火炬松林生理生态学特性及可持续经营技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对火炬松人工林,尤其是工业用材林基地建设中存在的主要问题,以安徽中部丘岗地区栽植的各类试验林为研究对象,研究火炬松及其林分的生理生态学特性,主要研究火炬松林分的光合、蒸腾、树干液流、林木营养及林分养分循环和新造幼林水土流失特性等,在此基础上,研究了火炬松人工林林分结构调控技术,主要包括初植密度、植穴配置、抚育间伐和伴生树种的选择与配置的综合结构调控技术,进而按照生态系统管理的要求,提出了火炬松人工林可持续经营的综合配套技术。为火炬松人工林实行生态系统管理,达到可持续经营提供理论依据。主要结果如下:
     1、火炬松光合生理生态特性
     采用美国产的Licor-6400便携式光合作用测定系统,测定了11年生不同间伐林分(初植密度1830株/ha,弱度、中度、强度间伐后保留密度分别为1600、1200和1020株/ha),和不同初植密度林分(林分密度分别为3333、1667、1111株/ha);不同层次(中部枝叶和上部枝叶)、不同叶龄(当年生枝针叶和2年生枝针叶)的光合生理、生态指标,并进行了CO_2倍增对光合作用的影响,同步测定的净光合速率(Pn,μ mol CO_2·m~(-2)·s~(-1)、蒸腾速率(Tr,m mol·m~(-2)·s~(-1))、气孔导度(COND,mol·m~(-2)·s~(-1))、胞间CO_2浓度(Ci,μ mol CO_2·mol~(-1))、饱和蒸气压差(VPD,Kpa)、气温(Ta,℃)叶温(T1,℃)、光合有效辐射(PAR,μ mol photons·m~(-2)·s~(-1))、空气相对湿度(RHr,%)、叶室相对湿度(RHs,%)、进气CO_2浓度(Ca,μ mol CO_2·mol~(-1))、叶室CO_2浓度(Cs,μ mol CO_2·mol~(-1))的相互关系,以及与湿地松对比的研究,结果表明:
     ● 火炬松净光合速率的日进程为一宽单峰曲线,上午10时之前快速上升,14时后迅速下降,在12-14时出现峰值。
     ● CO_2浓度倍增火炬松净光合速率差异极显著,CO_2浓度为800μ mol CO_2·mol~(-1)与400μ mol CO_2·mol~(-1)的净光合速率分别为4.10和2.25μ mol CO_2·m~(-2)·s~(-1),CO_2倍增能显著地提高光合速率。
     ● 不同间伐处理火炬松净光合速率差异显著,强度间伐平均为3.57μ mol CO_2·m~(-2)·s~(-1),中度间伐3.01μ mol CO_2·m~(-2)·s~(-1),弱度间伐3.10μ mol CO_2·m~(-2)·s~(-1)。
     ● 不同密度处理火炬松净光合速率差异显著,1667株/ha林分平均为4.26μ molCO_2·m~(-2)·s~(-1)、1111株/ha为3.98μ mol CO_2·m~(-2)·s~(-1)、3333株/ha为3.95μ mol CO_2·m~(-2)·s~(-1)。
     ● 不同针叶类型处理乎均净光合速率差异显著,上部和中部枝针叶分别为3.15和3.21μmol CO_2·m~(-2)·s~(-1);1年生枝和2年生枝针叶分别为3.39和2.89μ mol CO_2·m~(-2)·s~(-1)。
     ● 不同间伐处理火炬松蒸腾速率差异显著,强度间伐处理平均为0.708 m mol·m~(-2)·s~(-1),弱度间伐处理为0.581 m mol·m~(-2)·s~(-1),中度间伐为0.518 m mol·m~(-2)·s~(-1)。强度间伐处理的蒸腾速率明显大于其它两种间伐强度。
     ● 1111株/ha的湿地松林分净光合速率为4.91μ mol CO_2·m~(-2)·s~(-1),显著大于相同密度火炬松林分。
    
    .净光合速率与同步测定的生理生态因子向的回归分析结果达到极显著水平,相关系数
    R=0.9977,决定系数RR二0.9954;通径分析显示,各因子的直接作用(括号内的数字为直
    接作用系数))J匝序为:
    Ca(10.730)>Cs(一10.287)>RHs(一0464)>RHr(0.405)>COND(0.320)>TI(一0.259)>Tr(0.235)>VP
    D(0.098)>ei(一0.055)>几(0.051)>队R(0.038);因为ea是人为设定的,分别设为400和800
    ,mol Co:·m一2·S一’,如不考虑ea,则CS为影响Pn的主导因子,且为负效应;COND
    主要通过RHs和Tr影响Pn,Ci、VPD、Ta、TI主要通过Cs影响Pn,Tr主要通过RHr、
    CONo、TI等影响Pn,RHr主要通过TI、Tr、COND等影响Pn,础S主要通过COND和Cs
    影响Pn,PAR主要通过CS、TI、RHr、Tr和COND影响Pn。
    2、火炬松树干液流特点
     采用澳大利亚ICT公司的ICT一2000TE树干液流测定系统,使用TDP热耗散探头、
    自动气象站和ZENO数据采集器,同步观测11年生不同径阶火炬松及对比湿地松和木荷
    树干液流和环境因子,结果表明:
    .秋季正常天气情况下,火炬松树干液流表现为双峰曲线或单峰曲线,有一定幅度的“午
    休”现象,日出后,树干液流迅速上升,峰值出现在中午前后,日落后至日出前液流微弱
    或J一L近无上升液流。
    .白天10时至17时平均为26c耐h左右,最大达到54clll巾左右,胸径与树干液流流速
    的关系不密切;不同径阶火炬松树干液流流量呈现极显著差异,观测的4株样木胸径分别
    为1 3.5、10.2、15.7、16.6cm,秋季每天的耗水量分别为13.28、13.27、36.33、49.sokg/d。
    .环境因子对树干液流的影响次序为:气温>相对湿度>光合有效辐射>土壤温度>土壤水
    分,气温是影响树干液流主导因子,温度越高,树干液流就大,林木蒸腾耗水就多;其次
    是相对湿度,因其直接作用为负值,表明相对湿度与树干液流成反比;光合有效辐射主要
    是通过影响气温和相对湿度进而影响树干液流的。
    .火炬松与对比的湿地松和木荷树干液流有一定的差异,晴天树干液流流速火炬松最大
    巨为双峰曲线,?
Pinus taeda is the most important industry tree species in southern America. It has been introduced to China since 1948, and becomes one of the major tree species of plantations in middle and north subtropic in China. Based on the investigation of experimental plantations of Pinus taeda located in the middle region of Anhui province, the ecophysiological characteristics of Pinus taeda and its plantations were studied in this paper, which include photosynthesis, stem sap flow, nutrient contents, nutrient cycling and the character of water and soil erosion in the young plantations. Furthermore, the optimum stand structure of Pinus taeda including planting density, distribution of the planting spot, thinning, choice and distribution of mixed tree species, were also studied. On the bases of the result obtained from this research, a comprehensive and ecological management techniques of Pinus taeda plantation was suggested in order to achieve sustainable management of the plantation. The key results are as follows:1. Photosynthesis ecophysiology of Pinus taedaPhotosynthesis (Pn, i mol CO2 m-2 s-1), transpiration (Tr, m mol m-2 s-1) and some ecophysiological factors such as stomata conduction (COND, mol m-2 s-1),dense of CO2 between cells(Ci, u mol CO2 mol-1), dispatch of saturation air press( VPD, Kpa), air temperature( Ta, ), leaf temperature( Tl, 癈 ), available radiation of photosynthesis( PAR, i mol photons s m-2s-1), relative humidity of air (RHr,%),relative humidity of leaf chamber(RHs,%),enter dense of CO2 (Ca, V mol CO2 mol-1), dense of CO2 in leaf chamber( Cs, i mol CO2 -mol-1) of different management Pinus taeda stands were investigated using the portable photosynthesis system Licor-6400. The results as follows:The daily course of net photosynthesis velocity of Pinus taeda is a single width curve. Before 10 A.M., it is ascend rapidly, and the peak appears between 12 and 14 hours of the day. After 2 p.m., it is descend quickly.When doubled the dense of CO2, the difference of net photosynthesis velocity of Pinus taeda is significant. As the dense of CO2 is 800 i mol CO2 mol-1 and 400 i mol CO2 Mol-1, net photosynthesis velocity is 4.10 and 2.25 i mol CO2 m-2 s-1 respectively. Doubled the dense of CO2 could increase photosynthesis velocity greatly.To the stands of Pinus taeda with different thinning intensities, the net photosynthesis velocity shows remarkable difference, of which the average of strong thinning 3.57 i mol CO2 m-2 s-1, the middling thin is 3.01 u mol CO2 m-2 s-1 the weak thin is 3.10 u mol CO2 m-2 s-1To the stands of Pinus taeda with different densities, velocities of net photosynthesis show remarkable difference, of which the average of 1667 stems / ha stands is 4.26 u mol CO2 m-2 s-1, 1111 stems/ ha is 3.98 u mol CO2 m-2 s-1, 3333 stems/ ha is 3.95 u mol CO2 m-2 s-1The average velocities of net photosynthesis show significant difference in different types of needles. They are 3.15 and 3.21 i mol CO2 m-2 s-1 in upper and central needles respectively and 3.39 and 2.89 i mol CO2 m-2 s-1 in one year and two years needles respectively.In different thinned Pinus taeda stands, the velocities of transpiration show notable difference. To the strong thinned stand, the average is 0.708 m mol m-2 s-1 while to the weak thinned, the average is
    
    0.581m mol m-2 s-1 and to the middle, which is 0.518 m m-2 s-1The velocity of net photosynthesis of Pinus elliottii stands with 1111 stems/ ha is 4.91 u mol CO2 m-2 s-1, which is much greater than Pinus taeda stands.Regression analysis shows that there exists good relationship between the velocity of the net photosynthesis and the physiology ecosystem factors, and the relation coefficient (R) reached 0.9977, and decision coefficient (RR) is 0.9954. The all path analysis shows that the direct function (arithmetic figure in the brackets is direct function coefficient) of each factor is in proper order for: Ca(10.730)> Cs(-10.287)> RHs(-0.464)> RHr(0.405)> COND(0.320)> Tl(-0.259)> Tr(0.235)> VPD(0.098)> Ci(-0.085)> Ta(0.051)> PAR (0.038). Except Ca
引文
[1] 迟健,李春发.1998.火炬松用材林疏伐试验初报.林业科技开发,(3):32-33.
    [2] 迟健,李春发等.1994.浙江及皖东丘陵地区火炬松生长分析.林业科学研究,7(4):437~442.
    [3] 陈炳浩.2001.森林资源保护与农业可持续发展.北京出版社.
    [4] 陈楚莹等.2000.杉木人工林生态学.北京:科学出版社.
    [5] 东北林学院主编.1981.森林生态学.北京:中国林业出版社.
    [6] 董世仁等.1986.油松人工养分循环的研究Ⅱ:油松人工林养分元素的动态特性.北京林业大学学报,(1):11~21.
    [7] 方升佐等.1999.人工林长期立地生产力研究的现状和前景.世界林业研究,12(3):18-23.
    [8] 方文彬,林云等.1994.立地条件对湿地松和火炬松木材解剖特征影响的研究.世界林业研究,17(专):244~260.
    [9] 费世民.1995.火炬松人工林林木营养特性的研究.林业科学,31(4):299-309.
    [10] 费世民.2001.火炬松人工林养分体内转移与内循环研究.林业科学,37(3):14-19.
    [11] 冯建灿等.2002.喜树光合速率日变化及其影响因子的研究.林业科学,38(4):34-39.
    [12] 管宁,刘昭息等.1993.不同种源火炬松和湿地松木材基本密度和管胞长度的变异.林业科学研究,6(3):235~241.
    [13] 何纪星,赵执夫等.1991.几种松树光合蒸腾的比较研究,林业科技通讯,(5):9-13.
    [14] 侯学煜著.1981.中国植被地理及优势植物化学成分.北京:科学出版社.
    [15] 胡肆慧,陈灵芝等.1986.油松和栓皮栎枯叶分解作用的研究.植物学报,28(1):102~110.
    [16] 胡肆慧,陈灵芝等.1986,两种中国特有树种的枯叶分解速率.植物生态学与地植物学丛刊,(1):35~43.
    [17] 花晓梅,刘国龙等.1995.火炬松、湿地松芽苗截根菌根化育苗技术研究.林业科技通讯,(7):24-25.
    [18] 黄赤存,沈崇尧等.1991.土生空球菌及其在火炬松上形成的菌根.真菌学报,10(3):203~207.
    [19] 蒋高明.2001.当前植物生理生态学研究的几个热点问题.植物生态学报,25(5):514-519.
    
    [20] 姜景民,刘昭息等.1999.火炬松种源遗传变异分析和适宜种源(区)的确定.林业科学研究,12(5):485-492.
    [21] 姜景民孙海菁.1999.火炬松木材基本密度的株内变异.林业科学研究,12(1):97-102.
    [22] 姜景民,孙海菁等.1996.火炬松纸浆材优良家系多性状选择.林业科学研究,9(5):455-460.
    [23] 姜景民,虞沐奎等.2000.湿地松、火炬松工业用材林造林密度初步研究,林业科学研究,13(2):7-12.167-176.
    [24] 姜景民,虞木奎等.2000.湿地松火炬松工业用材林间伐制度研究.林业科学研究,13(2):167—176
    [25] 姜志林.1992.下蜀森林生态系统定位研究论文集.北京:中国林业出版社.
    [26] 李宝福.1997.土壤中铝对火炬松根系影响的试验研究.福建林业科技,24(1):66~68.
    [27] 李春生,王金林等.1996.火炬松旋切及单板质量与木材性质关系的研究.木材工业,10(2):1-5.
    [28] 李海涛陈灵芝.1998.应用热脉冲技术对棘皮桦和五角枫树干液流的研究.北京林业大学学报,20(1):1-6.
    [29] 李坚,王金满等.1999.火炬松木材材质早期预测.东北林业大学学报,27(5):25-28.
    [30] 李江南,万细瑞等.1993.湿地松、火炬松扦插繁殖技术研究.林业科学研究,6(5):493~498.
    [31] 李轩,夏晓敏等.1996.湿地松火炬松木材密度变异和优树选择的研究.林业科学,32(6):248-253.
    [32] 李贻铨,陈宏峻.1999.火炬松和湿地松幼林施肥对土壤性质和叶片养分影响.林业科学,35(专1):95~100.
    [33] 李智勇.2000.全球人工林发展中值得注意的几个热点问题.世界林业研究,13(2):14-19.
    [34] 林德根.2000.不同整地方式对火炬松幼林生长及林下植物多样性的影响.东北林业大学学报,28(6):1-3.
    [35] 林业部国际合作司等.1998.第十一届世界林业大会文献选编.北京:中国林业出版社.
    [36] 林业部科技司.1994.中国森林生态系统定位研究.沈阳:东北林业大学出版社.
    [37] 林业部科技委等.1997.中国山区林业发展论坛.世界林业研究年,(专集)
    [38] 林迎星.2000.国外工业人工林发展研究概述.世界林业研究,13(4):25-31.
    [39] 蔺殿龙,周孝明.1991.火炬松水土保持林综合效益试验研究.中国水土保持,(1):22~25。
    [40] 刘东兰,郑小贤.1999.人工复层林研究.世界林业研究,12(2):24-27.
    [41] 刘发民.1999.利用校准的热脉冲方法测定松树树干液流.甘肃农业大学学报,3l(2):167-170.
    [42] 刘奉觉.Edwards.郑世锴等.1993.杨树树干液流时空动态研究.林业科学研究,6(4):368-372,
    [43] 刘广祥,杨君等.1999.火炬松主要病害综合防治技术.林业科技开发,(2):31-32.
    [44] 刘昭息,徐有明.1998.火炬松建筑材优良种源综合评定的研究.林业科学研究,11(4):417~423.
    [45] 刘昭息,孙海菁等.1997.火炬松种源遗传变异研究及纸浆材优良种源评选.林业科学研究,10(4):395-401.
    [46] 龙应忠,任炎华等.1995.湖南省湿地松、火炬松丰产栽培技术的研究.林业科技通讯,(8):8-12.
    [47] 龙应忠,吴际友等.2000.火炬松纸浆材建筑材密度管理技术与生长效应研究.林业科技通讯, (2):6-8
    [4
    
    [48] 龙应忠,吴际友等.1996.火炬松种子园经营管理技术的研究.林业科技通讯,(5):19-21
    [49] 卢俊培等,海南岛尖峰岭热带林凋落叶分解过程的研究.林业科学研究,1989,2(1):24~32.
    [50] 鲁小珍.2001.马尾松、栓皮栎生长盛期树干液流的研究.安徽农业大学学报,28(4):401-404.
    [51] 栾以玲,叶镜中等.2002.城市近郊火炬松林重金属元素的分布及季节变化.南京林业大学学报(自然科学版),26(6):37-40.
    [52] 罗汝英著.1983.森林土壤学(问题与方法).北京:科学出版社.
    [53] 吕家驹.1993.火炬松苗期截根试验.林业科技开发,(1):6~7.
    [54] 马履一.王华田.2002.油松边材液流时空变化及其影响因子的研究.北京林业大学学报,24(3):72-76.
    [55] 聂道平.1991.森林生态系统营养元素的生物循环.林业科学研究,4(4):435-440.
    [56] 潘辉,朱伟等.2001.福建省火炬松生长与环境因子的典型相关分析.植物资源与环境学报,10(1):35-37.
    [57] 潘维俦等.1981.杉木人工林养分循环的研究(一)不同生育阶段杉木人工林的产量结构和养分动态.中南林学院学报,(1):1~16.
    [58] 潘维俦等.1983.杉木人工林养分循环的研究(二)丘陵区速生杉木林的养分含量、积累速率和生物循环.中南林学院学报,(1):1~16.
    [59] 潘志刚,游应天.1991.湿地松火炬松加勒比松引种栽培.北京:科学技术出版社.
    [60] 潘志刚.2000.15年生火炬松种源试验研究初报.林业科学,36(专1):70-79.
    [61] 秦建华,姜志林.1999.培育优质阔叶材混交林与森林可持续经营.世界林业研究,12(4):6-11.
    [62] 全国国外松速生丰产技术研究协作组.1993.火炬松立地指数的编制.林业科技通讯,(12):19~21.
    [63] 全国国外松种源试验协作组.1989.火炬松八年种源试验研究.林业科学研究,2(6):540~545.
    [64] 阙国宁,房建军.1997.火炬松、湿地松、晚松组培繁殖的研究.林业科学研究,10(3):227~232.
    [65] 沈永宝,高捍东等.1997.IDX法快速测定火炬松种子生活力的研究.林业科学研究,10(6):651-654.
    [66] 沈国舫等.1985.油松人工林养分循环的研究Ⅰ:营养元素的含量及分布.北京林业大学学报,(4):1~14.
    [67] 盛炜彤主编.1992.人工林地力衰退研究.北京:中国科学技术出版社.
    [68] 盛炜彤.2001.人工林生物学稳定性与可持续经营.世界林业研究,14(6):14-21.
    [69] 石进,谢元淼等.1995.树干注内吸性杀虫剂防治火炬松种实害虫的研究.林业科学研究,8(专):33-37.
    [70] 束庆龙,何俊旭等.火炬松林分密度对衰退病和土壤含水量的影响.安徽农业大学学报,
    [71] 宋云民,黄永利.1995.火炬松材性变异规律的初步研究.林业科学,31(4):346-352.
    
    [72] 苏梦云,刘昭息等.1997.火炬松和湿地松幼苗蔗糖含量与生长潜势关系的研究初报.林业科学研究,10(1):90-92.
    [73] 孙慧珍.2002.东北东部山区主要树种树干液流动态及与环境因子关系.东北林业大学博士学位论文.
    [74] 孙翠玲,彭久联等.1992.土壤酸度对火炬松人工林生长影响的分析.林业科技通讯,(1):20~21.
    [75] 孙翠玲,宋菲等.1996.酸雨地区火炬松幼林施肥对土壤和针叶养分含量的影响.林业科学研究,9(6):640-645.
    [76] 孙翠玲,唐国银等.1994.大气污染地区火炬松幼林施肥效应.林业科学研究,7(4):420~424.
    [77] 谭碧霞,钟伟华.1992.火炬松早期性状鉴定技术的研究.林业科学研究,5(3):304~310.
    [78] 谭松山,邓群等.1993.湿地松和火炬松枯梢病研究:立地条件和林分因子与松树枯梢病的关系.中南林学院学报,13(2):199~202.
    [79] 唐启义,冯光明.2002.实用统计分析及其DPS数据处理系统.北京:科学出版社.
    [80] 唐巍.2002.表达耐盐基因的转基因火炬松的再生.Journal of Forestry Research(林业研究),13(1):1-6.
    [81] 唐巍,郭仲琛.1998.火炬松胚性细胞悬浮培养物的生长参数变化.热带亚热带植物学报,6(1):30~34.
    [82] 唐巍,郭仲琛.1998.火炬松胚性愈伤组织诱导和植株再生的研究.林业科学,34(3):115~119.
    [83] 童方平,茹正忠等.1997.我国主要立地火炬松纸浆材、建筑材林合理轮伐期的研究.林业科技通讯,(11):9-11,21.
    [84] 夏晓敏,李轩等.2000.湿地松、火炬松超短轮伐期定向培育技术研究,中南林学院学报,20(1):78-80.
    [85] 肖文发等.2002.杉木人工林针叶光合与蒸腾作用的时空特征.林业科学,38(5):38-46.
    [86] 谢会成.2002.栓皮栎光合生理生态的研究.南京林业大学博士学位论文.
    [87] 谢寅峰,沈惠娟等.2001.水分胁迫下抗旱剂对南方6种林木幼苗光合作用的影响.林业科技开发,15(6):14-15.
    [88] 徐德应,张小全.1998.森林生态系统管理科学.世界林业研究,11(2):1-7.
    [89] 徐国祯.1997.森林生态系统经营.世界林业研究,10(2):15-20.
    [90] 徐进,陈天华.1999.火炬松与湿地松染色体的荧光带型.东北林业大学学报,27(6):14~16.
    [91] 徐有芳.1992.第十届世界林业大会文献选编.北京:中国林业出版社.
    [92] 徐有明,唐万鹏等.1999.荆州引种火炬松木材基本密度的变异.东北林业大学学报,27(4):33-37.
    [93] 徐有明,唐万鹏等.1998.引种种源火炬松木材全干干缩性的研究.四川农业大学学报,16(1):129-133.
    [94] 徐有明,涂可高等.1997.火炬松种源木材化学成分的变异.林产化学与工业,17(1):73-78.
    [95] 汪存诚,石进等.1993.火炬松球果生,命表的研究.林业科学研究,6(专):122~125.
    
    [96] 王豁然.关于发展人工林与建立人工林业问题探讨.林业科学,36(3):111-117.
    [97] 王华田,马履一,孙鹏森.2002.油松、侧柏深秋边材木质部液流变化规律的研究.林业科学,38(5):31-37.
    [98] 王淼等.2002.高CO2浓度对温带三种针叶树光合光响应特性的影响.应用生态学报,13(6):646-650
    [99] 汪企明,冯沛熙等.1991.不同种源火炬松针叶形态变异初步研究.林业科技通讯,(8):5~8.
    [100] 汪企明,孙玉林等.1996.火炬松、湿地松抗松枯梢病、松针褐斑病种源变异的初步研究.福建林学院学报,16(3):209~214.
    [101] 王婉华,阮锡根等.1991.湿地松、火炬松和马尾松幼龄材构造特征的研究.南京林业大学学报,15(4):89~92.
    [102] 魏初奖.1998.松枯梢病对湿地松、火炬松生长影响的研究.南京林业大学学报,22(4):31~34.
    [103] 文小明,骆秀琴等.1996.种植密度对湿地松、火炬松木材密度径向变异模式的影响.林业科学,32(6):536-542.
    [104] 吴侠中.1992.松枯梢病对火炬松的危害.林业科技通讯,(11):26~28.
    [105] 吴永刚,姜志林等.2002.苏南丘陵火炬松林对重金属元素和磷、硫的吸收与积累.生态学杂志,21(3):5-9.
    [106] 严昌荣.Alec Downey.韩兴国等.1999.北京地区落叶阔叶林中核桃楸在生长中期的树干液流研究.生态学报,19(6):794-797.
    [107] 杨君.2000.间伐措施对火炬松主要病害的影响,福建林学院学报,20(1):69-71.
    [108] 姚茂和等.1991.林下植被对杉木林地力影响的研究.林业科学研究,4(3):246-251.
    [109] 叶镜中,姜志林.1982.苏南丘陵区杉木林地上部分生物量的研究.南京林产工业学院学报,(3):109~115.
    [110] 叶镜中,姜志林.1980.苏南丘陵区杉木根系的生态特性.南京林产工业学院学报,(1):43~51.
    [111] 虞木奎,徐六一等.1998.皖中地区火炬松优良种源的综合评定.林业科学研究,11(6):664-668.
    [112] 虞木奎,邱辉等.1999.火炬松造林密度研究.安徽农业大学学报,26(4):1-6
    [113] 虞木奎,赖天碧等.2000.火炬松材性变异与优良种源选择研究.江苏林业科技,27(1):7-12
    [114] 虞木奎,徐六一等.2001.火炬松人工林间伐效应的研究.林业科技开发,15(2):15-18.
    [115] 虞木奎.2001.论安徽林业可持续发展战略.生态经济,(增刊):226-229.
    [116] 虞木奎,姜志林等.2003.火炬松树干液流的研究.南京林业大学学报,27(3):7-10.
    [117] 虞木奎,姜志林等.2003.火炬松光合生理特性的研究.河南大学学报,33(4):
    [118] 俞新妥.1989.混交林营造原理及技术.北京:中国林业出版社.
    [119] 俞新妥,叶功富.1992.混交造林与人工林的持续速生丰产.福建林学学报,12(3):322-326.
    [120] 张鼎华,黄家彬等.1999.外生菌根菌在火炬松人工林应用的研究.应用生态学报,10(4):407-410.
    [121] 张守攻等.2001.森林可待续经营导论.北京:中国林业出版社,
    
    [148] Clark, A. & Saucier, J. R.1991.Influence of planting density, intensive culture, geographic location, and species on juenile wood formation in southern pine.Georgia forest research paper.Mar 1991. (85) 13 p.
    [149] Comparative structural and Functional characteristics of Natural versus Human-modified ecosystems, ecological studies, vol.44.Spring-verlag, Berlin-New york,159-174.
    [150] Crook, W.M.I964.The measurement of the cationexchange capacity of plant root. Plant and soil vol. XXT, (1):43~49.
    [151] Dalla-Tea , F.& Jokeal,EJ.1991.Needlefall,canopy light interception,and productivity of young intesively managed slash and loblolly pine stands.Forest science.Nov 1991. v. 37 (5) p. 1298-1313.
    [152] Dangerfield, C. W.& Moorthead,DJ.1999.Intensive forest mangement comes of age:modeled,mangement activity specific results for loblolly pine plantations.General Technical Report-Southern Research Forest Service (no.SGS-30):p.426-430.
    [153] Dan Binkley. 1986.Forest nutrient managcment,Printed by John Wiley and Sons, Inc. U SA.
    [154] Farquhar G.D.and Sharkey T.D. 1982.Stomatal conductance and photosynthesis. Ann.Rev. plant physiol. 33:317-345.
    [155] Forest Ecosystem Management Assessment Team. Forest ecosystem management: an ecological, economic, and social assessment. 1993 .Report of the Forest Ecosystem Management Assessment
    [156] Team.U.S.D.A.: Forest Haight r.G. & Smith W.D. et al. 1996. The economics of loblolly pine plantations under risk of hurricane damage. South Carolina forest land research and management related to the storm/p.293-304.
    [157] Fife D.N. and Nambiar. E.K.S.1984.Movement of nutrient in Radiata pine nccdles in relation the growth of shool .Annual of Botany, 54, 303-314.
    [158] Gaudillere J.P.and Mousseau M. 1989.Short term effect of CO2 enrichment on leaf development and gas exchange of young poplars . Oecol.Plant, 10:95-105.
    [159] Gholg HJ. and Fisher P.F.et al. 1985. Nutricnet dynamics in ,Slash pine plantation, ecosystems Ecology 66(3), 647-659.
    [160] Granier A,Anfodillo T.Sabatti M et al. 1994. Axial and radial water flow in the trunks of oak trees: a quantitative and qualitative analysis. Tree Physiology, 14(12):1383-1396.
    [161] Grieu P., guehl J.M. and Aussenae G. 1988.The effects of soil and atmospheric drought on photosynthesis and stomata control of gas exchange in three coniferous species.physiol.Plant, 73:97-104.
    [162] Grumbine R E. 1994.What is ecosystem management? Conservation Biology.8(l):27-38.
    [163] Harrison A.F., Ineson P. and Heal O.W. 1990.Nutrient Cycling in Terrestrial Ecosystems,Elsevier
    
    [148] Clark, A. & Saucier, J. R.1991.Influence of planting density, intensive culture, geographic location, and species on juenile wood formation in southern pine.Georgia forest research paper.Mar 1991. (85) 13 p.
    [149] Comparative structural and Functional characteristics of Natural versus Human-modified ecosystems, ecological studies, vol.44.Spring-verlag, Berlin-New york,159-174.
    [150] Crook, W.M.I964.The measurement of the cationexchange capacity of plant root. Plant and soil vol. XXT, (1):43~49.
    [151] Dalla-Tea , F.& Jokeal,EJ.1991.Needlefall,canopy light interception,and productivity of young intesively managed slash and loblolly pine stands.Forest science.Nov 1991. v. 37 (5) p. 1298-1313.
    [152] Dangerfield, C. W.& Moorthead,DJ.1999.Intensive forest mangement comes of age:modeled,mangement activity specific results for loblolly pine plantations.General Technical Report-Southern Research Forest Service (no.SGS-30):p.426-430.
    [153] Dan Binkley. 1986.Forest nutrient managcment,Printed by John Wiley and Sons, Inc. U SA.
    [154] Farquhar G.D.and Sharkey T.D. 1982.Stomatal conductance and photosynthesis. Ann.Rev. plant physiol. 33:317-345.
    [155] Forest Ecosystem Management Assessment Team. Forest ecosystem management: an ecological, economic, and social assessment. 1993 .Report of the Forest Ecosystem Management Assessment
    [156] Team.U.S.D.A.: Forest Haight r.G. & Smith W.D. et al. 1996. The economics of loblolly pine plantations under risk of hurricane damage. South Carolina forest land research and management related to the storm/p.293-304.
    [157] Fife D.N. and Nambiar. E.K.S.1984.Movement of nutrient in Radiata pine nccdles in relation the growth of shool .Annual of Botany, 54, 303-314.
    [158] Gaudillere J.P.and Mousseau M. 1989.Short term effect of CO2 enrichment on leaf development and gas exchange of young poplars . Oecol.Plant, 10:95-105.
    [159] Gholg HJ. and Fisher P.F.et al. 1985. Nutricnet dynamics in ,Slash pine plantation, ecosystems Ecology 66(3), 647-659.
    [160] Granier A,Anfodillo T.Sabatti M et al. 1994. Axial and radial water flow in the trunks of oak trees: a quantitative and qualitative analysis. Tree Physiology, 14(12):1383-1396.
    [161] Grieu P., guehl J.M. and Aussenae G. 1988.The effects of soil and atmospheric drought on photosynthesis and stomata control of gas exchange in three coniferous species.physiol.Plant, 73:97-104.
    [162] Grumbine R E. 1994.What is ecosystem management? Conservation Biology.8(l):27-38.
    [163] Harrison A.F., Ineson P. and Heal O.W. 1990.Nutrient Cycling in Terrestrial Ecosystems,Elsevier
    
    [164] Hay wood J.D. 1994. Early growth reductions in short rotation loblolly and slash pine in central Li Holley A.G. & Dele James D.H. & James D.B.1989. Effects of growth of plantation-grown loblolly pine with soil and soil preparation.
    [165] Karst. journal of Plant Physiology, 138(4):466-469.
    [166] Kenzo Hemmi and John C.Cool.1995.Educating New Environmental Leadership for Asia,Winrock International Institute for Agricultural Development.
    [167] L.A. et al. 1999.Four-year growth results from 16-year-old intensively managed low density loblolly pine plantations. General Technical Report-Southern Research Station, USD A
    [168] Li B. & Mckeand S. et al. 1999. Tree improvement and sustainable forestry-impact of two cycles of loblolly pine breeding in the U.S.A. Forest Genetics vol. 6(4): p.229-234.
    [169] Lim M. T. and Cousens J.F . 1986.The internal tranfer of nutrients in a Scol pine stand biomass components current growh and their mutrient content .Forestry, 50 (1) 1 ~ 16.
    [170] Lopez-Upton J. & White T.L. et al. Species differences in early growth and rust incidence of lobiolly and slash pine.Forest ecology and management.July 1, 2000. v. 132 (2/3) p.211-222.
    [171] Lopez-Upton J. & White T.L. et al. 1999. Taxon and family differences in survival, cold hardiness, early growth, and rust incidence of loblolly pine, slash pine and some pine hybrids.Silvae genetica.l999.v.48 (6) p.303-313.
    [172] Lopez-Upton J. & White T.L. et al. 1999.Effects of site and intensive culture on family differences in early growth and rust incidence of loblolly and slash pine. Silvae genetica.l999.v.48 (6) p.284-293.
    [173] Louisiana.Southern Journal of Applied Forestry. Vol. 18(1): P.35-39.
    [174] Madgwick H.A ,ct al. 1983. Nitrogen concentration in foliage of Pinus radiata as affected by nitrogen nutrition, thinning, needle age,and position in crown. New Yealand For. Sci. 13 (2) 197~204.
    [175] Martin T. A.2000.Winter season tree sap flow and stand transpiration in an intensively-managed loblolly and slash pine plantation.Journal of sustainable forestry. 2000. v. 10 (1/2) p. 155-163.
    [176] Mclemore P.C. & Samuelson L.J. et al. 1999.1nfluence of intensive cultrue on water relations of loblolly pine. General Miller H.G.1984. Dynamics of nutrient cycling in plantation Ecosystems.In G.D.Bowen and E.K.S.Nambiar .Nutrition of Plantation forests, Academic Press.London ,53~78.
    [177] Nowak J.T. & Berisford C.W.2000. Effects of intensive forest management practices on insect infestaion levels and loblolly pine growth.Journal of economic entomology Apr 2000. v. 93 (2) p.336-341.
    [178] Nowak J.T. & Berisford C.W.ef al. 1998. Effects of intensive management on loblolly pine growth and insect infestation. Proceedings of the ... Society of American Foresters National Convention. 1998. p. 411-413.
    
    [179] Pearcy,R.W.,O.Bjorkman,M.M.,Caldwell,J.E.Keely.,R.K.Monson and B.R. 1987.Strain. Carbon gain by plant in natural environments. Bioscience: 37:21-29
    [180] Products Journal. Vol. 44(1): p.58-62.
    [181] Rockwood D.L. & Dippon D.R. 1998. Biological and economic potentials of Eucalyptus grandis and slash pine as biomass energy crops. Biomass (London). Vol.20(3-4): p. 155-165.
    [182] Samuelson LJ. 1998.1nfluence of intersive culture on lesf net photosynthesis and growth of sweetgum and loblolly pine seedings.Forest science.May 1998.V.44 (2) p.308-316.
    [183] Samuelson, L.&Stokes, T.et al.2001.Production efficiency of loblolly pine and sweetgum in response to four years of intensive management.Tree Physiology vol. 21 (6) p.369-376
    [184] Saugier B. 1983.Plant growth and its limitation in crops and natural communities. In H.A. Mooney and M. Godron eds.
    [185] Sellin A. 1991.Hydraulic conductivity of xylem depending on water saturation level in Norway spruce (Picerabies (L.) Service:Portland,OR.
    [186] Shupe T.F. & Choong E.T. et al.1996. The effects of silvicultural treatments on the chemical composition of plantation-grown loblolly pine wood. Journal of the society of Wood Science and Station.USDA Forest Service (no.SGS-30):p.508-510.
    [187] Smithm W.H. Nelson K.E.and Switzer G.L. 1971.Development of the shool system of young loblolly pine Dry matter and nitrogen accumulation,Forest Sci.vol.17, (1):55-63.
    [188] Southern Journal of Applied Forestry. Vol. 13(1): P.35-39.
    [189] Technical Report-Southern Research Station, USDA Forest Service (no.SGS-30):p.443-445.
    [190] Technology. July 1996. v. 28(3) p. 295-300.
    [191] Teskey,R.O.,Files,J.A.,Samuelson L.J.,and Bongarten,B-C,1986.Stomata and nonstomatal limitations to net photosynthesis in Pinus taeda L. under different environmental conditions. Tree physiol. 2:13-142
    [192] Thomas J. W.1996.Forest Service perspective on ecosystem management.Ecological Applications.6:703-705.
    [193] Troeng E.and Linder. 1982.Gas exchange in a 20-year-old stand of scots pine. ?Net photosynthesis of cuirent and one-year-old shoots within and between seasons.PhysioLPlant. 54:7-14.
    [194] Troeng E.and Linder. 1982,.Gas exchange in a 20-year-old stand of scots pine. ? Variation in net photosynthesis and transpiration within and between trees. Physiol.Plant. 54:15-23.
    [195] Van lear D.H., Waide J.B. and cuke M.J.T. 1984.Biomass and nutrient content of a 41~year~old loblolly pine (Pinus tacda L.plantation on a poor site in south Carolina,Forest sci,vol,30 (2):395- 403.
    
    [196] Walker, R. F. Mclaughlin, S.B. 1989. Black polyethylene mulch improves growth of plantation-grown loblolly pine and yellow-poplar.New forests. Sept 1989. v. 3 (3) p.265-274.
    [197] Zhu Zhaohua. 1997.Participatory Forestry in China,International Academic Publishers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700