环隙流化床中纳米颗粒聚团流态化/光催化降解VOCs的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可挥发性有机污染物(Volatile Organic Compouds, VOCs)是指沸点范围在50~260℃之间,室温下饱和蒸气压超过133.32 Pa,以蒸气形式存在于空气中的一类有机物,主要来源于室内装饰装修材料、吸烟、外界动力机械尾气排放和燃料燃烧残余组分等。人们长时间滞留于室内,其危害是十分严重的。在VOCs的控制技术方面,半导体光催化氧化技术(Photocatalytic Oxidation,PCO)具有明显的优势。本文提出多相流颗粒动理学耦合光催化氧化技术的思想,依托环隙流化床光催化反应器,对光催化降解气态环己烷和苯进行了系统研究。
     采用实验、数值模拟和理论分析相结合的方法研究了纳米P25颗粒聚团在环隙流化床中的流态化特征。建立了符合环隙流化床纳米P25颗粒聚团流态化的最小流化速度模型;得到摩擦因子、初始流态化的床层空隙率的参数值、沉降颗粒尺寸与操作气速的关系;建立了不同区域床层空隙率的的关联式,揭示了床层平均空隙率随流化物料量和操作气速的变化规律。
     通过修订聚团颗粒的曳力、碰撞力和粘附力,得到了环隙流化床中P25颗粒聚团流态化模型。模型分析表明,P25颗粒聚团在局限的环隙区间内实现流态化时,颗粒与环隙壁面的壁面效应不可忽视,只有当环隙尺寸大于0.075m后壁效应方可忽略;两碰撞颗粒的尺寸比例ξ<0.298时,两个聚团可能产生团聚;两碰撞颗粒的尺寸比例ξ>0.298时,两个聚团可能产生分离或破碎;随着操作气速的增大,聚团尺寸逐渐减小,与实验测定的结果一致。
     建立了气固两相分配动力学模型,揭示了环己烷/苯的初始浓度、操作气速、相对湿度与饱和吸附值的关系;通过修正langmuir吸附模型,得到了苯和环己烷的吸附平衡常数,并通过线性自由能关联吸附能量控制模型的验证,结果表明,修订模型更具有合理性。
     环隙流化床中光催化降解苯和环己烷的实验表明,光催化降解效率是环己烷/苯的初始浓度、操作气速和系统相对湿度的函数。通过构建的P25颗粒聚团光催化反应的动力学模型分析,揭示了苯和环己烷的光催化降解半衰期与初始浓度的关系;验证了流化数1.62和1.8分别为环己烷和苯的最佳操作气速条件;揭示了湿度与浓度在光催化降解反应中的关系为C_(H_2O)=(1+K_AC_M)/2K_H。
     基于光催化降解中间产物的FTIR、GC-MS和UV光谱信息,推断出环己烷/苯光催化降解的主要中间产物、光催化降解反应可能的历程、光催化剂失活的主要原因;通过光催化剂的循环使用和再生实验发现,该催化剂具有较好的循环使用效果和再生性能。
     根据光催化降解VOCs反应过程分析,建立了光催化降解VOCs反应动力学模型,揭示了光催化反应过程中水分子与VOCs目标分子的关系,以及反应过程中水的促进/抑制作用机理。
Volatile organic compounds (VOCs) belongs to the organic chemicals with boiling point at 50-260℃and saturated vapor pressure at 133.32 Pa, which released or diffused from building materials, indoor furnishings, smoking, automobile exhaust and fuels combustion. Due to people stayed indoors for long time, some of VOCs may have short- and long-term adverse health effects on humsn beings. Photocatalytic oxidation (PCO) technology using semiconductors has some advantages over other VOCs controlling processes. The multiphase flow of photocatalyst particles coupling with PCO technology was put forward in this paper, and the photocatalytic degradation of gaseous benzene and cyclohexane in an annular fluidized bed reactor designed was investigated in details.
     The fluidization characterization of nano-titania (P25) agglomerates in the dedigned annular fluidized bed reactor was investigated by experimental data, numerical simulation, and theoretical analyses. The model of minimum fluidization velocity related to fluidization materials and reactor structure was developed based on the modified traditional models. For initial fluidization stage, the bed voidage and friction coefficient between agglomerates and reactor walls were determined using linear-fitting method, respectively. In addition, the average dimension values of elutriation agglomerates were evaluated by Navier-Stokes equation. Finally, the bed voidage distribution model considering bed diameter was developed.
     The model of nano-titania agglomerates in the annular fluidized bed was also presented considering the friction effect between agglomerates and reactor walls. According to the model, the following conclusions were given. (1) The friction between agglomerates and reactor walls should be considered unless the distance between the inner and outer wall is larger than 0.075 m; (2) If an agglomerate collides with other whose diameter is 0.298 times less than or equal to the former, the two agglomerates may coalesce. The dimensionless diameter coefficient exceeds 0.298, the two agglomerates may separate. Using the above-mentioned model, the relationship of diameter of agglomerate and gas velocity is explored.
     The adsorption experiments of benzene and cyclohexane in the annular fluidized bed indicated that (1) their adsorption efficiencies were a degressive function of concentration at the fixed gas velocity and RH; that (2) adsorption active sites were a function of gas velocity based on the analyses of kinetic data, and the maximum value of adsorption active sites for cyclohexane was 2.71×10-4 mmol g~(-1) at fluidization number of 2.11 and the minimum value of adsorption active sites for benzene was 0.81×10-4 mmol g~(-1) at fluidization number of 1.37, respectively; and that (3) the adsorption efficiencies of benzene and cyclohexane were decreaed with increasing RH, which was explained by the variation of adsorbate structure and adsorption active sites.
     Photocatalytic degradation of benzene and cyclohexane gave the following conclusions. Firstly, the concentration of target has obvious influences on photocatalytic degradation efficiency, and the degradation efficiency decreased with increasing concentration. Secondly, the photocatalytic degradation efficiency was approximated to the maximum values at the optimal fluidization numbers 1.62 and 1.8 for cyclohexane and benzene respectively. Thirdly, the influences of RH on photocatalytic degradation of cyclohexane and benzene were similar, and there was an inflexion point corresponding to the maximum degradation efficiency at variation of concentrations. Fourthly, the relationship of RH and target concentration was explored asC_(H_2O)=(1+K_AC_M)/2K_Hwithout consideration of adsorption of the products and intermediates yielded in photocatalysis.
     Using FTIR, GC-MS, and UV-Spectrum, the intermediates yielded in photocatalytic degradation of cyclohexane were cyclohexanol, cyclohexanone and 2-cyclohexen~(-1)-one, while the intermediates for benzene were phenol and carboxylic acid. We can infer the photocatalytic degradation mechanisms of benzene and cyclohexane and the causes of photocatalyst deactivation. Based on the adsorption active sites occupied by intermediates, the regeneration and recycling experiments were performed, suggesting that the photocatalyst can be regenerated and recycled over three times.
     Photocatalysis kinetic models based on the elementary reactions explores the roles of water molecule in this process.
引文
[1]Brown S.K., Sim M.R., Abramson M.J. et al. Concentrations of volatile organic-compounds in indoor air—a review. Int J Indoor Air Qual Clim. 1994, 4(1):123–134.
    [2]Cheng M., Brown S.K. VOCs identified in Australian indoor air and product emission environments. Proceedings of National Clean Air Conference. Newcastle, Nov. 2003, p23–27.
    [3]Wang S.H., Ang H.M., Tade M.O. Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environment International. 2007, 33 (2): 694–705.
    [4]Alberici RM, Jardim WE. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Appl Catal B. 1997, 14(1-2): 55–68.
    [5]吴永文,李忠,奚红霞,等.VOCs污染控制技术与吸附催化材料.离子交换与吸附.2003, 19(1):88-95.
    [6]闫勇.有机废气中VOCs的回收方法.化工环保.1997, (17): 332-336.
    [7]张宇峰,邵春燕,张雪英,等.挥发性有机化合物的污染控制技术.南京工业大学学报.2003, 25(3):89-93.
    [8]Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972, 23(8):37–8.
    [9]Ramesh T., Saravanamuthu V., Moon I.S. A review on UV/TiO_2 photocatalytic oxidation process. Korean J. Chem. Eng. 2008, 25(1), 64-72.
    [10] Lee J., Shaily M., Pedro J. J. A. Nanomaterials in the Construction Industry: A Review of Their Applications and Environmental Health and Safety Considerations. ACS Nano, 2010, 4(7): 3580-3590.
    [11]Carp O., Huisman C.L., Reller A. Photoinduced reactivity of titanium dioxide. Prog Solid State Chem. 2004, 32(1-2): 33–177.
    [12]Zhao J., Yang X. Photocatalytic oxidation for indoor air purification: a literature review. Building and Environment, 2003, 38(5): 645– 654.
    [13]Takashi T., Mamoru F., Tetsuro M. Mechanistic Insight into the TiO_2 Photocatalytic Reactions: Design of New Photocatalysts. J. Phys. Chem. C. 2007, 111(14): 5259-5275.
    [14]左国民,徐敏,程振兴,等.挥发性有机物的气相光解及光催化降解研究.分子催化,2001,15(6):121-123.
    [15]顾巧浓,卓明,陈娇领,等.TiO_2光催化降解含氯有机废气实验研究.浙江工业大学学报,2004,32(5):589-593.
    [16]许振华.掺铁TiO_2纳米粒子对庚烯的光催化降解反应的研究.吉林长春:吉林大学学报,(理学版)2005.
    [17]顾卓良,赵伟荣,王海强,等.玻纤负载纳米TiO_2光催化降解气相苯.江南大学学报(自然科学版), 2008, 7(2):239-243.
    [18]Ame′lie Q., Laurent G., Catherine A., et al. Kinetic Study of Acetaldehyde Photocatalytic Oxidation with a Thin Film of TiO_2 Coated on Stainless Steel and CFD Modeling Approach. Ind. Eng. Chem. Res. 2010, 49(3-4): 6890–6897.
    [19]Juan M. C., Michael E. Z., Isabel T.T., et al. Photocatalytic oxidation of ketones in the gas phase over TiO_2 thin films: a kinetic study on the influence of water vapor. Applied Catalysis B. 2003, 43(4): 329–344.
    [20]Lewandowski M., Ollis D.F. Extension of a Two-Site transient kinetic model of TiO_2 deactivation during photocatalytic oxidation of aromatics: concentration variations and catalyst regeneration studies.Applied Catalysis B. 2003, 45(3): 223–238.
    [21]Stevens L., Lanning J.A., Anderson L.G., et al. Investigation of the photocatalytic oxidation of low-level carbonyl compounds. J Air Waste Manage Assoc 1998, 48(3):979-984.
    [22]彭人勇,刘淑娟,赵玉美.活性炭纤维负载TiO_2光催化降解甲醛的影响因素.环境工程学报. 2009, 3(7): 1294-1298.
    [23]吴燕,李娟,彭丽.玻璃表面含SiO_2底膜的TiO_2薄膜光催化降解甲醛的研究.微量元素与健康研究, 2009, 26(2):63-64.
    [24]李玉华,王琨,赵庆良,等.球载纳米TiO_2光催化氧化低质量浓度甲醛.化学工程, 2009, 37(1):37-40.
    [25]彭振山,韦宗元,李明,等.银掺杂TiO_2催化剂的制备表征及其光催化消除甲醇.湖南科技大学学报(自然科学版)2009, 24(1):111-115.
    [26]孙凤英.纳米TiO_2光催化降解汽车尾气中的NOx.东北林业大学学报.2009, 37(2):65-66.
    [27]Pichat P., Disdier J., Hoang-V.C, Mas D., et al. Purification/deodorization of indoor air and gaseous effluents by TiO_2 photocatalysis. Catal Today. 2000, 63(2-4): 363-369.
    [28]Ao C.H., Lee S.C. Enhancement effect of TiO_2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level. Appl Catal B. 2003, 44(3):191-205.
    [29]Jo W.K., Park J.H., Chun H.D. Photocatalytic destruction of VOCs for in-vehicle air cleaning. J Photochem Photobiol A. 2002, 148(1-3):109-119.
    [30]Strini A., Cassese S., Schiavi L. Measurement of benzene, toluene, ethylbenzene and o-xylene gas phase photodegradation by titanium dioxide dispersed in cementitious materials using a mixed flow reactor. Applied Catalysis B. 2005, 61(1-2): 90-97.
    [31]Li F.B., Li X.Z., Ao C.H., et al. Enhanced photocatalytic degradation of VOCs using Ln3+–TiO_2 catalysts for indoor air purification. Chemosphere, 2005, 59(6): 787–800.
    [32]殷永泉,郑艳,苏元成,等.气相甲苯光催化降解反应动力学及机理.过程工程学报. 2009, 9(3):536-540.
    [33]赵春禄,王培霞,张鹏.光催化降解模拟室内挥发性有机污染物研究.环境工程学报. 2008, 2(2):249-252.
    [34]Jo W.K., Park K.H. Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application. Chemosphere 2004, 57(1):555–565.
    [35] Luo Y., Ollis D.F. Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: kinetic promotion and inhibition, time-dependent catalyst activity. Journal of Catalysis. 1996, 163(1):1–11.
    [36]Ibhadon, A. O.; Arabatzis, I. M.; Falaras, P. The design and photoreaction kinetic modeling of a gas-phase titania foam packed bed reactor. Chem. Eng. J. 2007, 133(1-3):317-323.
    [37]Wu, J.F., Hung, C.H., Yuan, C.S. Kinetic modeling of promotion and inhibition of temperature on photocatalytic degradation of benzene vapour. J. Photochem. Photobiol. A. 2005, 170(3): 299–306.
    [38]Yu K., Lee G. W. M., Huang W. et al. The correlation between photocatalytic oxidation performance and chemical/physical properties of indoor volatile organic compounds. Atmos.Environ. 2006, 40(2), 375-385.
    [39]Zhang P. Y., Liang F.Y., Yu G., et al. A comparative study on decomposition of gaseous toluene by O3/UV, TiO_2/UV and O3/TiO_2/UV. J. Photochem. Photobiol. A. 2003, 156(1-3): 189–194.
    [40]Hennezel D., Pichat O.P., Ollis D.F. Benzene and toluene gas-phase photocatalytic degradation over H2O and HCl pretreated TiO_2: by-products and mechanisms. J. Photochem. Photobiol. A. 1998, 118(3): 197–204.
    [41]Zhang L.F., Anderson W.A., Sawell S., et al. Mechanistic analysis on the influence of humidity on photocatalytic decomposition of gas-phase chlorobenzene. Chemosphere. 2007, 68 (1): 546–553.
    [42]钟俊波.TiO_2基催化剂上气相光催化降解苯的研究.四川大学. 2007.
    [43]Ku, Y., Tseng, K.Y., Wang, W.Y. Decomposition of gaseous acetone in an annular photoreactor coated with TiO_2 thin film. Water Air Soil Poll. 2005,168(3): 313–323.
    [44]Florence BB.M., Uwe W., Valérie S., et al. VOC photodegradation at the gas–solid interface of a TiO_2 photocatalyst Part I: 1-butanol and 1-butylamine. Journal of Photochemistry and Photobiology A: Chemistry 2000,132 (2): 225–232.
    [45]Obee T. N., Brown R. T.. TiO_2 photocatalysis for indoor air application: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environ. Sci. Technol. 1995, 29(5): 1223-1231.
    [46]齐虹,沈晋,孙德智,等.二氧化钛光催化氧化动态降解甲醛废气及动力学研究.太阳能学报,2007,28(9):951-955.
    [47]Zhang P.Y., Liu J. Photocatalytic degradation of trace hexane in the gas phase with and without ozone addition: kinetic study. J. Photochem. Photobiol. A. 2004, 167(2-3): 87–94.
    [48]Wang K., Tsai H., Hsieh Y. A study of photocatalytic degradation of trichloroethylene in vapor phase on TiO_2 photocatalyst. Chemosphere. 1998, 36(13): 2763–2773.
    [49]李功虎,马胡兰,安纬珠.纳米二氧化钛气相光催化降解三氯乙烯.催化学报,2000,21(4):350-354.
    [50]Fu, X. Z., Clark, L. A., Zeltner, W. A., et al. Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene. J. Photochem. Photobiol. A 1996, 97(3): 181–186.
    [51]王得泰,潘湛昌,饶俊元,等.活性碳纤维负载纳米二氧化钛对气相中丙酮的光催化降解.化学与生物工程, 2007, 24(11): 20-23.
    [52]陈士夫,武爱霞.光催化降解甲苯的研究.淮北煤师院学报.1998,19(4):32-35.
    [53]耿启金,王西奎,孙效正,等.纳米生态建筑涂料光催化降解甲醛的研究.环境污染与防治, 2005,27(7):553-555.
    [54]马武生,汪浩,刘岳树.三相流化床TiO_2光助催化降解苯胺的研究.扬州职业大学学报.2007,11(4):45-48.
    [55]Asahi R., Morikawa T., Ohwaki T., et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 2001, 293(2): 269–71.
    [56]Wang X.C., Yu J.C., Chen Y.L., et al. ZrO_2-modified mesoporous manocrystalline TiO_2–xNx as efficient visible light photocatalysts. Environ. Sci. Technol. 2006, 40(2-3): 2369–74.
    [57]Li D., Haneda H., Hishita S., et al. Visible-light-driven nitrogen-doped TiO_2 photocatalysts:effect of nitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants. Mater Sci Eng. 2005, 117(1): 67–75.
    [58]王建宏,高宁,高仲芳,等.陶瓷填料上TiO_2薄膜光催化降解甲苯的研究.能源环境保护,2008,22(1):26-29
    [59]杨莉萍,刘震炎,施建伟.光催化降解室内气相甲醛的光强研究.太阳能学报,2007,28(7):689-695
    [60]Vishnu K. P.,Adesoji A. A. Light Intensity Distribution in a Photocatalytic Reactor Using Finite Volume. AIChE Journal. 2004, 50(6): 1273-1288.
    [61]Matteo P., Francesco S.J.F.P., Yue P.L. Radiative Transfer in Photocatalytic Systems. AIChE Journal, 1996, 42(2): 532-537.
    [62]Gustavo E. I., Cassano A.E., Alfano O. M., et al. Modeling of a Multiannular Photocatalytic Reactor for Perchloroethylene Degradation in Air. AIChE Journal, 2006, 52(5): 1814-1823.
    [63]张亚宁,谢洪勇,徐巧莲.掺碳纳米TiO_2光催化降解空气中苯的实验研究.中国粉体技术,2007, 13(6):18-22.
    [64]Geng, Q,; Guo, Q.; Cao, C.; et al. Investigation into Photocatalytic Degradation of Gaseous Benzene in CPCR. Chem. Eng. Technol. 2008, 31(7), 1023-1030.
    [65]吴志敏,张丽,邓沁兰,等.气固流化床光催化反应器的研究进展.东莞理工学院学报,2006,13(3):91-94.
    [66]Geng Q., Guo Q., Cao C., et al. Investigation into Photocatalytic Degradation of Gaseous Ammonia in CPCR. Industrial & Engineering Chemistry. 2008, 47(13): 4363– 4368.
    [67]Hossain M.M., Raupp G., Hay S.O., et al Three-dimensional developing flow model for photocatalytic monolith reactors, AIChE J. 1999,45(3):1309-1321.
    [68]Hoai B.T., Maithaa K., Eric P., et al. From the fundamentals of photocatalysis to its applications in environment protection and in solar purification of water in arid countries. Res Chem Intermed, 2005,31(4-6): 449-461.
    [69]Ajay K.R.,Antonie A., Beenakers C.M.Development of a new photocatalytic reactor for water purification.Catalysis Today, 1998, 40(1):73-83.
    [70]Dibble L.A., Raupp G.B.Fluidized-Bed Photocatalytic Oxidation of Trich1oroethylene in Contaminated Airstreams. Environ. Sci. Technol, 1992, 26(3):492-495.
    [71]Satoru M.Ultrafine particle fluidization and its application to photocatalytic NOX treatment.Chemical Engineering Journal. 2001, 82(1-3):183-188.
    [72]Yue P. L.; Khan F. Photocatalytic ammonia synthesis in a fluidized bed reactor. Chem. Sci. Eng. 1983, 38(2): 1893-1900.
    [73]Lim T.H., Jeong S.M., Kim S.D., et al. Degradation characteristics of NO by photocatalysis with TiO_2 and CuO/ TiO_2. React.Kinet.Catal.Lett. 2000, 71(2): 223-229.
    [74]王子银,张征林.流化床TiO_2光催化降解乙醛气体的研究.环境科学与技术, 2003, 26(5): 13-17.
    [75]张丽,张小平,叶代启.气-固流化床光催化氧化甲苯的研究.环境污染治理技术与设备, 2005,6(9): 68-72.
    [76]Zhang M., An T., Fu J., et al. Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO_2/SiO_2 photocatalyst using a fluidized bed reactor. Chemosphere. 2006, 64(3), 423-431.
    [77]Imoberdorf G.E., Taghipour F., Keshmiri M., et al. Predictive radiation field modeling for fluidized bed photocatalytic reactors. Chemical Engineering Science. 2008, 63(16): 4228-4238.
    [78]Lim T.H., Jeong S.M., Kim S.D., et al. Photocatalytic decomposition of NO with TiO_2 particles. J. Photochem. Photobiol. A. 2000, 134(3): 209–217.
    [79]Nelson, R.J.; Flakker C.L.; Muggli D.S. Photocatalytic oxidation of methanol using titania-based fluidized beds. App.l Catal. B. 2007, 69(3-4): 189-195.
    [80]Geldart D. Types of gas fluidization, Powder Technol. 1973, 7(2): 285-289.
    [81]Brown R.L., Richards J.C. Principles of Powder Mechanics, Pergamon Press, 1970.
    [82]Chaouki J., Chavarie C., Klvana D., et al. Effect of inter-particle forces on the hydrodynamic behavior of fluidized aerogels, Power Technology, 1985, 43(3): 117-121.
    [83]Wang Y., Wei F., Jin Y. et al. Agglomerate Particulate Fluidization and E-particles, in proceedings of the Third Joint China/USA Chemical Engineering Conference (CUChEC-3), Beijing, 2000.
    [84]赵珺,刘辉,许贺卿.纳米级SiO_2超细颗粒的流化及其膨胀特性研究.化工冶金,1991,12:249-254
    [85]Wang Z., Moonson K., Li H. Fluidization of fine particles. Chemical Engineering Science, 1998, 53(3): 377-382.
    [86]Morooka S., Kusakabe K., Kokata A., et al. Fluidization state of ultrafine powders. J. Chem. Eng. Japan, 1988, 21(1-2): 41-46.
    [87]周勇,梁华琼,石炎福.超细粉流化机理和团聚现象的探讨.化学反应工程与工艺,2003, 19(4): 289-294.
    [88]华彬,李春忠,胡黎明,等.纳米级SiO_2超细颗粒流化特性及团聚机理.化工冶金,1994 , 15(4): 348-353.
    [89] Guo Q., Wang M., Li Y., et al. Fluidization of Ultrafine Particles in a Bubbing Fluidized Bed with Sound Assistance. Chem.Eng.Technol.2005, 28(10): 1117-1124.
    [90]Satoru M., Hiroyuki H., Tomoya M., et al. Modeling for Size Reduction of Agglomerates in Nanoparticle Fluidization. AIChE Journal, 2004, 50(11): 2763-2771.
    [91]Zhou T., Li H. Force balance modelling for agglomerating fluidization of cohesive particles. Powder Technol. 2000, 111(1-2):60–65.
    [92]Lu H., Wang S., Zheng J., et al. Numerical simulation of flow behavior of agglomerates in gas–cohesive particles fluidized beds using agglomerates-based approach. Chemical Engineering Science. 2010, 65 (4):1462–1473.
    [93]Wang H., Zhou T., Yang J.S. Model for Calculation of Agglomerate Sizes of Nanoparticles in a Vibro-fluidized Bed. Chem. Eng. Technol. 2010, 33(3): 388–394.
    [94]Yuki I., Masayuki H. Prediction of agglomerate sizes in bubbling fluidized beds of group C powders. Powder Technology. 1998, 100(2-3): 223-236.
    [95]王兆霖,吕雪松,胡金辉.粘附性颗粒流态化聚团尺寸的预测模型.化工冶金.1998, 19(3): 225-230.
    [96]周涛,李洪钟.粘性颗粒流化床中聚团大小的计算模型.化学反应工程与工艺,1999,15(1): 44-51.
    [97]唐洪波,赵珺.微细粉体在振动流化床中团聚行为的研究.化学工业与工程.1996, 13(3):6-10.
    [98]Takafumi M., Hidehiro K., Masayuki H. Numerical simulation of cohesive powder behavior in a fluidized bed. Chem. Eng. Sci. 1998, 53(10): 1927-1940.
    [99]Kenya K., Masayuki H. A numerical study on agglomerate formation in a fluidized bed of fine cohesive particles. Chemical Engineering Science. 2002, 57 (22-23): 4737– 4744.
    [100]Jose M.V., Antonio C. Fluidization of nanoparticles: A simple equation for estimating the size of agglomerates. Chemical Engineering Journal 2008,140 (1-3): 296–304.
    [101]Guo Q., Li Y., Wang M., et al. Fluidization behaviors for coating cohesive particles, Chemical Engineering technology, 2005,28(7): 752-757.
    [102] Liu H., Guo Q. Fluidization in combined Acoustic-Magnetic filed for mixtures of ultrafine particles, China Particuology, 2007, 5(1-2): 111-115.
    [103]Guo Q.,Yang X., Shen W., et al. Agglomerate size characteristics in an acoustic fluidized bed with sound assistance, Chemical Engineering & Processing,2007, 46(4): 307-313.
    [104]Liu H., Guo Q., Li Y. Sound-assisted fluidization of nanoparticles with different surface properties, Industrial & Engineering Chemistry Research, 2007, 46(4): 1345-1349.
    [105]Guo Q., Li Y., Wang M., et al. Fluidization Characteristics of SiO_2 Nanoparticles in an Acoustic Fluidized Bed,Chemical Engineering & Technology, 2006, 29(1):78-86.
    [106]Zhu C., Yu Q., Dave R.N. Gas fluidization characteristics of nanoparticle agglomerates. AICHE J. 2005, 51(2): 426-439.
    [107]Loezos P.N., Costamgna P., Sundaresan S. The role of contact stresses and wall friction on fluidization. Chem. Eng. Sci. 2002, 57(24): 5123-5141.
    [108]Tsinontides S.C., Jackson R. The mechanics of gas fluidized beds with an interval of sTable fluidization. J Fluid Mech. 1993,225(4): 237-274.
    [109]金涌,祝京旭,汪展文,等.流态化工程原理,北京:清华大学出版社, 2001. 20.
    [110]周涛.黏性颗粒聚团流态化及应用.北京:化学工业出版社,2008. 12-17.
    [111]Ye M, Hoef M.A., Kuipers J.A.M. The Effects of Particle and Gas Properties on the Fluidization of Geldart A Particles[J]. Chem. Eng. Sci., 2005, 60(16): 4567-4580.
    [112]Abrahamsen A.R., Geldart D. Behavior of Gas-fluidized Beds of Fine Powders. Part I: Homogeneous Expansion[J]. Powder Technol., 1980, 26(1): 35–46.
    [113]刘会娥,郭庆杰,陈爽,等.粒径及声场对SiO_2超细颗粒流化行为的影响.过程工程学报, 2007, 7(6): 1066–1070.
    [114]Lin C.L., Wey M.Y., You S.D. The Effect of Particle Size Distribution on Minimum Fluidization Velocity at High Temperature. Powder Technol., 2002, 126(3): 297-301.
    [115]Liu B.Q., Zhang X.H., Wang L.G, et al. Fluidization of Non-spherical Particles: Sphericity, Zingg Factor and Other Fluidization Parameters. Particuology, 2008, 6(2): 125–129.
    [116]Felipe C.A.S, Rocha S.C.S. Prediction of Minimum Fluidization Velocity of Gas-solid Fluidized Beds by Pressure Fluctuation Measurements—Analysis of the Standard Deviation Methodology. Powder Technol., 2007, 174(3): 104-113.
    [117]Coltters R., Rivas A.L. Minimum Fluidization Velocity Correlations in Particulate Systems. Powder Technol., 2004, 147(1-3): 34–48.
    [118]Leva M. Fluidization. New York: McGraw-Hill, 1959. 56.
    [119]Frantz J.F. Minimum Fluidization Velocity and Pressure Drop in Fluidized Beds. Chem. Eng. Prog. Symp. Ser., 1966, 62(1): 21–30.
    [120]Pillai B.C., Raja R.M. Pressure Drop & Minimum Fluidization Velocities in Air-fluidized Beds. Indian J. Technol., 1971, 9(3): 77–86.
    [121]Potic B., Kerstn S.R.A, Ye M., et al. Fluidization With Hot Compressed Water inMicro-reactors. Chem. Eng. Sci., 2005, 60(22): 5982-5990.
    [122]徐以泉,郭庆杰,司崇殿.微小流化床流化特性分析.过程工程学报,2009,9(2):209-215.
    [123]Bai D.R., Jin Y., Yu Z.Q., et al. The axial distribution of the cross-sectionally averaged voidage in fast fluidized beds. Powder Technol. 1992,71(1) :51-58.
    [124]Adánez J., Gayán P., García-Labiano F., et al. Axial voidage profiles in fast fluidized beds. Powder Technol. 1994, 81(3): 259-268.
    [125]Nemtsov D.A., Zabaniotou A. Mathematical modelling and simulation approaches of agricultural residues air gasification in a bubbling fluidized bed reactor. Chem. Eng. J. 2008,143(1-3): 10-31.
    [126]Xu G., Sun G., Gao S. Estimating radial voidage profiles for all fluidization regimes in circulating fluidized bed risers. Powder Technol. 2004,139(2):186-192.
    [127]Das M., Bandyopadhyay A., Meikap B.C., et al. Axial voidage profiles and identification of flow regimes in the riser of a circulating fluidized bed. Chem. Eng. J. 2008,145(1): 249-258.
    [128]Zou L.M., Guo Y.C., Chan C.K. Cluster-based drag coefficient model for simulating gas–solid flow in a fast-fluidized bed. Chem. Eng. Sci. 2008, 63(4): 1052-1061.
    [129]Li H., Hong R., Wang Z. Fluidizing ultrafine powders with circulating fluidized bed. Chem. Eng. Sci. 1999, 54(22): 5609-5615
    [130]Zhang W., Tung Y., Johnsson F. Radial voidage profiles in fast fluidized beds of different diameters. Chem. Eng. Sci. 1991,46 (1) 3045-3052.
    [131]Karimipour S., Pugsley T. Study of gas streaming in a deep fluidized bed containing Geldart's Group A particles. Chem. Eng. Sci. 2010, 65(11): 3508-3517.
    [132]Wu C.L., Zhan J.M., Li Y.S., et al. Accurate void fraction calculation for three-dimensional discrete particle model on unstructured mesh. Chem. Eng. Sci. 2009, 64(6): 1260-1266.
    [133]Wu C.L., Berrouk A.S., Nandakumar K. Three-dimensional discrete particle model for gas–solid fluidized beds on unstructured mesh. Chemical Engineering Journal, 2009, 152(2-3): 514-529.
    [134]Hu N., Zhang H., Yang H., S. et al. Effects of riser height and total solids inventory on the gas–solids in an ultra-tall CFB riser. Powder Technol. 2009, 196(1): 8-13.
    [135]王绍亭,陈涛.动量、热量与质量传递.天津:天津科学技术出版社.1986, 87-90.
    [136]Visser J. On Hamaker constants: A comparison between Hamaker constants and Lifshitz-van der Waals constants. Advances in Colloid and Interface Science, 1972, 3(4): 331-363.
    [137]Krupp H. Particle adhesion theory and experiment. Advances in Colloid and Interface Science, 1967, 1(2): 111-239.
    [138]Schubert H. Capillary forces-modeling and application in particulate technology. Powder Technol., 1984, 37(1): 105-116.
    [139]Schwarzenbach R., Gschwend P., Imboden D. Environmental organic chemistry (II). John Wiley & Sons. 2003.259.
    [140]Prieto O., Fermoso J. Irusta R. Photocatalytic degradation of toluene in air using a fluidized bed photoreactor. International Journal of Photoenergy, 2007, 8(2): 32859-32864.
    [141]Pichat P., Herrmann J.M. Photocatalysis-Fundamental and applications, Wiley: New York, 1989.
    [142]Li X., Chen G., Po L.Y. et al. Photocatalytic oxidation of cyclohexane over TiO_2 nanoparticles by molecular oxygen under mild conditions. J. Chem. Technol. Biotechnol. 2003,78(2): 1246-1251.
    [143]Plazinski W., Rudzinski W. Kinetics of Adsorption at Solid/Solution Interfaces Controlled by Intraparticle Diffusion: A Theoretical Analysis. J. Phys. Chem. C 2009, 113(4): 12495-12501.
    [144] Goss K.U., Schwarzenbach R.P. Quantification of the effect of humidity on the gas-mineral oxide and gas-salt adsorption of organic compounds. Environ. Sci. Technol. 1999, 33(4): 4073-4078.
    [145]Goss K.U. Considerations about the adsorption of organic molecules from the gas phase to surface: implications for inverse gas chromatography and the prediction of adsorption coefficients. J. Colliod Interface Sci. 1997, 190(1): 241-249.
    [146]Goss K.U. Conceptual model for the adsorption of organic compounds from the gas phase to liquid and surfaces. Environ. Sci. Technol. 1997, 32(5): 2025-2032.
    [147]Roth C.M., Goss K.U., Schwarzenbach R.P. Adsorption of a Diverse Set of Organic Vapors on the Bulk Water Surface. Journal of Colloid and Interface Science, 2002, 252(1): 21-30.
    [148]Goss K.U. Schwarzenbach R.P. Empirical prediction of heats of vaporization and adsorption of organic compounds. Environ. Sci. Technol. 1999, 33(3): 3390-3393.
    [149]David M.K., Joseph A. S., Liang X., et al. Atomic layer deposition on particles using a fluidized bed reactor with in situ mass spectrometry. Surf. Coat. Technol. 2007, 201(5): 9163-9171.
    [150]Satoru M., Hiroyuki H. Photocatalytic removal of NOx in a circulating fluidized bed system. Powder Technology 2005, 151 (1-3): 61– 67.
    [151]Lim T.H., Kim S.D. Photocatalytic degradation of trichloroethylene (TCE) over TiO_2/silica gel in a circulating fluidized bed (CFB) photoreactor. Chem. Eng. Proces. 2005, 44(2): 327-334.
    [152]Lim T.H.; Kim S.D. Trichloroethylene (TCE) degradation by photocatalysis in annular flow and annulus fluidized bed photoreactors. Chemosphere. 2004, 54(3): 305–312.
    [153]Marta A.B., Maria A.G. Photon Flux and Wavelength Effects on the Selectivity and Product Yields of the Photocatalytic Air Oxidation of Neat Cyclohexane on TiO_2 Particles. J. Phys. Chem. B 2005, 109(5) :1914-1918.
    [154]Mar?′a A.G., Agust?′n J. C. Kinetics of Stochastic Charge Transfer and Recombination Events in SemiconductorColloids. Relevance to Photocatalysis Efficiency. J. Phys. Chem. 1996, 100(46): 18214-18221.
    [155]Chang C.P., Chen J.N., Lu M.C., et al . Photocatalytic oxidation of gaseous DMF using thin film TiO_2 photocatalyst . Chemosphere, 2005, 58( 8): 1071-1078.
    [156]唐玉朝,胡春,王怡中,等. TiO_2光催化剂失活机理研究进展.化学进展,2005,19(2):225-232.
    [157]Vesna T., Franjo J., Zoran G. Photocatalytic oxidation of toluene in the gas phase: modeling an annular photocatalytic reactor. Catalysis today. 2008, 137(2-4), 350-356.
    [158]Geng Q., Guo Q., Yue X. Adsorption and Photocatalytic Degradation Kinetics of Gaseous Cyclohexane in an Annular Fluidized Bed Photocatalytic Reactor. Ind. Eng. Chem. Res. 2010, 49(10), 4644–4652.
    [159]Vorontsov A.V., Savinov, E.N., Smirniotis P.G. Vibrofluidized– and fixed-bed photocatalytic reactors: case of gaseous acetone photooxidation. Chem. Eng. Sci. 2000, 55(21): 5089–5098.
    [160]Sun D.X., Chen S., Jong S.C., et al. Photocatalytic degradation of toluene using a novel flow reactor with Fe-doped TiO_2 catalyst on porous nickel sheets. J. Photochem. Photobiol. A. 2005, 81(2): 352–357.
    [161]Vincent G., Marquaire P.M., Zahraa O. Abatement of volatile organic compounds using an annular photocatalytic reactor: study of gaseous acetone. J. Photochem. Photobiol. A. 2008,197(2-3): 177-189.
    [162]Bouzzza N., Lillo R.M.A., Linares S.A. Photocatalytic activity of TiO_2-based materials for the oxidation of propene and benzene at low concentration in prensence of humidity. Appl. Catal. B. 2008, 84(3-4): 691-698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700