玉米骨干自交系See2b基因突变类型分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米是三大粮食作物之一。近年来,我国玉米产量和种植面积都已超过小麦,是重要的粮食、饲料、化工原料来源。长期以来,骨干自交系在玉米新品种培育中发挥至关重要的作用,但骨干自交系选育和确立需要很长时间。为加快玉米育种进程,缩短育种时间,研究玉米骨干自交系形成机理,建立玉米骨干自交系早期检测体系具有重要意义。玉米叶片衰老和氮转运受编码玉米半胱氨酸蛋白酶基因See2控制,其中See2b基因对氮素的转运能力随着叶片的衰老而增强,在玉米叶片衰老过程中对氮利用起关键作用。
     本研究在我国玉米骨干自交系及其衍生系系谱分析基础上,以四大玉米骨干自交系(黄早四、Mol7、丹340、掖478)及其衍生系和西南地区第四轮骨干自交系18-599、08-641、21-ES共52份材料为研究对象,克隆并测定玉米See2b基因全长DNA序列,通过See2b基因的序列比对,研究其各家系中该基因突变类型及突变规律,结合叶宽、叶长、总叶片数、叶面积、成熟时保绿叶片数等重要农艺性状,进行聚类分析,为研究各家系重要基因和性状的传递规律,建立玉米骨干自交系的早期检测体系提供理论依据。主要研究结果概括如下:
     1.Mol7及其衍生系See2b基因的突变类型。农大178与南23232有相同的突变规律,系14与412突变规律一致,但却与其它自交系的序列突变规律不同,这可能由于在选育时有另一亲本如许053等遗传物质的渗入所致。合344突变最少,与玉米See2b基因遗传组成较其他衍生系更近。除此以外的Mol7衍生系材料的该基因具有相似的突变规律。
     2.黄早四及其衍生系See2b基因的突变类型。在对黄早四及其衍生系和Mol7及其衍生系的See2b基因序列比对发现,黄早四衍生系的突变类型和变异位点明显少于Mol7衍生系。推测黄早四衍生系该基因比Mol7衍生系中遗传更稳定。黄早四衍生系外显子突变主要集中在第2、第9外显子处。在第9外显子中,黄早四衍生系除K12、8723、齐401、吉856、昌7-2、文青1331、多27、⑦61外,其余21份材料与掖478、21-ES、关17均在275bp到298bp处缺失22bp序列,序列为TAGGTGAAGCAGACTTATACCA,这是一种未见报道的玉米See2b基因突变类型。由此推测这22bp碱基缺失可能会引起See2b基因突变。
     3.西南地区第四轮骨干自交系21-ES、08-641、18-599三者之间突变类型基本一致,且农艺水平也表明三者同被划分在一个类群。研究表明,西南地区三个骨干自交系与掖478、Mol7及其衍生系有更多的相同突变规律,其中,18-599、08-641、与掖478,Mol7及其衍生系遗传关系最近,21-ES与黄早四及其衍生系在第9外显子有相同突变。
     4.对农艺性状聚类发现,Mol7类群按照三个类群划分,18-599、08-641、21-ES、南23232、农大178与Mol7被划分第Ⅰ类群,系14与412被划分在第Ⅱ类群,这与前面依据分子标记建立的进化树结果基本一致,旅大红骨代表丹340与塘四平头代表黄早四都是国内主要骨干自交系,同划分在第Ⅲ类群。黄早四类群除K12与21-ES、08-641、18-599划分在第Ⅱ类群,黄野四、白野四划分在第Ⅲ类群,其余材料均与黄早四一起划分在第Ⅰ类群。
Maize is one of the three good crops. Output and planting area of maize has surpassed those of wheat in recent years, making maize become important food, feed and sources of chemical raw materials. Ever since a long time ago, elite inbred lines played a key role in maize new species cultivation. However, much time is needed to breed of elite inbred lines, it is significant for accelerating breeding of maize, cutting time of breeding and studying on formation mechanism of maize elite inbred lines to create detection for maize elite inbred lines. Leaf senescence and nitrogen transport in maize are controlled by See2 gene coding cysteine protease. Nitrogen transport is enhanced along with leaf senescence controlled by homologous See2b gene, It is considered that See2b gene played a key role in nitrogen utilization in the process of leaf senescence in maize.
     In my study, Maize inbred lines 18-599, 08-641, 21-ES from Sichuan Agricultural University, Dan 340 from Lu DHG groups, ye478 from Reid groups, Mo17 from Lancaster group with its derivative lines, huangzaosi from Tang SPT group with its derivative lines were, totally 52, collected as experimental materials. All the materials are conducted to divide Heterotic groups through molecular methods as well as studies of Agronomic traits. And results are summarised as follows:
     1. It is found that Mo17 with its derivative lines have rich SNPs,Nan23232 and nongda178 were divided into the same heterotic group because of same American blood, xi14 and 412 were divided into the same heterotic group because of another material xu053. There was little mutains in he344,which was the best sameness with See2b gene.
     2. It is found that indels of huangzaosi and its derivative lines were poorer than those of mo17 derivative lines by analyzing the sequences of See2b genes of the two derivative lines. Then we presume that Huang and its derivative lines were relatively stable genetic. It is found that huangzaosi derivative lines except kl2, 8723, qi401, wenqingl331, duo27 and⑦61 had a same 22bp deletion segment in the nineth exon with ye478, 21-ES and guan17. And this mutation type of see2b gene had not been reported. Therefor, we could presume that the 22bp deletion segment in the ninth exon may lead to changes of see2b gene functions of maize.
     3. Same mutation laws is showed between 18-599,21-ES, 08-641, ye478, jie1037, and jie842, which is indicated that 21-ES and 08-641 are close to the materials which have the American Blood, while 18-599 and dan340 are divided into one group. So it is concluded that 18-599, 08-641 and 21-ES is closer to Mo17, ye478 and dan340 in blood than to huangzaosi.
     4. Dividing with Agronomic traits, we found that 18-599,21-ES, 08-641, nan23232, nongdal78 and Mol7 were divided in No.1 group.Xil4 and 412 were were divided in No.2 group,which are the same as those divided by SNPs in See2b gene. In huangzaisi and its derivative lines, 18-599,21-ES, 08-641 and K12 were divided in the same group,huangyesi and baiyesi were divided in the No.3 group,then others were in the same group.
引文
[1]Forrest Troyer.美国当代玉米种质资源的历史演变Ⅰ.种族与品种[J].作物杂志.2007,(3):4-5.
    [2]庄巧生.中国小麦品种改良与系谱分析[M].北京:中国农业出版社.2003.
    [3]http://blog.sina.com.cn/s/blog_5f1 f37a80100ciOb.html~type=v5_one&label=rela_prevarticle.
    [4]吴景锋.我国玉米单交种二十年的发展[J].作物杂志,1991,(1):1-4.
    [5]吴景锋.我国玉米杂交种发展的主要历程、差距和对策[J].玉米科学,1995,3(1):1-5.
    [6]鲁宝良等.Mo17衍生系组配杂交种对我国玉米生产的影响和贡献[J].玉米科学.2004,12:127-128.
    [7]吴揄生,许明辉.玉米自交系主要数量性状遗传距离的研究[M].玉米遗传育种.济南:山东科学技术出版社,1994:113-121.
    [8]单明珠等.Mo17在我国玉米育种和生产中的作用[J].西北农业学报.1998,7(1):95-97.
    [9]徐艳荣,刘兴贰,孙发明等.论Mo17及其衍生系种质在我国玉米育种中的应用[J].吉林农业科学.2006,31(3):26-28.
    [10]高义昌,刘爱国,张成和等.不同来源黄早四改良系抗病性鉴定初报[J].河北农业.1991.17-18
    [11]曾三省.黄早四在我国玉米育种和生产中的重要地位[J].玉米科学.1996,4(1):1-6.
    [12]刘纪解.玉米育种学[M].农业出版社,1991:478.
    [13]吴景锋.我国主要玉米杂交种种质基础评述[M].中国农业科学,1983,16(2):1-8.
    [14]曾三省.中国玉米杂交种的种质基础[M].中国农业科学,1990,23(4):1-9.
    [15]佟屏亚.中国玉米科技史[M].北京:中国农业科技出版社.2000.
    [16]盖儒学,刘家云.玉米自交系黄早4、Mo17改良系配合力及其与改良杂交种遗传关系的研究[J].玉米科学,1997,(2):42.
    [17]于香云,朱小阳,徐乐澜.等作物品种资源研究所.玉米优异种质资源—研究利用指南(1991-1995)[M]北京:中国农业出版社,1996.
    [18]http://blog.sina.com.cn/s/blog_5f1f37a80100ci08.html.
    [19]陈永胜.玉米丝黑穗病抗性基因的定位与相关分子标记的发展[D].北京.中国农业大学.20060601.
    [20]Bernd W.Structure-function relation ship in class CA1 cysteine peptidase propeptides[J].Acta Biochemical Polonica,2003,50(3):691-713.
    [21]韩建国.植物半胱氨酸蛋白酶研究进展[J].草业学报.2005.14(5).11-13
    [22]Jennifer TJ,John EM.A salt and dehydration-inducible pea gene.Cyp15a,encodes a cell-wall protein with sequence similarity to cysteine protease[J].Plant Molecular Biology.1995,28:1055-1065.
    [23]Masahiro K,Kazuko Y,Hideo T,et al.Structure and expression of two genes that encode distinct drought—inducible cysteine proteinases in Arabidopsis thaliana[J].Gene.1993,129(2):175-182.
    [24]Tadamasa U,Shigemi S,Yuko O,et al.Circadian and senescence-enhanced expression of a tobacco cysteineprotease gene[J].Plant Molecular Biology.2000,44:649-657.
    [25]李思滨,刘英,祖元刚.半胱氨酸蛋白酶在植物细胞程序性死亡中的作用[J].植物生理学通讯.2008,44(2):345-346.
    [26]孙朝煜,张蜀秋,娄成后.细胞编程性死亡在高等植物发育中的作用[J].植物生理学通讯.2002,38:389-393.
    [27]Guan HC,Lin TH.Molecular characterization of a senescence-associated gene encoding cysteine proteinase and its gene expression during leaf senescence in sweet tomato[J].Plant and Cell Physiology.2002,43(9):984-991.
    [28]Chen G H,Huang L T,Yap M N,et al,Molecular characterization of a senescence-associated gene encoding cysteine proteinase and its gene expression during leaf senescence in sweet potato[J].Plant Cell Physiol.2002,43(9):984-991.
    [29]Xu F X,Chye M L.Expression of cysteine proteinase during de-velopmental events associated with programmed cell death in brinja[J]I.Plant J.1999,17(3):321-328.
    [30]Howard Thomas,Caron L,Ann M,et al.Modification of nitrogen remobilization,grain fill and leaf senescence in maize(Zea mays) by transposon insertional mutagenesis in a protease gene[J].New Phytologist.2007,173:481-494.
    [31]郑培尧.作物生理学导论[M].北京:北京农业大学出版社,1992:349.
    [32]Dong Sh T,Wang K J,Hu Ch H,el al.Development of canopy apparent photosynthes among maize varieties from different eras[J].Acta Agronomica Scinica.2000,26(2):200-204.
    [33]罗瑶年,张建华.玉米叶片衰老田间因素的分析及其与产量的关系[J].玉米科学.1995,3(4):35-36.
    [34]Li Ch,Su Xh,Sun Dl.Ecophysiological characterization of different maize(Zea mays L.) genotypes under mono-or inter-cropping conditions[J].Acta Ecologica Sinica.2002,(22) 2096-2103.
    [35]王璞,王志敏,周顺利等.作物产量—生理学及形成过程[M].北京:中国农业大学出版社.2001,10:146.
    [36]Tollenaar M.Physiological basis of the genetic improvement of maize hybrids in Ontario from 1959 to 1988[J].Crop Sci.1991,31:119-124.
    [37]Simpson G M.Association between grain yield per plant andphotosynthetic area above the flag-leaf node in wheat[J].Canadian Journal of Plant Science.1968,48:253-260.
    [38]Mahalakshmi V,Bidinger FR.Evaluation of stay green sorghum germplasm lines at ICRISAT[J].Crop Science.2002,42:965-974.
    [39]李春喜,姜丽娜,代西梅.小麦氮素营养与后期衰老关系的研究[J].麦类作物学报.2000,20(2):39-41.
    [40]沈发富,韩秀丽,喻树讯等.棉花半胱氨酸蛋白酶基因的克隆和表达特性分析科学通报[J].2004,22(49):2318-2319.
    [41]王蔚华,郭文善.氮肥运筹对小麦花后剑叶衰老及籽粒发育的影响[J].扬州大学学报(农业与生命科学版).2002,23(4):62-65.
    [42]肖文开.玉米全基因组抗病侯选基因的克隆和定位[D].20050901.
    [43]ZhuY L,Song Q.J,Hyten D.L.,et al.Single-nucleotide polymorphism in soybean[J].Gentics.2003,163:1123-1134.
    [44]张传福,景蕊莲,高宁等.单核苷酸多态性在植物研究中的应用[J].植物遗传资源学报.2004,5(3):304.
    [45]高丽锋.表达序列标签(ESTs)中开发的SSRs和SNPs标记及其应用[D].北京.中国农业科学院.20031201.
    [46]贾玉艳,陈宏.SNP分子标记的研究及应用[J].黄牛杂志,2003,29(1):42-45.
    [47]张素梅,蒋玉宝.分子标记技术在玉米基因定位上的研究进展[J].生物技术.2006,(16):80-81.
    [48]高秀丽,景奉香等.单核苷酸多态性检测分析技术[J].遗传,2005,27:110-122.
    [49]Jorde LB,Watkins WS,Bamshad MJ,et al.The distribution of human genetic diversity:a comparison of mitochondrial,autusomal,and Y-chromosome data[J].Am J Hum Genet,2000,66:979.
    [50]Brookes AJ.The essence of SNPs[J].Gene,1999,234:177-186.
    [51]Moreno-VazquezS,Ochoa OE.SNP-based codominant markers for a recessive gene Conferring resistance to corky root rot(Rhizomonas suberifaciens) in lettuce(Lactuca sativa)[J].Genome.2003,46:1059-1069.
    [52]Cho RJ,Mindrinos M,Richards DR.Genome-wide mapping with biallelic markers in Arabidopsis thaliana[J].Nat Genet.1999,23:203-207.
    [53]Hayashi K,Hashimoto N,Daigen M.Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus[J].Theor Appl Genet.2004,108:1212-1220.
    [54]Ching A,Caldwell KS,Jung M,et al.SNP frequency,haplotype structure and linkage disequilibrium in elite maize inbred lines[J].BMC Genet.2002,3:19.
    [55]Tenaillon MI,Sawkins MC,Long AD,et al.Patterns of DNA sequence polymorphism along chromosomel of maize(Zea mays ssp may L)[J].Proc Natl Acad Sci USA.2001,98:9161-9166.
    [56]Rafalski A.Appilcations of singe nucleotids polymorphisms in crop genetics[J].Curri Opin Biol.2005,5:94-100.
    [57]Bhattanmakki D,Dolan M,Hanafey M,et al.Insertion-deletion polymorphisms in 3'region of maize genes occur frequently and can be used as highly informative genetic marker[J].Plant Mol Biol.2002,48:539-547.
    [58]Grivet L,Vincentz M,Arruda P.ESTs as a source for sequence polymorphism discovery in suggarcane:example of the Adh genes[J].Theor Appl Genet.2003.105:413-412.
    [59]Kaleigh S.Genetic polymorphism and SNPs.2002.http://www.cs.mcgill.ca/
    [60]文思远,王升启.单核苷酸多态性基因分型技术原理与进展[J].生物技术通讯.2003,14(3):218-219.
    [61]Tenaillon MI.,Sawkins MC.,Long AD,et al.Patterns of DNA sequence polymorphism along chromosome 1 of maize(Zea mays ssp.mays L.)[J].PNAS.2001.98:9161-9166.
    [62]魏群.分子生物学实验指导[M].北京:高等教育出版社.2007,11:37-38.
    [63]戴景瑞.发展玉米育种科学迎接21世纪的挑战作物杂志[J].1998,(6):1-2.
    [64]赵耀.西南糯玉米地方品种See2b基因突变类型的初探.[D].四川雅安.四川农业大学.20080701
    [65]柴晓杰,张君,关淑艳.玉米淀粉分支酶基因的克隆和反义载体的构建.吉林省第三届科学技术学术年会.879
    [66]沈法富.短季棉衰老的激素变化及衰老相关基因的克隆[D].北京.中国农业科学研究院.20040601
    [67]吴永升,李新海,张征.玉米Gln1-3 gDNA序列分离、基因结构、保守功能域与等位变异分析.作物学报[J].2008,34(7):1114-1120
    [68]世勇.一九八一至二000年四川玉米育成品种主要性状改良效果研究[D].四川雅安.四川农业大学.20030501
    [69]王懿波,王振华等.中国玉米主要种质杂种优势利用模式的研究[J].中国农业科学,1997,30(4):16-24.
    [70]Smith.J.S.C.ChinE.C.L.Shu H.et al.An evaluation of the utility of SSR locias molecular markers in maize comparisons with data from PFLPs and pedigree[J].Theor.Appl.Genet.1997,95:163-173.
    [71]Senior M.L.Utility of SSR for determining genetic similarities and relationship in maize using anagarose gel system[J].Crop Sci.,1998,38:1088-1098.
    [72]刘新芝,彭泽斌,傅骏骅等.RAPD在玉米类群划分研究中的应用[J].中国农业科学,1997,30:44-51
    [73]袁力行,傅骏骅.利用RFLP、SSR、A FLP、RAPD标记分析玉米自交系遗传的比较研究[J].遗传学报,2000,27(8):725-733
    [74]黄益勤,李建生.利用RFLP标记划分45份玉米自交系杂种优势群的研究[J].中国农业科学,2001.34(3):244-250
    [75]李新海,傅骏骅,张世煌等.利用SSR标记划分70份我国玉米自交系的杂种优势群[J].中国农业科学,2003,36(6):622-627
    [76]番兴明,张世煌,谭静等.根据SSR标记划分优质蛋白玉米自交系的杂种优势群[J].作物学报.2003,,29(1):105-110
    [77]Kota R,Varshney R K,Thiel T,Dehmer K J,Graner A,2001.Generation and comparison of EST-derived SSRs and SNPs in barley(Hordeum vulgare L.)[J].Hereditas,135:145-151.
    [78]Germano J,Klein A S.Species-specific nuclear and chloroplastsingle nucleotide polymorphism stodis tinguish Picea glauca,P.Mariana,P.rubens[J].Theoretical and Applied Genetics,1999,99:37-49.
    [79]赵峰,郭宝太,王斌.玉米骨干亲本黄早四抗病基因遗传传递规律的初步研究[J].玉米科学.2008,16(6):15-18
    [80]Meyers B C,Tingey S V,Morgante M.Abundance,distribution and transcriptional activity of repetitive elements in the maize genome[J].Genome Res,2001,11:1660-1676.
    [81]杜春芳,刘惠民,李润植.单核苷酸多态性在作物遗传及改良中的应用[J].遗传.2003.25(6):736-738.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700