用户名: 密码: 验证码:
对虾高位池精养模式和生态养殖模式中碳流通特征的解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国对虾养殖业的发展和低碳经济的提出,如何优化养殖池塘系统内部结构,降低对虾养殖生产对近岸环境的污染,成为人们日益关注的问题。本文于2009年4月至11月和2010年4月至10月在浙江省舟山市和山东省青岛市对对虾养殖模式中两种比较有代表性的高位池精养模式和生态养殖模式进行了调查和分析,以碳作为研究单位定量描述了两种养殖模式中各个组成成分之间的碳流通量,在此基础上利用Ecopath with Ecosim(EwE)软件分别对两种典型养殖模式进行建模,利用该模型的基本分析和网络分析(network analysis)功能模块对两种养殖生态系统的结构和特征进行了系统的量化研究。并通过已构建的模型进一步解析提高对虾养殖系统营养物质利用效率的途径,对两种典型的养殖模式提出相应的改进策略以达到增产减污的效果。主要研究结果如下:
     1.高位池精养模式主要理化环境和生物群落特征
     在高位池精养模式中,养殖对虾放苗密度较高,为150ind/m2,养殖对虾在养殖周期内生长速度维持在正常水平。水环境常规指标温度、盐度、溶解氧和pH值在实验周期中均在正常范围内变动,未影响对虾生产。随着养殖时间的延长,对虾个体增大饵料投入量也相应增多,养殖系统中水体DOC、POC和底泥TOC逐步升高。在养殖周期中浮游植物群落结构较为简单,其中个体较小的微微型浮游植物(<10μm)无论在生物量(76%)还是生产量(64.6%)上都占据主要地位;浮游动物群落在养殖周期中生物量一直呈现下降趋势,放养初期浮游动物生物量最高,后随着养殖对虾对其捕食压力的增大其生物量呈现逐渐下降的趋势,浮游动物群落呼吸量变化与生物量变化规律一致;养殖水体中浮游细菌生物量波动较大在1.69~11.8 gC/m2之间,浮游细菌的日生产量和日呼吸量变化同生物量变化趋势一致,与虾池水温、浮游生物、有机质及水体营养盐状况密切相关;底栖细菌生物量在整个养殖周期中波动不大,除了在养殖后期因为水温的降低使的底栖细菌生物量出现下降之外,在养殖前105d中一直呈现缓慢上升的趋势,其日生产量和日呼吸量变化与生物量变化一致;在养殖周期中,养殖对虾的体长和体重随着养殖时间的延长而逐步增加,但对虾体内碳含量波动较小,在养殖周期中没有显著差异。
     2.生态养殖模式主要理化环境和生物群落特征
     在生态养殖模式中,养殖对虾放苗密度相对较低,仅为15ind/m2,养殖对虾在养殖周期内生长速度维持在正常水平。水环境常规指标温度、盐度、溶解氧和pH值在实验周期中均在正常范围内变动,未影响对虾生产。在养殖周期中,水体中DOC、POC和底泥TOC随着养殖时间的延长而逐步增加。浮游植物生物量在养殖周期中波动较大,其中个体较小的微型浮游植物(小于15μm)在生物量(65%)和生产量(69%)上占有优势。因为在生态养殖中,没有人工饵料的投入,所以养殖系统只有浮游植物通过光合作用向系统中引入碳;浮游动物在养殖周期中生物量波动较为复杂,大型浮游动物和小型浮游动物生物量变化趋势不一致,在没有人工饵料的情况下养殖对虾食性的改变对不同大小的浮游动物群落影响较大。浮游动物的日呼吸量变化和其生物量变化规律一致;水体细菌和底栖细菌的数量在养殖周期中都呈现一直上升的趋势,其生物量、日生产量和日呼吸量的变化与养殖池塘水温变化有显著的线形相关关系;养殖对虾的体长和体重在养殖周期中逐步上升,因为在生态养殖中养殖对虾在不同的时期有一定食性的改变,所以其体内碳含量略有不同,但差异不显著。
     3.两种养殖模式的生态系统结构及改进策略
     高位池精养养殖系统中生态系统结构较为简单,整个系统的生态营养转换效率较低。只有大型浮游动物(0.527)、人工饵料(0.726)和水体碎屑(0.885)三个功能组的生产量有一半上被养殖系统再次利用,其他功能组的生产量很少可以再次进入养殖系统的物质循环中,大部分作为养殖系统的负担而存在;生态养殖系统中生态系统结构相对复杂,整个系统的生态营养转换效率较高。只有小型浮游动物(0.496)、底栖细菌(0.391)和底部碎屑(0.494)三个功能组的生产量被养殖系统利用量不到一半,其余各个功能组的生态营养转换效率都较高。在生态养殖系统中各个功能组的生产量可以有效的被利用,从而进入养殖系统的物质循环中。通过Ecopath模型的混合营养级定量分析两种养殖模式中提高生态营养转换效率的途径发现:在高位池精养模式中,提高大型浮游动物生物量的同时增加水体细菌的量不仅可以增加养殖对虾的产量而且也可以明显提高整个养殖系统的生态营养转换效率;在生态养殖模式中最为有效的途径是增加大型浮游动物生物量的同时增加部分既可以有效利用底部碎屑又可以被养殖对虾摄食的底栖生物(在本文研究的养殖系统中为摇蚊幼虫)。
As the development of shrimp culture and Low-carbon economy, people take more and more concern about how to mitigate both the waste nutritional matters and environmental impacts of effluent discharge from shrimp pond. The field works were carried out both in Zhoushan ZheJiang Province and Qingdao ShanDong Province from Apr. to Nov. , 2009 and Apr. to Oct. , 2010 to understand the basic physical, chemical and biological process between intensive penaeid shrimp culture and ecological cultivation. The Ecopath and Ecosim models were built up to find the approaches in efficiently transfer the waste matters in intensive penaeid shrimp culture and ecological cultivation. The present study aims to investigate the ecosystem characters in both cultures in order to find a way to make the shrimp culture more effective and environmentally friendly. The main results were shown as follows:
     1. Primary ecological characteristics of the physical and chemical environment and the characteristic of biocoenosis in intensive penaeid shrimp culture
     Although with higher stocking density of 150 ind/m2, the shrimp growth was not limited by any of the water quality parameters, including temperature, salinity ,DO and pH. DOC and POC in water and TOC in sediment increased with the progress of rearing. The income of organic carbon in shrimp ponds mainly includes phytoplankton production and feeds. The phytoplankton community was singleness during the culture. The picophytoplankton (<10μm) took the domination position not only in biomass(76%) but also in production(64.6%);The biomass of zooplankton steadied decline during the shrimp culture period . The biomass of zooplankton was highest in early days of shrimp culture period. It declined because the regulation of food intake by shrimp. The changes of biomass and daily respiration of zooplankton were alike; The biomass of pelagic bacteria in water ranged from 1.69 to 11.8gC/m2. The changes of daily production and respiration of pelagic bacteria were the same to the change of biomass, The biomass of sediment bacteria was increased slowly during shrimp culture period expect the last 15 days. The change rules of daily production and respiration of sediment bacteria were the same to the change of biomass; The weight and the length of cultured shrimp were increased during shrimp culture period, The organic carbon of shrimp obviously negatively correlated with time.
     2. Primary ecological characteristics of the physical and chemical environment and the characteristic of biocoenosis in ecological cultivation
     The shrimp growth was not limited by any of the water quality parameters, including temperature, salinity, DO and pH with lower stocking density of 15ind/m2. DOC and POC in water and TOC in sediment increased with the progress of rearing. The biomass of phytoplankton was different on difference levels during shrimp culture period. The microphytoplankton (<15μm) took the domination position not only in biomass(65%) but also in production(69%);There was not obvious regular in the change of the biomass of zooplankton. The change regularity of biomass was different between the marozooplankton and microzooplankton. The difference may be caused by the habit of shrimp feeding on different kinds of food. The daily respiration of zooplankton and the biomass were alike; The biomass of pelagic bacteria and sediment bacteria went up steadily during shrimp culture period. The daily production and respiration had a linear relationship with water temperature according to regressive analyses. The weight and the length of cultured shrimp were increased during shrimp culture period. The organic carbon of shrimp had a little difference but it was negatively correlated with time.
     3. Ecopath model based structure and function of intensive penaeid shrimp culture and ecological cultivation
     The transfer efficiency of intensive penaeid shrimp culture ecosystem was low because of its simple ecosystem. The ecotrophic efficiency of marozooplankton. diets and detritus (water) were 0.527 0.726 and 0.885 while others were much lower than 0.5. The utilizing efficiency of ecosystem was very low. The production of groups was wasted instead of be used by the ecosystem; The structure of ecological cultivation was more complex than intensive penaeid shrimp culture. The transfer efficiency was high. There were only three groups which were microzooplankton(0.494),sediment bacteria(0.237) and benthic dertritus(0.492) with low ecotrophic efficiency while others were much higher than 0.5. It implied that the utilizing efficiency of ecosystem was high. The productions were used by the ecosystem. With the help of mixed trophic impact (MTI ) in Ecopath, the best avenue was found to not only increase the output of shrimp but also make the environment more clean. Increasing the biomass of marozooplankton will be useful to increase the output of shrimp in intensive penaeid shrimp culture. Increasing the biomass of helpful germs will be much better to improve the ecotrophic efficiency of the system; There is a little difference in ecological cultivation. Increasing the biomass of chironomid larvae will be helpful to increase the ecotrophic efficiency of microzooplankton. sediment bacteria and benthic dertritus.
引文
[1]阎希柱.对虾综合养殖池塘生态系统能量生态学的研究:[博士学位论文].青岛:中国海洋大学,1999
    [2] Primavera, J.H.,. Tropical shrimp farming and its sustainability. In: De Silva, S.S. (Ed.), Tropical Mariculture. Academic Press, San Diego, 1998, 257~289
    [3] Funge-Smith S. J., Briggs M.. Nutrient budgets in intensive shrimp ponds: implications for sustainability. Aquaculture, 1998, 164:117~133
    [4] Colman J. A and Edwards P. Feeding pathways and environmental constrains in wasted-fed aquaculture: Balance and Optimazation. In D. J. W. Moriaity and R. S. V. Pullin (eds) Detritus and microbial ecology in aquaculture ICLARM conference Proceeding.International center for living Aquatic Tesources, Management, 1987, 14: 420
    [5] Thakur D. P., Lin C. K.. Water quality and nutrient budget in closed shrimp (Penaeus monodon) culture systems. Aquacultural Engineering, 2003, 27:159~176.
    [6]申玉春.对虾高位池生态环境特征及其生物调控技术的研究:[博士学位论文].华中农业大学,2003
    [7]何建国,孙成波.高位池对虾精养技术及病害防治.中山大学学报(自然科学版),2004,43(6):6~16
    [8]苏跃朋.中国明对虾精养池塘生态系统及动力学模型的研究:[博士学位论文].青岛:中国海洋大学,2006
    [9]全建安,徐有宏,黄锋.斑节对虾高位池高密度高产养殖技术研究.中山大学学报,2000:39(增刊):38~40
    [10]杨锋,蔡强,叶妃轩等.南美白对虾封闭式生态养殖试验示范.中国水产,2001:(11):56
    [11]孙成波,何建国,吴琴瑟,等.斑节对虾高位池地膜养殖模式初步建立.中国水产,1999:( 6) :30~34
    [12]屠银华.温室大棚养殖南美白对虾技术.科学养鱼,2005,11:33~34
    [13]陈贤龙.南美白对虾大棚保温池塘饲养试验.水产科技情报,2003,30(3):115~116
    [14]常抗美,周晨光.围塘塑料大棚对虾精养高产技术.中国水产,2005,8:47~49
    [15]杜荣斌,杨晓华.北方地区南美白对虾两茬养殖试验.水产科学,2005,24(1):15~16
    [16]杜恩宏,刘金海.利用地热塑料大棚养殖南美白对虾技术.中国水产,2004,11:42~43
    [17]梁道栋,曹剑香.三级高位池半循环水生态精养对虾模式.水产养殖,2005,26(3):21~2
    [18]王清印,杨丛海.中国明对虾健康养殖的发展现状及展望.中国水产,2005,1:21~24
    [19]游奎.对虾养殖生态系中有机碳的研究:[硕士学位论文].青岛:中国海洋大学,2002
    [20] Jeffries,M. and Mills D.. Freshwater ecology principles and Applications. CBS Publishers and Distributers (P) LTA.1992
    [21]李生,黄德平.对虾健康养成实用技术.北京:海洋出版社,2003. 72
    [22]宋盛宪,何建国,翁少萍.斑节对虾养殖.北京:海洋出版社,1999. 40~41
    [23]陈昌生,黄标,叶兆弘,等.南美白对虾摄食、生长及存活与温度的关系.集美大学学报,2001,6 (4) :296~300
    [24]王兴强,马甡,董双林.凡纳滨对虾生物学及养殖生态学研究进展.海洋湖沼通报,2004,(4):94~100
    [25]王伟定.日本对虾的温度适应性试验.渔业现代化,2001(1):20~21
    [26]鲍鹰,相建海.温度、盐度和pH对生物过滤器去除氨氮效率的影响.海洋科学,2001,25(6):42~43
    [27]庄雪峰.我国对虾主要养殖种类的耐盐性.水产养殖,1992,( 5):28~29
    [28] Bray W A, Lawrence A L, Leung J R, The effect of salinity on growth and survival of Penaeus Vannamei, with observations on the interaction of IHHN virus and salinity. Aquaculture, 1994, 122:133~146
    [29]林昌.日本对虾健康养殖新技术.动物科学,2010(18):306~308
    [30] Gandy R, Sloane L., Effect of salinity on oxygen consumption in postlarvae of the penaeid shrimps Penaeus monodon and Penaeus stylirostris without and with acclimation. Mar Biol, 1981, 65:297~301
    [31] Villareal H, Hewitt R., Effect of salinity on oxygen consumption and growth of the brown shrimp Penaeus californiensis(Abstract). World Aquacult See, 1991, 22 (3): 62A
    [32]雷衍之.无锡市河埒口高产鱼池水质研究I水化学和初级生产力.水产学报,1983,7(3):185~199
    [33]张扬宗.中国池塘养鱼学.北京:科学出版社,1989
    [34] Aquacp. Review of ten years of experimental penaeid shrimp culture in Tahiti and NewCaledonia (South Pacific). Journal of the world mariculture society, 1984, 15: 73~91
    [35] Allan, G. L. and Maguire G. B. Effects of water exchange on production of Metapenacus macleayi and water quality in experimental pools. Journal of the world aquaculture socitty,1993, 24(3): 321~328
    [36] McGraw W, Teichert2Coddington D R, Rouse D B et al. Higher minimum dissolved oxygen concentrations increase Penaeid shrimp yields in earthen ponds. Aquaculture, 2001,199(324): 3112321
    [37]陈淑吟.封闭式南美白对虾的关键水质因子分析.中国水产,2002,10:62~63
    [38]陈剑锋,赖廷和,童万平.南美白对虾工厂化养殖水体pH值的变化特征.水产科学,2006,25(9):456~458
    [39]荣长宽,梁素秀.虾池基础生物饵料的培养技术及其种类、数量的研究.水产科技情报,1994,21 (5) :203~206
    [40]孙舰军.虾池生态系统中诸因子对虾体的影响.1997,(2):24~25
    [41] Smith K L Jr. Respiration of a sublittoral community. Ecology, 1973, 54:1065~1075
    [42] Dunbar,M.J.(eds)IBP 20- Marine production mechanisms. Cambridge University Press, 1979
    [43] Madenjian,C.P.. Removal of algal by the zebra mussel (Dreissena polymorpha) population in western lake Erie: a bioenergetics approach. Can. J. Fish. Aquaqt.Sci, 1995, 52:381~390
    [44] Lieth.H and R.H.Whittaker. Primary productivity of the biosphere. New York,springer veriag, 1975, 22
    [45]苏永全,蔡心一,王军,等.藻类影响虾池若干水质因子初探.福建水产,1994,(4): 36~39
    [46]黄翔鹄,李长玲,刘楚吾,等.虾池两种常用消毒剂对微绿球藻生长与代谢的影响.海洋科学,2002,26 (7) :67~71
    [47]郭皓,于占国.虾池浮游植物群落特征及其与虾病的关系.海洋科学,1996,( 1):39~44
    [48]孙耀,宋云利.虾塘养殖水环境中氮磷营养盐的存在特征与行为.水产学报,1998, 22 (2):117~123
    [49]赖子尼,余煜棉,庞世勋,等.鳜鱼养殖池塘水体叶绿素a与16项水生态因子的关系.中国水产科学,2004,11 (5) :426~431
    [50]郑重.海洋浮游生物生态学文集.厦门:厦门大学出版社,1986. 124~134
    [51]李庆彪,李美芝,王宝庭.虾池生态系的特点与虾病.海洋学报,1995,17( 5):135~ 139
    [52]林元烧,曹文清,方旅平,杨圣云.厦门及其邻近地区虾池浮游动物的组成及分布.海洋科学,2002,26(5)8~12
    [53]陈济丁,任久长,蔡晓明.利用大型浮游动物控制浮游植物过量生长的研究.北京大学学报(自然科学版),1996 ,31(3):373~381
    [54]高尚德,陈旭仁,吴以平.中国对虾养成期间虾池水体和底质中细菌含量的变化.水产学报,1994,18(2):138~142
    [55]于占国.对虾暴发性流行病的病因及预防对策分析.海洋环境科学,1995:14(2):53~60
    [56] Liu Guocai, Li Deshang, Dong Shuanglin, Lu Jing, Chen Zhaobo. Numerical dynamics of bacteriop lanktonin shrimp cultural enclosure ecosystems.中国水产科学, 1999, 6 (2) : 74~78
    [57]刘国才,李德尚,徐怀恕,等.海水养虾池细菌数量动态及细菌生产力的研究.应用与环境生物学报,1997,3 (4) :340~345
    [58]刘国才,李德尚,董双林,等.对虾养殖围隔生态系中的细菌碳代谢.水产学报,1999,23(4):357~362
    [59]刘国才,李德尚,董双林.对虾养殖围隔生态系统浮游细菌的呼吸与生产.应用生态学报,2003,14 (11): 2079~2080
    [60]宁修仁.微型生物食物环.东海海洋,1997,15(1):66~69
    [61]张武昌,肖天,王荣.海洋微型浮游动物的丰度和生物量.生态学报,2001,21(11):1893~1909
    [62] Eldani A, Primavera J H. Effect of different stocking combinations on growth,production and survival of milkfish (Chanos chanos Forskal) and prawn (Penaeus monodon Fabricius) in polyculture in brackishwater ponds .Aquac, 1981, 23:59~72
    [63]李文权.海水养殖与生态环境关系的研究I无机氮对浮游植物生长的影响.热带海洋1993,12(3):46~51
    [64]李晓东.河蟹生态养殖的理论与技术研究:[博士学位论文].青岛:中国海洋大学,2007
    [65] Fenchel T. The quantitative importance of the benthic microflora of an arctic tundrapond. Hydrobiologia, 1975, 46: 445
    [66] Fenchel T. M. Jorgesen B. Detritus food chain of aquatic ecosystems: the role of bacteria. Adv. Microbial. Ecology, 1977, 1: 1~58
    [67]齐雨藻.中国的赤潮和赤潮研究.南京大学学报,1991,357~359
    [68]吕颂辉,齐雨藻.南海大鹏湾的主要赤潮生物.暨南大学学报(自然科学版),1992,11(3):130~133
    [69]石华中.完善我国养殖业污染管理的探讨.中国渔业经济,2010,2(28):43~48
    [70] Polovina J J. An overview of Ecopath model . Fishbyte. 1984b,2(2):5~7
    [71]王春生,陈宗尧.赤潮及其防治.齐鲁渔业,1991,23~25
    [72]王安利,胡兆群.对虾养殖陆源污染与赤潮灾害.海洋与海岸带开发,1991,8(2):43~44
    [73]刘振山.低碳养殖的挑战与机遇.农业技术与设备,2010,19:74
    [74] Sparre P. Introduction to multispecies virtual population analysis [J]. ICES Marine Science Symposium, 1991, 193:12~21
    [75] Walters C, Pauly D, Christensen V. Representing density dependent consequences of life history strategies in aquatic ecosystems: EcoSim II [J]. Ecosystems, 2000, 3: 70~83
    [76]宋兵,陈立侨,Chen Yong. Ecopath with Ecosim在水生生态系统研究中的应用. Marine Sciences,2007,131
    [77]李云凯,禹娜,陈立侨,CHEN Yong,冯德详.东海南部海区生态系统结构与功能的模型分析.渔业科学进展,2010,31(2):30~39
    [78]宋兵,陈立侨,Chen Yong. Ecopath with Ecosim在水生生态系统研究中的应用.海洋科学,2004,31(1):83~86
    [79] Walters C, Pauly D, Christensen V. Ecospace: prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas [J]. Ecosystems, 2000, 2: 539~554
    [80] Polovina J J. Model of a coral reef ecosystem, Part I: the ECOAPTH model and its application to French Frigate Shoal [J]. Coral Reefs, 1984, 3(12):1~11
    [81] Ulanowicz R E. Growth and development Ecosystem phenomenology [M]. Springer- Verlag. New York, 1986
    [82] Walters C, Christensen V, Pauly D. Sturctureing dynamic models of exploited ecosystems from trophic mass-balance assessments [J]. Review in Fish Biology and Fisheries, 1997, 7(2): 139~172
    [83] Christensen, V. and D. Pauly. Ecopath II-a software for balancing stead-state ecosystemmodels and calculating network characteristics Ecol. Modeling 1992a, 61:169~185
    [84] Christensen. V. and D. Pauly. A guide to the ECOPATH software system(version 2.1), ICLARM Software, 1992b, 6: 72
    [85]仝龄. Ecopath——一种生态系统能量平衡评估模式.海洋水产研究,1999,20(2):103~107
    [86] Christensen V, WALTERS C J, PAULY D. Ecopath with Ecosim: A u ser’s guide [M]. Vancouver: Fisheries Cent re, University of British Columbia, 2005
    [87]仝龄,唐启升,PAULY D.渤海生态通道模型初探.应用生态学报,2000, 11(3): 435~440
    [88] HALFON E, SCHITON, ULANOWICZ R E. Energy flow through the lake Ontario food web con ceptual model and an attempt at mass balance. Ecological Modeling, 1996, 86: 1~36
    [89] ODUM E P. The strategy of ecosystem development. Science, 1969, 104: 262~270
    [90] ULANOWICZ R E. Growth and development: ecosystem phenomenology [M]. New York: Springer Verlag, 1986. 203.
    [91]刘其根,王钰博,陈立侨,等.保水渔业对千岛湖食物网结构及其相互作用的影响,生态学报,2010,30(10):2774~2783
    [92] Christensen V, PaulyD. ECOPATH II2A software for balancing steady2statemodel and calculating network characteristics. EcolModel, 1992, 61:169~185
    [93] Christensen, V., Walters, C. J. and Pauly, D. Ecopath with Ecosim: A User’s Guide. May 2005 Edition. Fisheries Centre, University of British Columbia, Vancouver, Canada and ICLARM, Penang, Malaysisa. 2005
    [94]刘玉,隋丽杰,段丽杰,路宁宁,李适宇,PIERRE F.珠江口EwE模型功能组划分研究.海洋环境科学,2008年10月,27(5):480~483
    [95] Pauly D, Christensen V, Sambilay V. Some features of fish food consumption estimates used by ecosystem modelers. ICES Counc. Meet. 1990.17: 8
    [96] Dalsgaard J.D. Pauly and T.A.Okey. Preliminary mass-balance model of Prince William Sound, Alaska, for the prespill period, 1980-1989,Fisheries Centre Research Report , 1997, 5(2): 33
    [97] Okey, T and D. Pauly. Trophic mass-balance model of Prince William Sound ecosystem,for the post-spill period ,1994-1996.,Fisheries Centre Research Report. 1998a, 6(6): 126
    [98] Okey, T and D, Pauly. A mass-balanced model of trophic flows in Prince William Sound: De-compartmentalizing ecosystem knowledge. Presented at the 16th Lowell Wakefield Fisheries Symposium,Ecosystem Consideration in Fisheries Management,Anchorage,Alaska. 1998b
    [99] Arreguín-Sánchez F, Manickchand-Heileman S. The trophicrole of lutjanid fish and impacts of their fisheries in two ecosystems in the Gulf of Mexico [J]. Journal of Fish Biology, 1998, 53 (Supplement A): 143~153
    [100] Vega-Cendejas M E, Arreguin-Sanchez E. Energy fluxes in amangrove ecosystem from a coastal lagoon in YucatanPeninsula, Mexico [J]. Ecology Modelling, 2001, 137: 119~133
    [101]徐珊楠,陈作志.核赔民杭州湾北岸大型围隔海域人工生态系统的能量流动和网络分析.生态学报,2008,(5):2065~2072
    [102] Lin HJ, Shao KT, Kuo SR, et al. A trophic model of a sandy barrier lagoon at Chiku in southwestern Taiwan. Estuar Coast Shelf Sci, 1999, 48: 575~588
    [103] Hsieh HL, KaoWY, Chen CP, et al. Detrital flows through the feeding pathway of the oyster (Crassostrea gigas) in a tropical shallow lagoon:δ13C signals. M arB iol, 2000, 136: 677~684
    [104] Lin HJ, Shao KT, Hwang JS, et al. A trophic model for Kuosheng Bay in northern Taiwan. J Mar Sci Technol, 2004, 12: 424~432
    [105] Pauly D, Christensen V, Dalsgaard J, et al. Fishing down marine food webs [J]. Science, 1998, 279 (5352) : 860~8631
    [106]李健华.新中国渔业的历史性巨变[N].中国渔业报.2009-9-28.第1版
    [107]乐家华,周应祺.各国水产品生产及消费动向分析.安徽农业科学,2008,(26)
    [108]陈作志,邱永松,贾晓平.北部湾生态通道模型的构建.应用生态学报,2006,17(6):1107~1111
    [109] Tong L, Tang Q S. A preliminary approach on mass2balance ecopath model of the Bohai Sea. Chin J App l Ecol, 2000, 11 (3): 435 ~440
    [110]王雪辉,杜飞雁,邱永松,李纯厚,等.大亚湾海域生态系统模型研究I:能量流动模型初探.南方水产,2005,1(2):2065~2072
    [111] Okey T A, Pauly D. A mass-balanced model of trophic flowsin Prince William Sound [R]. Alaska: The 16th Lowell Wakefield Fisheries Symposium, 1998. 621~635
    [112] Pauly D, Christensen V, Walters C. Ecopath, Ecosim,and Ecospace as tools for evaluating ecosystem impact of fisheries [J]. Journal of Marine Science, 2000, 57: 697~706
    [113] CHRISTENSEN V, WALTERS C J. Ecopath with Ecosim:methods, capabilities and limitations [J]. Ecological Modeling, 2004, 172: 109~139
    [114] Pauly D, Christensen V, Dalsgaard J. Fishing down marine food webs [J]. Science, 1998, 279 (6): 860~863.
    [115]苏纪兰,唐启升.中国海洋生态系统动力学研究Ⅱ.渤海生态系统动力学过程[M].北京:科学出版社, 2002.212~312
    [116] Heymans J J, Baird D. Network analysis of the northern Benguela ecosystem by means of NETWRK and ECOPATH [J]. Ecology Modelling, 2000, 131: 97~19.
    [117]张文强,杜若谦,常传刚,等.南方高位池养殖模式.齐鲁渔业,2003,20(5):17~18
    [118] Liu Guocai, Li Deshang, Xu Huaishu,et al.. A study on bacteria attached to suspended particles in shrimp ponds. ACTA OCEANOLOGICA SINICA, 1999, Vol. 21,No.1 : 97~102
    [119] Boyd, C.E., Martinson, D.J.. Evaluation of propeller-aspirator pump aerators. Aquaculture, 1984, 36: 283~292
    [120] Castille F L , Lawrence A L. The effect of salinity on the osmotic, sodium and chloride concentrations in the hemolymph of euryhaline shrimp of the genus Penaeus. Comp. Biochem. Physiol. A , 1981 , 68 , 1: 75~80
    [121] Zhang, S., Dong, S.L. The effects of food and salinity on energy budget of juvenile shrimp of Penaeus chinensis juveniles. Journal of Dalian Fisheries University, 2002, 17(3): 227~233
    [122]孙舰军.虾池生态系统中诸因子对虾体的影响.海洋科学,1997,(2):24~25
    [123] Allan G L,Maguire G B. Effects of pH and salinity on survival,growth and osmoregulation in Penaeus monodon Fabricius. Aquaculture, 1992, 107:33~47
    [124] Goleman, C.R .Primary productivity in aquatic nvironments. University of California Press, 1969. 1~464
    [125] Lund, J. W. G., Kipling C.&LeCren E. D. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiological, 1958, 11: 143~170
    [126] Eppley R.W., Reid F. M. H.&Strickland J.D.H. The ecology of the plankton of La Jolla California, in the period April through September 1967. In: Stickland, J. D. H. (Ed.),Estimates of Phytoplankton Crop Size, Growth Rate and Primary Production PartⅢ, Bull. Scripps. Inst Oceanogr.. 1970, 17:33~42.
    [127] Winberg GG. General characteristics of freshwater ecosystems based on Sovier IBP studies. In Lecren E D, Lowe-McConnel R H, eds. The functioning of freshwater ecosystems. London: Cambridge University Press, 1972. 481~491
    [128]阎喜武,何志辉.虾池浮游植物初级生产力的研究.水产学报,1997,21(3) 9:288~295
    [129]孙修涛,李建,麻次松,等.中国对虾虾池几种动物的摄食能力和选择性研究.实验与技术1995,1~4
    [130]陈济丁,任久长,蔡晓明.利用大型浮游动物控制浮游植物过量生长的研究.北京大学学报(自然科学版),1996 ,31(3):373~381
    [131]谢立民,林小涛,许忠能,等.不同类型虾池的理化因子及浮游植物群落的调查.生态科学,2003,22(1):34~37
    [132]申玉春,熊邦喜,叶富良,等.南美白对虾高位池浮游植物和初级生产力的研究.水利渔业,2004,24(3):7~9
    [133] Jeffrey S.W. and Humphrey G. F. New spectrophotometric equations for determining chlorophylls a, b, and c in higher plants, algae and natural phytoplankton. Biochen. Physiol. Pflanzen., 1975, 167:191~194
    [134] HARRIS G P. Phytoplankton ecology, structure, function and fluctuations. Chapman and Hall, 1986, 36: 221~235
    [135]章宗涉,黄祥飞.淡水浮游生物研究方法.北京:科学出版社,1991. 358~387
    [136] OmoriM. Weigh t and chemical composition of some important oceanic zooplankton in the North Pacifc Ocean. MarBiol, 1969, 3: 4~10
    [137] Giguere L A, J Pierre F, Bernier B, et al. Can we estimate the true weigh t of zooplankton samples after chemical preservation? Can J Fish Aquat Sci, 1989, 46: 522~527
    [138]刘光兴,张志南.即墨养虾池虾病暴发前期浮游动物动态的研究.青岛海洋大学学报,2001,31(3) 9:395~400
    [139] Williams P J, J E B. Microbial Contribution to Overal Plankton Community Respiration Studies in Enclosure: [M]. 1983, 1305~321
    [140] Schroeder GL. Autotrophic and heterotrophic production of microorganisms in intensely - manured fish ponds and related fish yields. Aquaculture, 1978, 14: 303~325
    [141]刘国才,李德尚,董双林.对虾养殖生态系不同粒级浮游生物呼吸率和初级生产率测定.海洋学报,2001,23(6):102~107
    [142] Hobbie J.E., Dalet R.J., Jasper S.. Use of nuclepore filters fox counting bacteria by fluorescence microscopy. Appl Eviron Misrobiol, 1977, 33:1225~1228
    [143] Bratbak G. Bacterial biovolume and biomass estimations. Appl Environ Microbiol, 1985, 49(6): 1488~1493
    [144] Fuhrman JA, Azam F. Bacteroplancton secondary production estimates for coastal water of British Columbia,Antarctica. California . Appl Environ Microbiol, 1980, 44:1085~1095
    [145]刘国才,李德尚,董双林.对虾养殖围隔生态系统浮游细菌的呼吸与生产.应用生态学报,2003,14(11)2079~2080
    [146] Hagrave B T. Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content. Limmol Ocesnogr, 1972, 17(4):583~596
    [147] Smith K L Jr. Respiration of a sublittoral community. Ecology, 1973, 54:1065~1075
    [148] Smith K L Jr. Nichols A. Benthic community respiration near the woods Hole seawage outfall. Estuarine Coastal Mar Sci, 1973, 1:65~70
    [149]刘国才,李德尚,徐怀恕,董双林.海水养虾池细菌数量动态及细菌生产力的研究.应用与环境生物学报,1997,3(4):340~344
    [150] Moriarty DJW. Bacterial production in ponds used for culture of Penaeid Prawns. Microb Ecol. 1986, 12:259~269
    [151] Kirchman D L, Ducklow H W. Trophic dynamics of particle bound bacteria in pelagic ecosystems: A review. In: Moriarty D J W, Pullin R S V , eds. Detritus and microbial ecology in aquaculture, ICLARM Conference Proceedings 14,420p. International Center for Living Aqualtic Research Management Manila Philippines, 1987, 54~82
    [152] Schwaerter S,Ondergaard M,Riemann B et al. Respiration in eutrophic lakes:the contribution of bacterioplankton and bacterial growth yield. J Plank Res, 1988, 10:515~531
    [153]刘国才,李德尚,徐怀恕,等.对虾池悬浮颗粒附着细菌的研究.海洋学报,1999,21(1):97~103
    [154] Azam F, Bladon, Christine. The ecological role of water column microbes in the sea. Mar Ecol Prog Set, 1983, 10: 257~263
    [155] Hargrive B. T., Phillips G. A. Dynamics of the benthic food web in Geroges bay, southen gulfof St. Lawerence. Mar. Ecol. Prog. Ser., 1986 31:277-294.
    [156]白洁,张昊飞,李岿然,等.海洋异养浮游细菌生物量及生产力的制约因素.中国海洋大学学报,2004,34(4):594~602
    [157] Deflaun MF and Mayer LM.1983.Relationship between bacteria and grain surfaces in intertidal sediments. Limnol Oceanogr, 28: 873~881
    [158] Bamer RA. The benthic boundary layer from the viewpoint of geochemist. In: McCave IN (ed.), The benthic boundary layer, Plenum Press, New York, 1976, 333~55
    [159] Jones JG. Activities of aerobic and anaerobic bacteria in lake sediment and their effect on the water column.In:Ne dwell DB,Brown C M(e ds.), Sdiment Microbiology .Spec .Publ. Soc. Gen. Microbiol. No.7. London Academic Press. 1982, 107~145
    [160]吴琴瑟.南美白对虾养殖现状与发展对策.科学养鱼,2006:1~2
    [161]王兴强.凡纳滨对虾生长和生物能量学的初步研究:[博士学位论文].青岛:中国海洋大学,2004
    [162]游奎,马甡.对虾养殖生态系中有机碳的初步研究.青岛海洋大学学报,2002,32(1):51~55
    [163]刘国才,李德尚,董双林,等.对虾综合养殖生态系底泥细菌的数量动态.应用生态学,2000,11(1):138~140
    [164]李文权,郑天凌,郑微云,等.海水养殖碳循环的实验研究.海洋湖沼通报,1992,4:32~40
    [165]朱杏冬,涂金珠,崔绍荣,等.养殖水中宗有机碳与化学需氧量和生化需氧量相关性的研究.1999,15(3):196~198
    [166]李瑞杰,王厚杰,袁有宪.对虾养殖排海废水对莱州湾环境影响的动力学计算.海洋湖沼通报,1999,2:6~10
    [167] Primavera, J.H.,. Tropical shrimp farming and its sustainability. In: De Silva, S.S. (Ed.), Tropical Mariculture. Academic Press, San Diego, 1998, 257~289
    [168]刘国才.鱼塘内细菌数量的消长和季节变动.水产学报,1992,16(1):25~31
    [169]刘国才,李德尚.虾池生态系有机碳库德储量.生态学报,2000,31(2),1056~1060
    [170]李晓东.河蟹生态养殖的理论与技术研究:[博士学位论文].青岛:中国海洋大学,2007
    [171] Deflaun MF and Mayer LM. Relationship between bacteria and grain surfaces in intertidal sediments. Limnol Oceanogr, 1983, 28: 873~881
    [172]王克行.解决大面积养虾饲料的一点设想.全国海水养殖增殖发展途径学术会议论文报告汇编,1980, 200~203
    [173]韩方训,王道和,韩丰贵,等.沙蚕在对虾养殖生产中的应用.海洋科学,1990, (3):4~6
    [174]张志南,于子山,段榕琦,等.虾池纳潮期日本刺沙蚕幼虫数量及其沉降的研究.海洋与湖沼,1994, 25(3):248~257
    [175]周一兵.沙蚕移植在对虾养殖中的应用及生态效益.海洋学通报,1999, 34(11):12~15
    [176]邓锦松.投放双齿围沙蚕和毛蚶移对虾池的生物修复作用:[硕士学位论文].青岛:中国海洋大学,2006:13~32
    [177]张士华,杨秀霞,林式柱,等.几种对虾在黄河三角洲地区生长及移植饵料生物效果的比较.青岛海洋大学学报,2002, 32(4):543~550
    [178]袁兴中,陆健健.围垦对长江口南岸底栖动物群落结构及多样性的影响.生态学报,2001, 21(10):1643~1644
    [179]武云飞,吴翠珍,黄勇,等.一种新蛋白源——青海钩虾营养价值的初步研究.青岛海洋大学学报,1996, 26(3):309~311
    [180]郭焱,张人铭,蔡林钢,等.赛里木湖钩虾营养及渔业效应分析.淡水渔业,2002, 32(4):52~54
    [181]郑严,李茂堂,田凤琴.蜾蠃蜚在对虾养殖中的应用研究.海洋科学,1985, (9):35
    [182] Birldund J. Biomass, growth and production of the amphipod Corophiurn insidiosum Crawford, and preliminary notes on Corophiurn volutator (Pallas). Ophelia. 1977,16: 187~203
    [183]刘艳春,苑春亭,蒋万钊,等.藻钩虾在池塘生态养虾中的利用.齐鲁渔业,2007, 24(1):28~29
    [184] Zupo, V., Lumare, F., Bisignano, V. Feeding of Penaeus japonicus Bate (Decapoda: Penaeidae) in pond cultures:size descriptors and food selection. Aquaculture , 1990, 84(2):125~143
    [185] Reymond, H. & Lagardère, J.P. Feeding rhythms and food of Penaeus japonicus Bate (Crustacea, Penaeidae) in salt marsh ponds: role of halophilic entomofauna. Aquaculture,1990, 84: 125~143
    [186] Nair, K.K.C. & Anger, K. Life cycle of Corophium insidiosum (Crustacea, Amphipoda) in laboratory culture. Helgoland Marine Research, 1979, 32(3): 279~294
    [187] Dahl, E. Ecological range of Baltic and North Sea species. Oikos (Suppl.), 1973, 15:85~90
    [188] Sheader, M. Distribution and reproductive biology of Corophium insidiosum (Amphipoda) on the north-east coast of England. mar. biol. Ass. U. K. 1978, 58: 585~596
    [189]武云飞,韩凤进,江涛,等.青海钩虾配合饲料对罗非鱼两品系生长效果的研究.青岛海洋大学学报,2003, 33(2):199~205
    [190]任先秋.中国动物志,无脊椎动物,第四十一卷,端足目,钩虾亚目(一),北京:科学出版社,2006:132~374.
    [191]陈丽梅.中国名对虾和日本囊对虾的群体遗传多样性研究及几种蛏类的分析系统学研究:[硕士学位论文].青岛:中国海洋大学,2004
    [192]尹向辉,程宝平,刘维宾.日本对虾养殖技术讲座(一)——日本对虾生物学特征.农业养殖技术,2002:18
    [193]林越赳,陈详才,张沧杰.日本对虾养殖技术初试.福建水产,1995,3:28~30
    [194]翟雪梅,张志南.虾池生态系浮游生物亚模型.青岛海洋大学学报,1999,21(1):94~100
    [195] Baretta J W,et al. The construction of the pelagic submodel. In: Baretta J and Ruardig P. Tidal Flat Estuties:Springer-Verlag, 1988, 77~102
    [196] Nielsen S N, et al. Modelling stuctuxal dynamical changes in a Danish shallow lake. Ecol M odel, 1994, 72: 13~20
    [197] Hagiwara H,et al. Ecosystem modelling of a multi7species integrated aquaculture pond in South China. Eco1Mode1, 1994, 72:41~71
    [198] Nunes Alberto J.P., Parsons G. Jay. A computer-based statistical model of the food and feeding patterns of the Southern brown shrimp Farfantepenaeus subtilis under culture conditions. Aquaculture, 2006, accepted.
    [199] Heymans J J and,Shannon L J and Jarre A. Changes in the northern Benguela ecosystem over three decades: 1970s,1980s and 1990s. Ecological Modeling, 2004, 172: 175~195
    [200]王崇明,张岩,麻次松.对虾池塘浮游植物与主要水质因子的关系.海洋科学,1993,(4) :10~12
    [201]周文坚.养虾池基础饵料培养研究.现代渔业信息,1993,8( 1) :21~24
    [202]孙修涛,李健,麻次松,赵法箴.中国对虾虾池几种动物的摄食能力和选择性研究.海洋科学,1995,3:1~4
    [203]翟雪梅,张志南.虾池生态系统能流结构分析.青岛海洋大学学报,1998, 28(2):275~282
    [204]张艳中,张玉梅.利用培育浮游动物方法养殖南美白对虾试验.中国水产,2003(4):58~59
    [205]赵月军,胡宗福.南美白对虾温室集约化养殖的摄食报告.试验研,2007,a(17):5~7
    [206]赵月军,胡宗福.温棚集约化养殖南美白对虾的摄食情况试验报告。研究与综述2007,b:103
    [207] Park R A, ONeill R V, Bloomfield J A, et al. A generalized model for simulating lake ecosystems. Simulation, 1974, 23: 33~50
    [208] Scavia D, Bloomfield J A,Fisher J S , et al. Documentation of CLEANX:a generalized model for simulating the open-water ecosystems of lakes. Simulation, 1974, 23: 51~56
    [209] Halfon E, Schito N,Ulanowicz R E. Energy flow through the Lake Ontario food web conceptual model and an attempt at mass balance. Ecological Modeling , 1996, 86:1~36
    [210] Winberg G G. Rate of metabolism and food requirements of fishes. Transl Fish. Res. Board Can, 1956, 253
    [211] Breet J R and Groves T D D. Physioligical energetics. In : fish Physioligy (Hoars W S eds). New York: Acadermic Press, 1979. 8:279~352
    [212] Lindeman R L. The trophic-dynamic aspect of ecology. Ecology, 1942, 23: 399~418
    [213] Odum W E and Heald E J. The detritus-based food web of an estuarine mangrove community In: L E Cronin (eds.). Estuarine research. Academic Press, New York, 1975. 1(1): 265~286
    [214] Ulanowicz R E. The part-whole relation in ecosystems. In Patten B C and Jorgensen(eds) Comples ecology Prentice-Hall. Englewood Cliffs, New Jersey, 1995, 549~560
    [215] Krebs C J. Ecology: the experimental analysis of distribution and abundance (2nd edition) Harper & Row, Publishers, New York, 1978
    [216]樊详国.水产健康养殖管理研究:[博士学位论文].青岛:中国海洋大学,2005
    [217]阎希柱,徐晓津,吴成业.高滩位区花蛤反季节高效池塘生态养殖模式经济效益分析.中国渔业经济,2010,28(2):118~123
    [218]黄立仁.咸水虱目鱼塘的生态系统分析:[硕士学位论文].台湾:中山大学,1998
    [219]谢祚浑,周一兵.池塘中摇蚊科幼虫现存量和生产力的研究.大连水产学院学报,1990, 125(3、4):7~17
    [220]孙兴滨.摇蚊幼虫生态学特征及其在水处理中去除技术研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2006
    [221]刘其根,孔优佳,陈立侨,等.网围养殖对湖底栖动物群落组成及物种多样性的影响.应用与环境生物学报,2005,11(5):566~570
    [222]王伯荪,李鸣光,彭少麟.植物种群学.广州广东高等教育出版社,1995. 132~148
    [223]尚玉昌,蔡晓明.普通生态学.北京:北京大出版社,1995. 286~289
    [224] B. Hari, B.Madhusoodana Kurup, Johny T. Varghese. et .al Effects of carbohydrate addition on production in extensive shrimp culture systems. Aquaculture.,2004:179~194

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700