化适应机制[J].作物学报,1998,24:464-469.
    [130]王艳,李韶山,徐宁,陈菊芳,梁志红,刘颂豪.UV-B诱导水稻叶片DNA形成CPD的研 究[J].激光生物学报,2001,10(2):101-103.
    [131]Grantpetterson J, Renwick JA. Effects of ultraviolet-B exposure of Arabdopsis thaliana on herbivory by two crucifer feeding insects (Lepidoptera) [J]. Environ Entomol,1996,25: 135-142.
    [132]Asada K. The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1999, 50:601-639.
    [133]Fujibe T, Saji H, Arakawa K, Yabe N, Takeuchi Y, Yamamoto K. A methyl viologen-Resistant mutant of Arabidopsis, which is allelic to ozone-sensitive rcdl, is tolerant to supplemental ultraviolet-B irradiation [J]. Plant Physiology,2004,134:275-285.
    [134]Gould KS, Mckelvie J, Markham K R. Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury [J]. Plant, Cell and Environment, 2002,25:1261-1269.
    [135]Britt A B. Repair of DNA damage induced by solar UV [J]. Photosynth Res 2004,81:105-112.
    [136]Britt A, Fiscus E L:Growth responses of Arabidopsis DNA repair mutants to solar irradiation [J]. Physiol Plant 2003,118:183-192.
    [137]Hidema J, Kumagai T, Sutherland B M. UV radiation-sensitive Norin 1 rice contains defective cyclobutane pyrimidine dimer photolyase [J]. Plant Cell,2000,12:1569-1578.
    [138]Nakajima S, Sugiyama M, Iwai S, Hitomi K, Otoshi E, Kim S-T, Jiang C Z, Todo T, Britt A, Yamamoto K. Cloning and characterization of a gene (UVR3) required for photorepair of 6-4 photoproducts in Arabidopsis thaliana [J]. Nucleic Acids Research,1998,26:638-644.
    [139]Chen J, M itchell D L, Britt A B. A light dependent pathway for the elimination of UV-induced Pyrimidine (6-4) pyrimidone photoproducts Arabidopsis thaliana [J]. Plant Cell,1994, 6:1311-1317.
    [140]Taylor R M, Tobin A K, Bray C M. DNA damage and repair in plants [A]. In:Lum-sden P L. Plants and UV-B:Responses to Environmental Change [C]. Cambridge University Press, U. K., 1997,53-76.
    [141]Pan G Q, Hays J B. UV-B-induced and temperature sensitive photo reactivation of cyclobutane pyrimidine dimers in Arabidopsis thaliana [J]. Plant Physiol.,1991,95:536-543.
    [142]Landry L G, Stapleton A E, Lim J, Hoffman P, Hays J B, Walbot V, Last R L. An Arabidopsis photolyase mutant is hypersensitive to UV-B radiation [J]. Proc, Natl. Acad. Sci. USA,1997,94: 328-332.
    [143]Waterworth W M, Jiang Q, West C E, Nikaido M, Bray C M. Characterization of Arabidopsis photolyase enzymes and analysis of their role in protection from ultraviolet-B radiation [J]. Journal of Experimental Botany,2002,53:1005-1015.
    [144]Ahmad M, Jarillo J A, Klimczak L J, Landry L G, Peng T, Last R L, Cashmore A R. An enzyme similar to animal type Ⅱ photolyases mediates photoreactivation in Arabidpsis thaliana [J]. Plant Cell,1997,9:199-207.
    [145]Quaite F E, Takayanagi S, Ruffini J, Sutherland J C, Sutherland B M. DNA damage levels determine cyclobutyl pyrimidine dimmer repair mechanisms in alfalfa seedlings [J]. Plant Cell, 1994,6:1635-1641.
    [146]Britt A B, Chen J J, Wykoff D, Mitchell D. A UV-sensitive mutant of Arabidopsis defective in the repair of pyrimidine-pyrimidone (6-4) dimmers [J]. Science,1993,261:1571-1574.
    [147]Freidberg E C, Walker G C, Siede W. DNA repair and mutagenesis [M]. ASM Press, WA, 1995,199-211.
    [148]Sant'Anna-Santos B F, da Silva L C, Azevedo A A, de Ara'ujo J M, Alves E F, da Silva E A M, Aguiar R. Effects of simulated acid rain on the foliar micromorphology and anatomy of tree tropical species [J]. Environmental and Experimental Botany,2006,50:158-168.
    [149]李焰焰,聂传朋,董召荣.模拟酸雨对小黑麦种子萌发及幼苗生理特性的影响[J].生态学杂志,2005,24(4):395-397.
    [150]陶忠玲,周青.酸雨胁迫对水稻和高粱种子萌发的影响[J].安全与环境学报,2008,8(4):58-61.
    [151]Bosleya, Petersen R, Rebbeck J. The resistance of the moss polytrichum commune to acute exposure of simulated acid rain or ozone compared to two fern species:spore germination [J]. Bryologist Winter,1998,101(4):512-518.
    [152]Parkj B, Lee S. Growth responses of Arabidopsis thaliana exposed to simulated acid rain [J]. Journal of the Korean Society for Horticultural Science,1999,40(1):146-151.
    [153]范玉贞.酸雨对不同农作物种子萌发的影响[J].衡水学院学报,2009,11(1):31-34.
    [154]陈永喆,陈穗云,张晋海,丁卫建,徐湘云,戴金平.模拟酸雨对小麦和玉米种子萌发及幼苗发育的影响[J].山东环境,1997,(4):13-15.
    [155]邱琳,周青.模拟酸雨胁迫下镧对高粱种子萌发的影响[J].环境化学,2009,28(1):80-85.
    [156]张耀民,吴丽英,王晓霞,张静,高绪评,谢明云,惠红,王萍,徐和宝,赵树新.酸雨对农作物的叶片伤害及生理特性的影响[J].农业环境保护,1996,15(5):197-208.
    [157]邢廷铣.酸雨对农业生产的影响及其对策[J].土壤与环境,2002,11(1):9-100.
    [158]王力军.模拟酸雨致酸土壤对莴苣某些生理性状的影响[J].植物生理学通讯,1991,27(1):32-34.
    [159]严重玲,钟章成,李瑞智.酸雨对农作物叶片活力、叶绿素及叶汁pH的影响[J].环保科技,1995,17(2):27-30.
    [160]肖艳,黄建昌.13种果树对酸雨抗性的研究[J].果树学报,2004,3(3):191-195.
    [161]严重玲,李瑞智,钟章成.模拟酸雨对绿豆、玉米生理生态特性的影响[J].应用生态学报,1995,6(增刊):124-131.
    [162]许泽宏,罗英,王煌,韩善华.模拟酸雨对蚕豆植物生长的影响[J].中国微生态学杂志,2001,13(1):26-29.
    [163]童贯和.酸雨致酸土壤对小麦幼苗若干营养代谢的影响[J].应用与环境生物学报,2005,11(3):279-282.
    [164]童贯和,梁惠玲.酸雨致酸土壤对小麦幼苗糖代谢和氮代谢的影响[J].应用生态学报,2005,16(8):1487-1492.
    [165]黄晓华,周青,张学伟.酸雨对植物根系生长的胁迫效应[J].农业环境保护,2000,19(4):234-235,247.
    [166]Wertheim F S, Cracker L E. Acid rain and pollen germination in corn [J]. Pollution,1987, 48(3):165-172.
    [167]吕均良,李三玉,黄寿波,朱诚,傅柳松.模拟酸雨对葡萄叶片和花粉的影响[J].应用与环境生物学报,1999,5(5):459-463.
    [168]Bellani LM, Rinallo C, Muccifora S, Gori P. Effects of simulated acid rain on Pollen physiology and ultrastructure in the apple [J]. Environ Pollut,1997,95(3):357-362.
    [169]邱栋梁,刘星辉.模拟酸雨对龙眼落果及果实品质的影响研究[J].中国生态农业学报,2004,12(2):68-69.
    [170]单运峰.酸雨、大气污染与植物[M].北京:中国环境科学出版社,1994.
    [171]Glass N R. Environmental effects of increased coal utilization:ecological effects of gaseous emissions from coal combustion [J]. Environ Health Perspect,979,33:249-272.
    [172]郑飞翔,温达志,旷远文.模拟酸雨对柚木幼苗生长、光合与水分利用的影响[J].热带亚热带植物学报,2006,14(2):93-99.
    [173]蔡世舫,任清文,欧红梅,滕康开.酸雨对小麦生理特性影响的研究[J].安徽农业科学,2000,28(3):303-304.
    [174]束良佐,孙五三.Ca2+浸种对酸雨伤害玉米幼苗的影响[J].中国环境科学,2001,21(2):185-]88.
    [175]Misako K, Shimizu S. Chlorophyll metabolism in higher plants.Ⅵ. Involvement of peroxidase in chlorophyll degradation [J]. Plant Cell Physiol,1985,26:1291-1301.
    [176]夏阳,孙明高,李国雷,张金凤,胡学俭,徐红兵.盐胁迫对四园林绿化树种叶片中叶绿素含量动态变化的影响[J].山东农业大学学报(自然科学版),2005,36(1):30-34.
    [177]高吉喜,潘凤云,周兴宝.二氧化硫对植物新陈代谢的影响(Ⅱ)——对光合、呼吸与物质代谢的影响[J].环境科学研究,1997,10(6):5-9.
    [178]Zhou Q, Huang X H, Ye Y X. Effect of Cerium on seed germination under acid rain stress [J]. J. Rare Earth,2000,18(4):298-301.
    [179]单运峰,冯宗炜.模拟酸雨对马尾松和杉树幼树之影响[J].环境科学学报,1988.8(6):307-315.
    [180]惠红,高绪评.水稻叶片对模拟酸雨伤害的生理反应[J].植物资源与环境,1996,5(3):41-45.
    [181]Solomonson L P, Spehar A M. Model for regulation of nitrogen assimilation [J]. Nature,1997, 266:373-379.
    [182]齐泽民,钟章成,邓君.模拟酸雨对杜仲叶氮代谢的影响[J].植物生态学报,2001,25:544-548.
    [183]陈志澄,唐晓,陈海珍,杨冰仪.酸雨对龙眼果树影响研究[J].生态科学,2004,23(3):219-222.
    [184]田大伦,黄智勇,闫文德,项文化.模拟酸雨对3种盆栽灌木幼苗叶矿质元素含量的影响[J].中南林业科技大学学报(自然科学版),2007,27(1):1-8.
    [185]颜戊利,陈志澄,杨冰仪,毋福海,黄丽玫.酸雨对苋菜中微量元素的影响[J].广东微量元素科学,2004,11(9):61-64.
    [186]杜字国,单运峰.酸雨的生态影响及防治对策[J].生态学杂志,1992,11(6):51-54.
    [187]付晓萍,田大伦.酸雨对植物的影响研究进展[J].西北林学院学报,2006,21(4):23-27.
    [188]牛力.模拟酸雨对拟南芥某些生理特性和基因表达谱的影响[硕士学位论文].福建:厦门大学,2009,22-23.
    [189]黄建昌,肖艳,周厚高.模拟酸雨对番木瓜不同成熟度叶片膜脂过氧化作用的影响[J].广西植物,2005,25(6):562-565,575.
    [190]童贯和.模拟酸雨致酸土壤对小麦幼苗生长发育的影响[J].农村生态环境,2005,21(1):47-50.
    [191]吕家根,占达东,王周平,章竹君.模拟酸雨胁迫下小麦微弱延迟发光及其生理、生态变化相关性研究[J].化学学报,2003,61(5):760-764.
    [192]严重玲,洪业汤.酸雨胁迫下,稀土元素对菠菜膜保护系统作用[J].生态学报,1999,19(4):543-545.
    [193]邓仕坚,陈楚莹,张家武,汪思龙.树冠叶凋落物对模拟酸雨缓冲能力的初探[J]环境科学,1992,13(2):10.
    [194]高健,陈放鸣,陈耀华,金成俊.铜陵市酸沉降对马尾松林的影响[J].生态学杂志,1996,15(4):24-28.
    [195]冯宗炜,曹洪法,周修萍.酸沉降对生态系统的影响及其生态恢复[M].北京:中国环境科学出版社,1999,79-178.
    [196]MacDonald N W, Ducsay B J. Growth and survival of jack pine exposed to simulated acid rain as seedlings [J]. Soil Science Society of America Journal,1997,61(1):295-297.
    [197]张家武,陈楚莹,邓仕坚.酸雨对森林生长影响的研究[A].国家环境保护局.大气污染防治技术研究[M].北京:科学出版社,1993,805-813.
    [198]杨宗慧.我国酸雨状况和对策[J].云南环境科学,2002,21(1):25-26.
    [199]Shevtsova A, Neuvonen S. Responses of ground vegetation to prolonged simulated acid rain in subarctic pine birch forest [J]. New Phytologist,1997,136 (4):613-625.
    [200]孟小星,姜文华,张卫东.重庆酸雨地区森林生态系统土壤、植被与地表水现状分析[J].重庆环境科学,2003,25(12):71-73.
    [201]高太忠,戚鹏,张扬,李景印.酸雨对土壤营养元素迁移转化的影响[J].生态环境,2004,13(1):23-26.
    [202]凌大炯,章家恩,欧阳颖.酸雨对土壤生态系统影响的研究进展[J].土壤,2007,39(4):514-521.
    [203]王焕校.污染生态学[M].北京:高等教育出版社,2000,52,171-179.
    [204]花日茂,李湘琼.我国酸雨的研究进展(综述)[J].安徽农业大学学报,1998,25(2):206-210.
    [205]王力军,郑旭照,张可.酸雨对重庆市蔬菜土壤微生物区系影响的分析[J].渝州大学学报(自然科学版),1991,2:69-73.
    [206]冯宗炜.中国酸雨对陆地生态系统的影响和防治对策[J].中国工程科学,2000,2(9):5-11.
    [207]仇荣亮,吴菁.陆地生态环境酸沉降敏感性研究[J].环境科学进展,1997,5(4):8-12.
    [208]李其林,魏朝富,王显军,黄昀,谢德体.重庆农业生态系统中酸雨因子的特点及其影响[J].中国环境监测,2008,24(4):70-74.
    [209]吴劲兵,汪家权,孙世群.酸沉降农业经济损失估算[J].合肥工业大学学报(自然科学版),2002,25(1):100-104.
    [210]黎华寿,聂呈荣,胡永刚.模拟酸雨对杂交稻、常规稻、野生稻影响的研究[J].农业环境科学学报,2004,23(2):284-287.
    [211]Ulrich B. Chemical changes due to acid precipitation in a loss derived soil in central Europe [J]. Soil science,1980,14:193-199.
    [212]王力军,张可.重庆市受酸雨污染的蔬菜土壤生物活性分析//陈志远.中国酸雨研究[M].北京:中国环境科学出版社,997,84-91.
    [213]孙岩,全炳武.模拟酸雨对玉米幼苗根部土壤的影响[J].延边大学农学学报,2009,31(4):247-251.
    [214]许梅德.酸雨对陆生植物影响的探讨[J].农业环境保护,1995,14(4):185-186,189.
    [215]梁婵娟,周青,沈东兴,曾庆玲,张光生,黄晓华.UV-B辐射与酸雨复合胁迫对油菜幼苗生长的影响[J].农业环境科学学报,2004,23(2):231-234.
    [216]梁婵娟,徐青,陶文沂,李操,沈东兴,徐雪松,周青.油菜光合作用及CAT对UV-B与AR胁迫的响应(I)[J].农业环境科学学报,2004,23(4):642-645.
    [217]梁婵娟,陶文沂,李操,沈东兴,曾庆玲,徐雪松,周青.UV-B与AR胁迫下油菜光合及CAT活性的恢复过程(11)[J].农业环境科学学报,2004,23(5):890-894.
    [218]余苹中,廖柏寒,宋稳成,刘红玉.模拟酸雨和Cd对小白菜、四季豆生理生化特性的影响[J].农业环境科学学报,2004,23(1):43-46.
    [219]严重玲,洪业汤,杨先科,付舜珍,吴善绮.稀土元素对酸雨胁迫下小麦抗氧化酶的生物作用[J].科学通报,1998,43(20):2206-2209.
    [220]严重玲,洪业汤,杨先科,付舜珍,吴善绮.酸雨胁迫下稀土元素对小麦的生物学效应[J].中国农业科学,1998,31(3):89-91.
    [221]严重玲,洪业汤,王世杰,付舜珍,杨先科,朱克勇,吴善绮.稀土元素对酸雨胁迫小麦活性氧清除系统响应的作用[J].作物学报,1999,25(4):504-507.
    [222]周青,黄晓华,王冬燕,邵爱华,吴波.La对腊梅酸致损伤的影响[J].生态学杂志,1997,16(6):59-61.
    [223]周青,黄晓华,王丹,李云.镧(La)-甘氨酸(Gly)稀土配合物对酸雨伤害植物的影响[J].应用与环境生物学报,1999,5(6):570-573.
    [224]周青,黄晓华.植物酸致损伤机理与稀土调控研究[J].中国稀土学报,2002,20:177-180.
    [225]金进,叶亚新,程明,陆爱香.铈对酸雨胁迫下玉米生长的影响[J].安徽农业科学,2005,33(6):944-946,948.
    [226]冯宗炜.酸雨对生态系统的影响——西南地区的酸雨研究[M].北京:中国科学技术出版社,1993.
    [227]Paoletti E. UV-B and acid rain effects on beech (Fagus sylvatica L.) and holm oak (Quercus ilex L.) leaves [J]. Chemosphere,1998,36(45):835-840.
    [228]Liang C J, Huang X H, Tao W Y, Zhou Q. Responses of antioxidant enzyme and photosynthesis in rape seedling to the combined stresses of acid rain and ultraviolet-B radiation [J]. Journal of Environmental Sciences,2005,17(6):1038-1041.
    [229]胡正华,索福喜,赵晓莉,郑有飞.UV-B与AR复合胁迫对大豆种子萌发和幼苗生长的影响[J].生态环境,2005,14(4):523-525.
    [230]胡正华,索福喜,赵晓莉,郑有飞.UV-B辐射增加与酸雨复合处理对菠菜种子萌发和幼苗生长的影响[J].中国农学通报,2005,21(6):284-285,294.
    [231]赵晓莉,胡正华,王正梅,郑有飞,徐建强.UV-B辐射与酸雨复合胁迫对小白菜和生菜幼苗生长和生理特性的影响[J].河南农业科学,2007,2:73-77.
    [232]赵晓莉,胡正华,徐建强,郑有飞,肖琼,黄红丽.UV-B辐射与酸雨胁迫对生菜生理特性及品质的影响[J].生态环境,2006,15(6):1170-1175.
    [233]赵晓莉,郭照冰,汤莉莉,郑有飞,张慧,黄慧.UV-B辐射与酸雨胁迫对小白菜生理特性的影响[J].安徽农业科学,2007,35(2):358-360.
    [234]何俊星.金荞麦和荞麦对增强UV-B辐射和模拟酸雨处理的生长和生理可塑性响应研究[硕士学位论文].重庆:西南大学,2010,73-74.
    [235]龙云,刘芸,钟章成,Marinus J A Werger.酸雨和UV-B对玉米幼苗光合速率和抗氧化酶活性的影响[J].生态学报,2009,29(9):4956-4966.
    [1]白建辉,王庚辰,胡非.太阳紫外辐射在大气中衰减的探讨[J].气候与环境研究,2002,7(4):440-446.
    [2]Albert K R, Rinnan R, Ro-Poulsen H, Mikkelsen T N, Hakansson K B, Arndal M F, Michelsen A. Solar ultraviolet-B radiation at Zackenberg:The impact on higher plants and soil microbial communities [J]. Advances in Ecological Research,2008,40:421-440.
    [3]Krizek D T, Chalker-Scott L. Ultraviolet radiation and terrestrial ecosystems [J]. Photochemistry and Photobiology,2005,81(5):1021-1025.
    [4]冯宗炜,曹法洪,周修萍.酸沉降对生态环境的影响及其生态恢复[M].北京:中国环境科学出版社,1999,1-104
    [5]Singh A, Agrawal M. Acid rain and its ecological consequences [J]. Journal of Environmental Biology,2008,29(1):15-24.
    [6]Larssen T, Lydersen E, Tang D G, He Y, Gao J X, Liu H Y, Duan L, Seip H M, Vogt R D, Mulder J, Shao M, Wang Y H, Shang H, Zhang X S, Solberg S, Aas W, Okland T, Eilertsen O, Angell V, Liu Q R, Zhao D W, Xiang R J, Xiao J S, Luo J H. Acid rain in China [J]. Environmental Science & Technology,2006,40(2):418-425.
    [7]Solomon K R, Tang X Y, Wilson S R, Zanis P, Bais A F. Changes in tropospheric composition and air quality due to stratospheric ozone depletion [J]. Photochemical & Photobiological Sciences,2003,2(1):62-67.
    [8]Paoletti E. UV-B and acid rain effects on beech (Fagus sylvatica L.) and holm oak(Quercus ilex L.) leaves [J]. Chemosphere,1998,36(45):835-840.
    [9]梁婵娟,周青,沈东兴,曾庆玲,张光生,黄晓华.UV-B辐射与酸雨复合胁迫对油菜幼苗生长的影响[J].农业环境科学学报,2004,23(2):231-234.
    [10]胡正华,索福喜,赵晓莉,黎明,郑有飞.UV-B增加与酸雨复合处理对大豆种子萌发和幼苗生长的影响[J].生态环境,2005,14(4):523-525.
    [11]Liang C J, Huang X H, Tao W Y, Zhou Q. Responses of antioxidant enzyme and photosynthesis in rape seedling to the combined stresses of acid rain and ultraviolet-B radiation [J]. Journal of Environmental Sciences,2005,17(6):1038-1041.
    [12]刘芸,钟章成,Marinus J A Werger,操国兴,尹克林,龙云.α-NAA和UV-B辐射对栝楼幼苗光合色素及保护酶活性的影响[J].生态学报,2003,23(1):8-13.
    [13]龙云,刘芸,钟章成,Marinus J A Werger.酸雨和UV-B对玉米幼苗光合速率和抗氧化酶活性的影响[J].生态学报,2009,29(9):4956-4966.
    [14]张勇.重庆市“十五”期间酸雨污染特征及成因分析[J].西南大学学报(自然科学版),2007,29(4):164-168.
    [15]廖柏寒,蒋青.我国酸雨中盐基离子的重要性[J].农业环境保护,2001,20(4):254-256.
    [16]黄样辉.作物栽培生理学[M].上海:上海科技出版社,1984.
    [17]den Dubblede K, Growth and allocation patterns in herbaceous climbing plants [Ph. D. thesis]. Utretch University, the Netherlands,1994,7-22.
    [18]Bazzaz F A, Ackerly D D, Reproductive allocation and reproductive effort in plants, in Fenner M (ed):Seeds:The ecology of regeneration in plant communities CAB International [C], Wallingford Oxon, UK,1992,1-26.
    [19]Aronson J, Kigel J, Shmida A, Reproductive strategies in desert and Mediterranean populations of annual plants with and without water stress [J]. Oecologia,1993,93(3):336-342
    [20]Quijie Dai, Shaobing Peng, Arlene Q. Chavez and Benito S. Vergara. Intraspecific responses of 188 rice cultivars to enhanced UV-B radiation s [J]. Environmental and Experimental Botany, 1994,34(4):433-442.
    [21]张荣刚.UV-B辐射增加对玉米生长发育及产量品质的影响[硕士学位论文].江苏:南京气象学院,2003,11-12
    [22]郭德惠,张延毅.人工酸雨喷雾对小麦生长的影响[J].环境科学,1986,7(3):13217.
    [23]周忠泽,鲁润龙,葛磊.模拟酸雨处理与四种植物叶、花关系的初步研究[J].生物学杂志,1998,15(82):27-32.
    [24]Brewer J.S. short-term effects of fire and competition on growth and Plasticity of the yellow Pitcher plant, Sarracenla alata (Asrracenlaceae) [J]. Ameriean Journal of Botany,1999,86(9): 1264-1271.
    [25]蒋馥蔚,江洪.不同起源时期的3种被子植物对酸雨胁迫响应的光合生理生态特征[J]. 植物生态学报,2009,33(1):125-133.
    [26]Kim H Y. Enhanced UV-B radiation has little effective growth 13C values and Pigments of Pot grown rice(oryza sativa) in the field [J]. Physiol Plant,1996,9(1):1-5.
    [27]Coerria C M, Torres-Pereira M S, Torres-Pereira J M G. Growth, Photosynthesis and UV-B absorbing compounds of Portuguese Barbell wheat exposed to ultraviolet-B radiation [J]. Environ. Pollute,1999,104:383-388.
    [28]Kumgaai T, Hidema J, Kang H Sato T. Effects of supplemental UV-B radiation on the growth and yield of two cultivars of Japanese lowland rice (Oryza sativa L.) under the field in a cool rice-growing region of Japan [J]. Agric. Ecosyst. Environ,2001,83:201-208.
    [29]Barnes P W, Flint S D and Caldwell M M. Morphological responses of crop and weed species of different growth forms to UV-B radiation [J]. Am. J. Botany,1990,77(10):1354-1360.
    [30]齐泽民,王玄德,宋光煜.酸雨对植物影响的研究进展[J].世界科技研究与发展,专题:环境污染及治理,2004,36-41.
    [31]Wood T, Bormann F H. The effects of an artificial acid mist upon the growth of Betula alleghaniensis [J]. Britt. Environmental Pollution,1974,7(4):259-268.
    [32]Ferenbaugh R.W. Effeets of simulated acid rain on Phaseolus vulgaris L [J]. Am. J. Botany, 1976,63(3):283-288.
    [33]蔡如,黄建昌,肖艳.模拟酸雨对6种园林植物生长和生理反应的影响[J].仲恺农业技术学院学报,2002,15(3):28-32.
    [34]Newsham K K, Gerensldde P D, Kennedy V H, McLeod A R. Elevated UV-B radiation incident on Quercus robur leaf canopies enhances decomposition of resulting leaf litter in soil [J]. Global Change Biol,1999,5:403-409.
    [35]Keiller D R, Holmes M G. Effects of long-term exposure to elevated UV-B radiation on the Photosynthetic Performance of five broad-leaved tree species [J]. Photosynth Res,2001,67: 229-240.
    [36]Lee J J, Weber D E. The effects of simulated acid rain on seedling emergence and growth of eleven woody species [J]. Forest Science,1979,25(3):393-398.
    [37]张耀民,吴丽英,王晓霞,张静,高绪评,谢明云,惠红,王萍,徐和宝,赵树新.酸雨对农作物的叶片伤害及生理特性的影响[J].农业环境保护,1996,15(5):]97-208.
    [38]邢廷铣.酸雨对农业生产的影响及其对策[J].土壤与环境,2002,11(1):98-100.
    [39]王力军.模拟酸雨致酸土壤对莴苣某些生理性状的影响[J].植物生理学通讯,1991,27(1):32-34.
    [40]严重玲,钟章成,李瑞智.酸雨对农作物叶片活力、叶绿素及叶汁pH的影响[J].环保科技,1995,17(2):27-30.
    [41]肖艳,黄建昌.13种果树对酸雨抗性的研究[J].果树学报,2004,3(3):191-195.
    [42]单运锋,冯宗炜,陈楚莹.模拟酸雨对七种森林树种生物量的影响[J].生态学报,1989.9(3):274-276.
    [43]赵晓莉,胡正华,王正梅,郑有飞,徐建强.UV-B辐射与酸雨复合胁迫对小白菜和生菜幼苗生长和生理特性的影响[J].河南农业科学,2007,(2):73-77.
    [44]梁婵娟,徐青,陶文沂,李操,沈东兴,徐雪松,周青.油菜光合作用及CAT对UV-B与AR胁迫的响应(I)[J].农业环境科学学报,2004,23(4):642-645.
    [45]梁婵娟,陶文沂,李操,沈东兴,曾庆玲,徐雪松,周青.油菜光合作用及CAT对UV-B与AR胁迫的响应(11)[J].农业环境科学学报,2004,23(5):890-894.
    [46]Hideg E, Vass I. UV-B induced free radical production in plant leaves and isolated thoy lakoidm embranes [J]. Plant Sci.,1996,115:251-260.
    [47]Strid A. Alteration in Pigment content in leaves of Pisum sativum after exposure to supplement U-B [J], Plant Cell Physiol,1992,33(7):1015-1023.
    [48]Smirnoff N. The function and metabolism of ascorbic acid in plants [J]. Ann. Bot.,1996,78: 661-669.
    [49]Teramura A H. effects of ultraviolet-B radiation on the growth and yield of crop Plants [J]. Physiol. Plant,1983,58:415-427.
    [50]Caldwell M M, Teramura A H, Tevini M. Effects of increased solar ultraviolet radiation on terrestrial plants [J]. Ambio,1995,24:166-173.
    [51]Stephanoum, Maneta S Y. Ultraviolet-B radiation effects on the Mediterranean ruderal Dittrichia viscose [J]. Plant Ecology,1997,128:109-112.
    [52]Nikolopoulo S D, Petropoulou Y, KyParississ A. Effects of enhanced UV-B radiation on the drought semi desiduous Mediterranean Shur Phlom is frutieosa under field conditions are season-specific [J]. Aust. J. Plant Physiol,1995,22:737-747.
    [53]唐莉娜,林文雄,吴杏春,梁义元,陈芳育.UV-B辐射增强对水稻生长发育及其产量形成的影响[J].应用生态学报,2002,13(10):1278-1282.
    [54]Biggs R H, kouthus S V. UV-B Biological and Climate Effects Research Final Report U.S. Department of Agriculture [M]. Forida:University of Florida Press,1978,77.
    [55]Li Y, Zu Y Q, Chen H Y, Chen J J, Yang J L, Hu Z D. Intraspecific responses in crop growth and yield of 20 Wheat cultivars to enhanced ultraviolet-B radiation under field conditions [J]. Field Crops Res.,2000,67:25-33.
    [56]张福珠,唐鸿寿,杨晓峰.西南地区主要农作物对酸雨敏感性和危害状况.大气污染防治技术研究[M].北京,科学出版社,1993,827-834.
    [57]张家武.酸雨对森林生长的影响.大气污染防治技术研究[M].北京:科学出版社,1993,805-813.
    [58]单运峰,冯宗炜.模拟酸雨对马尾松和杉木幼树的影响[J].环境科学学报,1988,8(3):307-314
    [59]Raynal D J, Roman J R, Eichenlaub W M. Response of tree seedlings to acid precipitation-II. Effect of simulated acidified canopy through fall on sugar maple seedling growth [J]. Environmental and Experimental Botany,1982,22:385-391.
    [60]单运峰,冯宗炜,陈楚莹.模拟酸雨对七种森林植物生物量的影响[J].生态学报,1989,9(3):274-276.
    [61]廖利平,陈楚莹.模拟酸雨—土壤酸化——杉木、木荷根系生长关系的研究[J].生态学杂志,1992,11(2):23-28.
    [62]樊后保,臧润国.女贞种子和幼苗对模拟酸雨的反应[J].环境科学研究,2000,36(6):90-94.
    [1]Molina M J, Rowland F S. Stratospheric sink for chlorofluoromethanes:chlorine atom-catalyzed destruction of ozone [J]. Nature,1974,249:810-812
    [2]Russell J M, Luo M Z, Cicerone R J, Deaver L E. Satellite confirmation of the dominance of chlorofluorocarbons in the global stratospheric chlorine budget [J]. Nature,1996,379:526-529.
    [3]WMO (World Meteorological Organization). Scientific Assessment of Ozone Depletion. In: Global Ozone Research and Monitoring Project [C]//Ajavon A N, Albritton D L, Watson R T. Report No.47.Geneva, USA:World Meteorological Organization,2002.
    [4]Kerr J.B, MeElory C T. Evidence for large upward trends of UV-B radiation linked to ozone depletion [J]. Science,1993,262:1032-1034.
    [5]冯宗炜,曹法洪,周修萍.酸沉降对生态环境的影响及其生态恢复[M].北京:中国环境科学出版社,1999,1-104.
    [6]Albert K R, Rinnan R, Ro-Poulsen H, Mikkelsen T N, Hakansson K B, Arndal M F, Michelsen A. Solar ultraviolet-B radiation at Zackenberg:The impact on higher plants and soil microbial communities [J]. Advances in Ecological Research,2008,40:421-440.
    [7]Krizek D T, Chalker-Scott L. Ultraviolet radiation and terrestrial ecosystems [J]. Photochemistry and Photobiology,2005,81(5):1021-1025.
    [8]Singh A, Agrawal M. Acid rain and its ecological consequences [J]. Journal of Environmental Biology,2008,29(1):15-24.
    [9]Larssen T, Lydersen E, Tang D G, He Y, Gao J X, Liu H Y, Duan L, Seip H M, Vogt R D, Mulder J, Shao M, Wang Y H, Shang H, Zhang X S, Solberg S, Aas W, Okland T, Eilertsen O, Angell V, Liu Q R, Zhao D W, Xiang R J, Xiao J S, Luo J H. Acid rain in China[J]. Environmental Science & Technology.2006,40(2):418-425.
    [10]Kakani V G, Reddy K R, Zhao D, Sailaja K. Field crop responses to ultraviolet-B radiation:a review [J]. Agricultural and Forest Meteorology,2003,120:191-218.
    [11]Takeuchi Y. Adaptive alterations in the activities of savengers of active oxygen in cucumber cotyledons irradiated with UV-B [J]. Plant Physiol,1996,147:589-592.
    [12]Gaberscik A, Voncina M, Trost T, Germ M, Bjorn L O. Growth and production of buckwheat (Fagopyrum esculentum) treated with reduced, ambient, and enhanced UV-B radiation [J]. J. Photochem Photobiol B:Biology,2002,66:30-36.
    [13]田大伦,付晓萍,方晰,项文化.模拟酸雨对樟树幼苗光合特性的影响[J].林业科学.2007,43(8):29-35.
    [14]谢田,李庆新.酸雨致使菠菜光合作用下降机理初探[J].环保科技,1994,16(1):9-11.
    [15]Lee W S, Chevone B I, Seiler J R. Gorwth and Gas Exehnage of Loblolly Pine Seedlings as Influenced by Drouhgt and Air Pollutants [J]. Water Air and Soil Polutlion,1990,51(1-2): 105-116.
    [16]杨秀红.酸雨对植物影响的研究及其方法概述[J].中山大学研究生学刊(自然科学版),1998.S1:77-83.
    [17]Paoletti E. UV-B and acid rain effects on beech (Fagus sylvatica L.) and holm oak(Quercus ilex L.) leaves [J]. Chemosphere,1998,36(45):835-840.
    [18]梁婵娟,周青,沈东兴,曾庆玲,张光生,黄晓华.UV-B辐射与酸雨复合胁迫对油菜幼苗生长的影响[J].农业环境科学学报,2004,23(2):231-234.
    [19]Liang C J, Huang X H, Tao W Y, Zhou Q. Responses of antioxidant enzyme and photosynthesis in rape seedling to the combined stresses of acid rain and ultraviolet-B radiation [J]. Journal of Environmental Sciences,2005,17(6):1038-1041.
    [20]Garty J, Tamir O, Levin T, Lehr H. The impact of UV-B and sulphur-or copper-containing solutions in acidic conditions on chlorophyll fluorescence in selected Ramalina species [J]. Environmental Pollution,2007,145(1):266-273.
    [21]沈伟其.测定水稻叶片叶绿体混合液提取法[J].植物生理学通讯,1988,(3):62.
    [22]Racker, E. in Methods of Enzymatic Analysis [M] (Bergmeyer, H. U., ed.), Academic Press, New York,1962,188-190.
    [23]施教耐,吴敏贤,查静娟.植物磷酸烯醇式丙酮酸羧化酶的研究.Ⅰ.PEP羧化酶同功酶的分离和变构特性的比较[J].植物生理学报,1979,5(3):225-236.
    [24]王维光.植物生理学实验手册[M].上海:上海科学技术出版社,1985,125-128.
    [25]Valladares F, Wright S J, Lasso E, Kitajima K, Pearcy R W. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest [J]. Ecology,2000,81(7):1925-1936.
    [26]Bornman J F. Target sites of UV-B radiation in photosynthesis of higher plants [J]. Photochemistry and Photobiology,1989, (4):145-158.
    [27]Elena B, Anna S, Giorgio M G, Delia T, Carlo S, Flora A and Roberto B. Role of visible light in the recovery of photo system Ⅱ structure and function from ultraviolet-B stress in higher plants [J]. Journal of Experimental botany,2003,54:1665-1673.
    [28]Jordan B R. The effect of Ultraviolet-B radiation on gene expression and pigment composition in etiolated and green pea leaf tissue:UV-B induced changes in gene expression are gene specific and dependent upon tissue development [J]. Plant cell environ 1994,17:45-54.
    [29]Barnes P W, Ballare C L, Caldwell M M. Photomorphogenic effects of UV-B radiation on plants: sequences for light competition [J]. Plant Physiology,1996,148:15-20.
    [30]齐泽民,钟章成.模拟酸雨对杜仲光合生理及生长的影响[J].西南师范大学学报(自然科学版),2006,31(2):151-156.
    [31]单运峰,冯宗炜.模拟酸雨对马尾松和杉木幼树的影响[J].环境科学学报,1988,8(3): 307-314.
    [32]付晓萍,田大伦,黄智勇.模拟酸雨对植物形态学效应的影响[J].浙江林学院学报,2006,23(5):521-526.
    [33]梁婵娟,陶文沂,李操,沈东兴,曾庆玲,徐雪松,周青.UV-B与AR胁迫下油菜光合及CAT活性的恢复过程(Ⅱ)[J].农业环境科学学报,2004,23(5):890-894.
    [34]Ray G J. Restoring Caribbean dry forest:evaluation of tree propagation techniques [J]. Restoration Ecology,1995,3:86-94.
    [35]赵晓莉,胡正华,王正梅,郑有飞,徐建强.UV-B辐射与酸雨复合胁迫对小白菜和生菜幼苗生长和生理特性的影响[J].河南农业科学,2007,2:73-77.
    [36]Teramura A H, Biggs R H, Kossuth S. Effects of UV-B radiation on soybean [J]. Plant Physiol., 1980,65:483-487.
    [37]Mirecki R M, Teramura A H. Effects of ultraviolet-B irradiance on soybean [J]. Plant Physiol., 1984,74:476-477.
    [38]Sullivan J H, Teramura A H. Effects of ultraviolet-B irradiation on seeding growth in the pinacease [J]. Am. J. Bot.,1988,75:225-230.
    [39]Caasi-Lit M, Whitecross M I, Nayudu M, Tanner G J. UV-B irradiation induces differential leaf damage, ultrastructural changes and accumulation of specific phenolic compounds in rice cultivars [J]. Aust. J. Plant Physiol,1997,24:261-274.
    [40]Santos I, Almeida J M, Salema R. Plants of Zea mays L. developed under enhanced UV-B radiationl. Some ultrastructural and biochemical aspects [J]. Plant Physiol,1993,141:450-456.
    [41]Fagerberg W R, Bornman J F. Ultraviolet-B radiation causes shade-type ultrastructural changes in Brassica napus [J]. Physiol. Plant,1997,101:833-844.
    [42]徐文铎,郑元润,刘广田.内蒙古沙地云杉生长与生态条件关系的研究[J].应用生态学报,1993,4(4):368-373.
    [43]Caldwell M M, Bjorn L O, Bornman J F, Flint S D, Kulandaivelu G, Teramura A H, Tevini M. Effects of increased solar ultraviolet radiation on terrestrial ecosystems [J]. Journal of Photochemical Photobiology. B:Biology,1998,46:40-52.
    [44]Allen D J, Baker A D. A thirty percent increase in UV-B has no impact on photosynthesis in well-watered and drought of pea plants in the field [J]. Glob. Chan. Biol.,1999,5:235-244.
    [45]刘敏,李荣贵,范海.UV-B辐射对烟草光合色素和几种酶的影响[J].西北植物学报,2007,27(2):91-296.
    [46]Murali N S, Teramura A H, Randall S K. Response differences between two soybean cultivars with contrasting UV-B radiation sensitivities [J]. Photochemistry and Photobiology,1988,48: 653-657.
    [47]Myers G P, Newton A C, Melgarejo O. The influence of canopy gap size on natural regeneration of Brazil nut (Bertholletia excelsa) in Bolivia [J]. Forest Ecology and Management,2000,127: 119-128.
    [48]师生波,贲桂英.增强UV-B辐射对高山植物麻花艽净光合速率的影响[J].植物生态学报,2001,25(5):520-524.
    [49]Fiisheng S, Xiong, Thomas A. Day. Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plant [J]. Plant Physiol.,2001,125:738-751.
    [50]Garbutt K, Williams W E, Bazzaz F A. Analysis of annuals to elevated CO2 during growth [J]. Ecology,1990,71:1185-1194.
    [51]Pantrucek J, Sage R F. Acclimation of stomatal conductance to a CO2-enriched atmosphere and elevated temperature in Chenopodium album [J]. Australian Journal of Plant Physiology,1996, 78:619-622.
    [52]肖艳,黄建昌.13种果树对酸雨抗性的研究[J].果树学报,2004,21(3):191-195.
    [53]Foster J R. Influence of pH and plant nutrient status on ion fluxes between tomato plants and simulated acid mists [J]. New Phytologist,1990,116:475-485.
    [54]Anthony J W, Christa C. Rapid light cruves:A new fluorescence method to asses the state of the photosynthetic apparatus [J]. Photosynthesis Research,1999,59:63-72.
    [55]Shan Y, Feng Z, Izuta T. The individual and combined effects of ozone and simulated acid rain on chlorophyll contents, carbon allocation and biomass accumulation of armand pine seedlings [J]. Water, Air, and Soil Pollution,1995,85(3):1399-1404.
    [56]Rochefort L, Vitt D H. Effects of simulated acid rain on tomenthypnum-nitens and scorpidium-scorpioides in a rich fen [J]. Bryologist,1988,91(2):121-129.
    [57]Middleton E M, Teramura A H. The role of flavonol glycosides and carotenoids in protecting soybean from ultraviolet-B damage [J]. Plant Physiology,1993,103:741-752.
    [58]冯玉龙,曹坤芳,冯立志.生长光强对4种热带雨林树苗光合机构的影响[J].植物生理与分子生物学报,2002,28:153-160.
    [59]Tevini M, Iwanzik W, Thoma U. Some effects of enhanced UV-B irradiation on the growth and composition of plants [J]. Planta,1981,153:388-394.
    [60]Teramura A H, Ziska L H, Sztein A E. Changes in growth and photosynthetic capacity of rice with increased UV-B radiation [J]. Physiol. Plant,1991,83:373-380.
    [61]蒋馥蔚,江洪,李巍,余树全,曾波,王艳红.不同起源时期的3种被子植物对酸雨胁迫响应的光合生理生态特征[J].植物生态学报,2009,33(1):125-133.
    [62]Ormrod D P, Olszyk D M, Tingey D T, Lesser V M. Elevated temperature and carbon dioxide affect chlorophylls and carotenoids in Douglas-fir seedlings [J]. Int. J. Plant Sci.,1999,160(3): 529-534.
    [63]周青,黄晓华.生存胁迫——紫外辐射增强对植物的生态生理效应[J].自然杂志,2001,23:199-203.
    [64]侯扶江,贲桂英.UV-B辐射对大豆和黄瓜幼苗某些生理特性的影响[J].应用与环境生物学报,1999,5(5):455-458.
    [65]何俊星.金荞麦和荞麦对增强UV-B辐射和模拟酸雨处理的生长和生理可塑性响应[硕士学位论文].重庆:西南大学,2010,47.
    [66]罗红艺.光合碳同化中的两个重要酶RuBP羧化酶和PEP羧化酶[J].高等函授学报(自然科学版),1999(3):49-52.
    [67]董衍奎.C4植物光合作用中主要同功酶的测定[J].哈尔滨师范大学自然科学学报,1995,11(1):96-97.
    [68]Kani R and Edwards GE. "The biochemistry of C4 photosynthesis". In:Sage RF and Monson RK (eds) C4 Plant Biology [M], San Diego:Academic Press,1999,49-87.
    [69]Steinback K E. Proteins of the chloroplast. In:Marcus A ed. The Biochemistry and Nuclei Acids. Academic [M],1981,6:303-319.
    [70]田秀英.RuBP羧化酶/加氧酶的研究进展[J].重庆师专学报,1999,19(3):77-79.
    [71]余叔文.植物生理与分子生物学[M].科学出版社,1992:202-214.
    [72]翁晓燕,蒋德安,毛伟华.Rubisco舌化酶及其对Rubisco的调节作用[J].植物生理学通讯,1998,34(1):69-73.
    [73]Baker N R, Nouges S, Allen D J. Photosynthesis and photoinhibition. In:Lumsden P, ed. Plants and UV-B response to environmental change [M]. Cambridge:Cambridge University Press,1997, 399-417.
    [74]Brandle J R, Campbell W F, Sisson W B, Caldwell M M. Net photosynthesis, electron transport capacity, and ultrastructure of pisum sativuml exposed to ultraviolet-B radiation [J]. Plant Physiol.,1977,60:165-169.
    [75]Oxada M, Kitajima M, Butler W L. Inhibition of photosystem 1 and photosystem 2 in chloroplasts by UV radiation [J]. Plant Cell Physiol.,1976,17:35-39.
    [76]Bjorn L O. Effects of ozone depletion and increased UV-B on terrestrial ecosystem [J]. Intern. J. Environ. Studies,1996,51:217-243.
    [77]施教耐.植物生理学专题讲座[M].北京,科学出版社,1987,46-49.
    [78]林植芳,彭长连,林桂珠.活性氧对苋菜磷酸烯醇式丙酮酸羧化酶活性的影响[J].植物生理学报,2000,26(1):27-32.
    [79]Braun J, Tevini M. Regulation of UV-protective pigment synthesis in t he epidermal layer of rye seedlings [J]. Photochemistry and Photobiology,1993,57:318-323.
    [80]王晨,李斌,查静娟,施教耐.温度、pH及效应剂对高粱PEP羧化酶活性的协同作用[J].植物生理与分子生物学学报,1988,3:51-56.
    [81]范桂枝,蔡庆生.植物对大气CO2浓度升高的光合适应机理[J].植物学通报,2005,22(4):486-493.
    [82]吴杏春,林文雄,黄忠良.UV-B辐射增强对两种不同抗性水稻叶片光合生理及超显微结构的影响[J].生态学报,2007,27(2):554-564.
    [83]李建奇.不同玉米品种的品质、产量差异及机理研究[J].玉米科学,2007,15(4):13-17,33.
    [1]Solomonson, L P, Spehar A M. Model for regulation of nitrogen assimilation [J]. Nature,1997, 266:373-379.
    [2]罗金陵,马长举.酸雨对翅荚木的生理反应及机理的研究[J].西北植物学报,1988,8(4):218.
    [3]Beggs C J, Kronenberg G H. Photo control of flavonoid biosynthesis. Kendrict REeds. photomorphogenesis in plant [J]. Kluwer Academic Dordredt,1994,2:733-750.
    [4]刘清华.紫外线-B(UV-B)辐射增强下银杏(Ginkgo biloba)叶的生理生态机理研究[硕士学位论文].重庆:西南师范大学,2002,3-4.
    [5]李元,王勋陵.紫外辐射增加对春小麦生理、产量和品质的影响[J].环境科学学报,1998,18(5):504-509.
    [6]Nedunchezhian N. Induction of heat short-like proteins in Vigna siriensis seedlings growing under UV-B enhanced radiation [J]. Physiol Plant,1992,85:503-506.
    [7]Solomonson L P, Spehar A M. Model for regulation of nitrogen assimilation [J]. Nature,1997, 266:373-379.
    [8]Kurczynska E U, Dmuchowski W, Wloch W, Bytnerowicz A. The influence of air pollutants on needles and stems of scots pine (Pinus Sylvestris L.) trees [J]. Environmental Pollution,1997, 98(3):325-334.
    [9]Paoletti E. UV-B and acid rain effects on beech (Fagus sylvatica L.) and holm oak (Quercus ilex L.) leaves [J]. Chemosphere,1998,36(45):835-840.
    [10]梁婵娟,周青,沈东兴,曾庆玲,张光生,黄晓华.UV-13辐射与酸雨复合胁迫对油菜幼苗 生长的影响[J].农业环境科学学报,2004,23(2):231-234.
    [11]胡正华,索福喜,赵晓莉,黎明,郑有飞.UV-B增加与酸雨复合处理对大豆种子萌发和幼苗生长的影响[J].生态环境,2005,14(4):523-525.
    [12]Liang C J, Huang X H, Tao W Y, Zhou Q. Responses of antioxidant enzyme and photosynthesis in rape seedling to the combined stresses of acid rain and ultraviolet-B radiation [J]. Journal of Environmental Sciences,2005,17(6):1038-1041.
    [13]赵晓莉,胡正华,徐建强,郑有飞,肖琼,黄红丽.UV-B辐射与酸雨胁迫对生菜生理特性及品质的影响[J].生态环境,2006,15(6):1170-1175.
    [14]龙云,刘芸,钟章成, Marinus J A Werger.酸雨和UV-B对玉米幼苗光合速率和抗氧化酶活性的影响[J].生态学报,2009,29(9):4956-4966.
    [15]李琳,焦新之.应用蛋白质染色剂考马氏亮蓝G-250测定蛋白质的方法[J].植物生理学通讯,1980,(6):52-55.
    [16]中国标准出版社总编室编.中华人民共和国国家标准(第97卷)[M].北京:中国标准出版社,1992,556-557.
    [17]林炎坤.常用的几种蒽酮比色定糖法的比较和测定[J].植物生理学通讯,1989,(4):53-55
    [18]顾增辉,徐本美.种子吸胀及萌发阶段ATP水平测定方法的探讨[J].植物生理学通讯,1983,(5):55-60.
    [19]王维光,顾俭本.从植物叶片中提取ATP方法比较[J].植物生理学通讯,1986,(5):54.
    [20]上海植物生理学会编.植物生理学试验手册[M].上海:科学技术出版社,1985,191-192,67-70.
    [21]薛祥骥,李华池,丁煜,徐火亮.绞股蓝中皂甙和黄酮的含量分析[J].中国中药杂志,1994,19(3):142-143.
    [22]庄向平,虞杏英,杨更生.银杏叶中黄酮含量的测定和提取方法[J].中草药,1992,23(3):122-124.
    [23]中国标准出版社总编室编.中华人民共和国国家标准(第97卷)[M].北京:中国标准出版社,1992,554-555.
    [24]Valladares F, Wright S J, Lasso E, Kitajima K, Pearcy R W. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest [J]. Ecology,2000,81(7):1925-1936.
    [25]Steinback K E. Proteins of the chloroplast. In:Marcus A ed. The Biochemistry and Nuclei Acids [M]. Academic,1981,6:303-319.
    [26]齐泽民,钟章成,邓君.模拟酸雨对杜仲叶氮代谢的影响[J].植物生态学报,2001,25:544-548.
    [27]郑有斌,青长东.模拟酸雨对萝卜生长的影响[J].农业环保,1991,10(5):215.
    [28]Vu C V, Allen L H, Garrard L A. Effects of supplemental UV-B radiation primary photosynthetic carboxylating enzymes and soluble proteins in leaves of C3 and C4 crop plants [J]. Physiol. Plant,1982,55:11-17.
    [29]Murphy T M, Willekens H. Inhibition of protein in cultured tobacco cells by radiaton [J]. Photochem Photobiol,1975,21:219-225.
    [30]Tevini M, Iwanzik W and Thoma U. Some effects of enhanced UV-B radiation on the growth and composition of plants [J]. Plant Physiol,1981,50:479-487.
    [31]冯国宁,安黎哲.增强UV-B辐射对菜豆蛋白质代谢的影响[J].植物学报,1999,41(8):833-836.
    [32]赵远弛.模拟酸雨对小麦生长影响的试验研究[J].中国环境科学,1985,5(6):16.
    [33]曹洪法,高映新,舒俭民,刘燕云.模拟酸雨对农作物生长和产量影响的初步研究[J].植物生态学与地质物学报,1989,13(1):58-65.
    [34]童贯和,梁惠玲.酸雨致酸土壤对小麦幼苗糖代谢和氮代谢的影响[J].应用生态学报,2005,16(8):1487-1492.
    [35]张瑞桓,刘晓,田向军,岳明.UV-B辐射增强对反枝苋形态、生理及化学成分的影响[J].生态学杂志,Chinese Journal of Ecology,2008,27 (11):1869-1875.
    [36]王玮.模拟酸雨处理青菜显微和亚显微结构观察及部分生理指标测定[J].环境科学,1988,9(3):12.
    [37]汪雅格,王玮.模拟酸雨对若干蔬菜影响的研究[J].中国环境科学,1987,7(6):1.
    [38]王维光,顾俭本.从叶片中提取ATP方法的比较[J].植物生理学通讯,1986,22(5):54-55.
    [39]冯波,刘延忠,董树亭,高荣歧,胡昌浩,王空军.高温对玉米种苗转化过程中关键水解酶活性及ATP含量的影响研究[J].玉米科学,2006,14(6):86-89.
    [40]金新文,沈征言.高温胁迫对三种蔬菜抗热性不同的品种萌动种子活力和ATP含量的影响[J].石河子大学学报(自然科学版),1997,1(2):112-116.
    [41]张士功,高吉寅,宋景芝.NaCl胁迫下水杨酸和阿斯匹林对小麦幼苗体内ATP含量的影响[J].植物学报,1999,41(6):675-676.
    [42]张明生,谢波,谈锋,张启堂.甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究[J].中国农业科学,2003,36(1):13-16.
    [43]赵天宏,郭丹,王美玉,徐胜,何兴元.连续两个生长季大气CO2浓度升高对银杏希尔反应活力和叶绿体ATP酶活性的影响[J].生态学报,2009,29(3):1391-1397.
    [44]朱志华,胡荣海,昌晓平.不同抗旱性冬小麦根系对水分胁迫的反应[J].植物生理通讯,1996,32(6):410-413.
    [45]苗龙,王学臣.渗透胁迫引起玉米根冠处胞间连丝ATP酶活性下降[J].植物学报,1997,39(8):774-777.
    [46]彭祺,周青.植物次生代谢响应UV-B辐射胁迫的生态学意义[J].中国生态农业学报,2009,17(3):610-615.
    [47]Tevini M, Iwanzik W, Thoma U. Some effects of enhanced UV-B irradiation on the growth and composition of plants [J]. Planta,1981,153:388-394.
    [48]Ficus E L, Booker F L. Is increased UV-B a threat to crop photosynthesis and productivity [J]. Photosynthesis Research,1995,43(2):81-92.
    [49]He J, Huang L K, Chow W S, Whitecross M I, Anderson J M. Effects of supplementary ultraviolet-B radiation on rice and pea plants [J]. Aus. J. Plant Physiol.,1993,20:129-142.
    [50]Tevini M, Braun J, Fieser G. The protective function of the epidermal layer of rye seedling against ultraviolet-B radiation [J]. Photochem. Photobiol.,1991,53:329-333.
    [51]Cen Y P, Bomman J F. The effects of exposure to enhanced UV-B radiation on the penetration of monochromatic and polychromatic UV-B in leaves of Brassia napus [J]. Physiol. Plant,1993, 87:247-251.
    [52]Chappell J H, Halbrock K. Transcription of plant defense genes in response to UV light or fungal elicitor [J]. Nature,1984,311 (1):76-78.
    [53]赵晓莉,胡正华.UV-B辐射与酸雨复合胁迫对小白菜和生菜幼苗生长和生理特性的影响[J].河南农业科学,2007,(2):73-77.
    [54]冯虎元,安黎哲,谭玲玲.侯宗东,王勋陵.UV-B辐射对植物花粉萌发率和花粉管生长的累积效应[J].应用生态学报,2002,13(7):814-818.
    [55]Mark U, Terini M. Commination effects of on UV-B radiation and temperature on flower (Helianthus annuns cv. Polastar) and maize (Zea mays L. cv. Zenit 2000) seedlings [J]. Plant Physiol,1996,148(1-2):4956.
    [56]何俊星.金荞麦和荞麦对增强UV-B辐射和模拟酸雨处理的生长和生理可塑性响应[硕士学位论文].重庆:西南大学,2010,69.
    [57]Klironomos J N, Allen M F. UV-B medicated changes on below-ground communitis with the roots of Acer saccharum [J]. Funct. Ecol.,1995,9:323-330.
    [58]Caldwell M M, Teramura A H, Tevini M. Effects of increased solar ultoviolet radiation on terrestrial [J]. Plant Ambio.,1995,24:166-173.
    [59]叶梅荣,吴成玉,杨安中,王晓鹏,蔡传杰,徐竹.模拟酸雨胁迫下大豆异黄酮对油菜幼苗某些生理指标的影响[J].中国农学通报,2008,24(4):245-249.
    [60]Sullivan J H, Gitz D C, Peek M S, McElrone A J. Response of three eastern tree species to supplemental UV-B radiation leaf chemistry and gas exchange [J]. Agricultural and Forest Meteorology,2003,120:219-228.
    [61]Dai Q J, Furness N H, Upadhyaya M K. UV-absorbing compounds and susceptibility of weedy species to UV-B radiation [J]. Weed Biology and Management,2004,4:95-102.
    [62]Nybakken L, Aubert S, Bilger W. Epidermal UV-screening of arctic and alpine plants along a latitudinal gradient in Europe [J]. Polar Biology,2004,27:391-398.
    [63]Semerdjieva S I, Sheffield E, Phoenix G K, Gwynn-Jones D, Callaghan T V, Johnson G N. Contrasting strategies for UV-B screening in sub-Arctic dwarf shrubs [J]. Plant, Cell and Environment,2003,26:957-964.
    [64]Torres A, Hochberg M, Pergament I, Smoum R, Niddam V, Dembitsky V M, Temina M, Dor I, Lev O, Srebnik M, Enk C D. A new UV-B absorbing mycosporine with photo protective activity from the lichenized ascomycete Collema cristatum [J]. European Journal of Biochemistry,2004, 271:780-784.
    [65]Carletti P, Masi A, Wonisch A, Grill D, Tausz M, Ferretti M. Changes in antioxidant and pigment pool dimensions in UV-B irradiated maize seedlings [J]. Environmental and Experimental Botany,2003,50:149-157.
    [66]赵可夫.植物抗盐生理[M].中国科学技术出版社,1993.
    [67]徐云岭,余叔文.植物适应盐逆境过程中的能量消耗[J].植物生理学通讯,1990,26(6):70-73.
    [68]黄开志.模拟酸雨对蔬菜细胞透性和营养及卫生品质的影响[J].生物学通报,2000,35(2):34.
    [1]Murphy T F. Membranes as targets of ultraviolet radiation [J]. Plant Physiol,1983,58:381-38.
    [2]杨景宏,陈拓,王勋陵.增强紫外线B辐射对小麦叶绿体膜组分和膜流动性的影响[J].植物生态学报,2000,24(2):102-105.
    [3]Mackerness S A H. Surplus S L. Jordan B R. Effects of supplementary ultraviolet-B radiation on photosynthetic transcripts at different stages of leaves development and light levels in pea(Pisum sativum L.):Role of active oxygen species and antioxidant enzymes [J]. Photochem. Photobiol., 1998,68:88-96.
    [4]古今,陈宗瑜.植物酶系统对UV-B辐射的响应机制[J].生态学杂志,2006,25(10):1269-1274.
    [5]陈拓,安黎哲,冯虎元,杨景宏,王勋陵.UV-B辐射对蚕豆膜脂过氧化的影响及其机制[J].生态学报,2001,21(4):579-583.
    [6]刘芸,钟章成,Marinus J.A. WERGER,操国兴,尹克林,龙云a-NAA和UV-B辐射对栝楼幼苗光合色素及保护酶活性的影响[J].生态学报,2003,23(1):8-13.
    [7]Willekens H, CampW V, Monta gu M V. Ozone sulfur dioxidand ultraviolet-B have similar effects in mRNA accumulation of antioxidant genes in Nicotiana plumba ginifolial [J]. Plant Physiol.,1994,106:1007-1014.
    [8]Singh A, Agrawal M. Acid rain and its ecological consequences [J]. Journal of Environmental Biology,2008,29(1):15-24.
    [9]高占喜,曹洪法,舒俭民.酸雨对植物新陈代谢的影响[J].环境科学研究,1996,9(4):41-45.
    [10]王正银,牟树森,杨学春.降尘、酸雨及其复合污染对蔬菜产量和品质的影响[J].环境科学学报,1996,16(4):462,464-465.
    [11]张耀民,吴丽英,王晓霞,张静,高绪评,谢明云,惠红,王萍,徐和宝,赵树新.酸雨对农作物的叶片伤害及生理特性的影响[J].农业环境保护,1996,15(5):205-206.
    [12]Douglas CJ, Phenylpropaniod metabolism and lignin biosynthesis:from weeds to tree [J]. Trends pland Sci,1996,1:171-178.
    [13]Paoletti E. UV-B and acid rain effects on beech (Fagus sylvatica L.) and holm oak (Quercus ilex L.) leaves [J]. Chemosphere,1998,36(45):835-840.
    [14]梁婵娟,陶文沂,李操,沈东兴,曾庆玲,徐雪松,周青.UV-B与AR胁迫下油菜光合及CAT活性的恢复过程(Ⅱ)[J].农业环境科学学报,2004,23(5):890-894.
    [15]李合生,孙群,赵世杰,章文华.植物生理生化原理和实验技术[M].北京:高等教育出版社,2004,260-261.
    [16]Stewart R C, Bewley J D. Lipid peroxidation associated with aging of soybean axes [J]. Plant physiology,1980,65:245-248.
    [17]Chance B, Maehly A C. Assay of catalases and peroxidases. Methods in Enzymology [M],1955, 2:746-755.
    [18]Valladares F, Wright S J, Lasso E, Kitajima K, Pearcy R W. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest [J]. Ecology,2000,81(7):1925-1936.
    [19]Stapleton A E. Ultraviolet radiation and plants:burning questions [J]. Plant Cell,1992,4:1353.
    [20]Liang C J, Huang X H, Tao W Y, Zhou Q. Responses of antioxidant enzyme and photosynthesis in rape seedling to the combined stresses of acid rain and ultraviolet-B radiation [J]. Journal of Environmental Sciences,2005,17(6):1038-1041.
    [21]周青,黄晓华,刘小林.酸雨对3种木本植物的胁迫效应[J].环境科学,2002,23(5):42-46.
    [22]严重玲,李瑞智,钟章成.模拟酸雨对绿豆,玉米生理生态特性的影响[J].应用生态学报,1995,6(supp.):124-131.
    [23]Predieri S, Norman H A, Krizek D T,Pillai P, Mirecki R M and Zimmerman R H. Influence of UV-B radiation on membrane lipid composition and eihylene evolution in'Doynne d'hiver pear shoots grown in vitro under different photosynthetic photon fluxes [J]. Environmental and Experimental Botany,1995,35:151-160.
    [24]Gary D. Hogan. Physiological effects of direct impact of acidic deposition on foliage, Agriculture [J]. Ecosystems and Environment,1992,42:307-319
    [25]龙云,邓美玲,谈锋.绞股蓝对水分胁迫的适应性研究[J].西南师范大学学报(自然科学版),1999,24(1):81-86.
    [26]Murphy T M. Effects of broad-band ultraviolet and visible radiation on hydrogen peroxide formation by cultured rose cells [J]. Physiol. Plant,1990,80:63-78.
    [27]晏斌,戴秋杰.紫外辐射对水稻叶组织中活性氧代谢及膜系统的影响[J].植物生理学报,1996,22(4):375-378.
    [28]Braun J, Tevini M. Regulation of UV-protective pigment synthesis in t he epidermal layer of rye seedlings [J]. Photochemistry and Photobiology,1993,57:318-323.
    [29]邱栋梁,刘星辉.模拟酸雨对龙眼叶绿体活性的影响[J].应用生态学报2002,13(12):1559-1562.
    [30]严重玲,洪业汤,付舜珍,方重华,雷基祥,沈芹.Cd、Pb胁迫对烟草叶片中活性氧清除系统的影响[J].生态学报,1997,17(5):42-47.
    [31]Garty J, Tamir O, Levin T, Lehr H. The impact of UV-B and sulphur-or copper-containing solutions in acidic conditions on chlorophyll fluorescence in selected Ramalina species [J]. Environmental Pollution,2007,145(1):266-273.
    [32]Albert K R, Rinnan R, Ro-Poulsen H, Mikkelsen T N, Hakansson K B, Arndal M F, Michelsen A. Solar ultraviolet-B radiation at Zackenberg:The impact on higher plants and soil microbial communities [J]. Advances in Ecological Research,2008,40:421-440.
    [33]Larssen T, Lydersen E, Tang D G, He Y, Gao J X, Liu H Y, Duan L, Seip H M, Vogt R D, Mulder J, Shao M, Wang Y H, Shang H, Zhang X S, Solberg S, Aas W, Okland T, Eilertsen O, Angell V, Liu Q R, Zhao D W, Xiang R J, Xiao J S, Luo J H. Acid rain in China [J]. Environmental Science & Technology,2006,40(2):418-425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700