不同施肥处理对红壤水稻土微生物生物量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤生态系统中,微生物时刻进行着活跃的新陈代谢,是土壤有机质和养分分解转化的主要动力。微生物对环境变化十分敏感,土壤微生物和生物化学指标可以灵敏反映土壤质量的变化情况。研究集约农业利用措施对土壤微生物生物量的影响,对于正确认识土壤质量退化机制,进而制订可持续发展的土壤生态系统保育措施具有重要的实践意义。
     本文通过盆栽实验、野外采样测定以及布置室内培育实验,研究了不同施肥量水平和不同施肥措施对江西地区红壤水稻土微生物生物量、微生物呼吸和作物产量的影响,观测了不同肥力水平和施肥处理下,微生物生物量的动态矿化过程,探讨了影响微生物生物量氮矿化的因素及其矿化量对土壤总氮矿化的贡献
     盆栽实验结果表明,施肥量增加,土壤速效养分浓度增加,但微生物生物量并不一直增加,其变化与母质和土壤肥力水平有关。土壤微生物生物量碳随施肥量增加的变化规律性不强,土壤间差异明显。不同土壤微生物生物量氮随施肥量的变化趋势较为一致,超过1.5倍常规施肥量后呈下降趋势,不同土壤间则表现为第四纪高肥水稻土>第三纪高肥水稻土>第三纪低肥水稻土>第四纪低肥水稻土。
     不施肥条件下,土壤的基础呼吸强度随原土有机碳含量增加而升高,施肥条件下,红壤水稻土的基础呼吸强度在超过1.5倍常规施肥量后,即随施肥量增加而下降。不同土壤呼吸熵随施肥量变化并没有一致的规律。
     不同施肥制度和养分循环处理下微生物生物量的研究表明,化肥+有机物循环处理可以增加微生物生物量碳含量,但增加量不如单施化肥。在不同化肥基础上有机养分循环利用均能较大幅度提高土壤MBN,化肥+1/2有机物循环对微生物生物量的增加量与对照无明显差异。
     不同施肥处理下,作物产量变化为NPK+C>NPK+1/2JG>NPK>NP>N+C>C>NK>CK>N。有机物循环的产量显著高于非循环处理。化肥配施+1/2有机物循环能极大的增加作物产量。产量与土壤养分和MBN间存在极显著关系。
     好气淋洗、长期室内培养实验显示,不同肥力水平红壤水稻土微生物生物量氮矿化可分为两个过程:快速矿化阶段(前4周)和缓慢矿化阶段(第5周开始)。微生物生物量氮培养前4周的矿化速率为培养10-12周的10倍左右,矿化量和矿化速率随土壤肥力水平提高而增加。随培养时间延长和土壤有机质含量提高,微生物生物量氮矿化量占土壤总氮矿化量的比例增加。
     施肥对微生物生物量的矿化具有明显的促进作用。微生物生物量碳矿化量为NPK>循环>NPK+循环>CK,分别为167.71mg/kg,123.22mg/kg,117.18mg/kg和40.75mg/kg。NPK+循环处理的微生物生物量氮矿化量较高,为37.45mg/kg。单施化肥以及有机物循环能显著增加易矿化MBC含量。
     总之,增加施肥量以及在高养分含量土壤中实施有机物循环并不一定增加微生物生物量及基础呼吸,应根据不同土壤制定不同施肥措施。化肥配施基础上有机物循环能使土壤保持较高的养分水平,显著增加微生物生物量氮和作物产量。微生物生物量氮具有较高的矿化效率,对土壤总氮矿化的贡献随肥力水平提高而增加,高肥力土壤中微生物氮的矿化量仍相当可观。
In soil ecosystem, microorganisms is the major power to decompose and transform the soil organic matters and nutrients. The biological and biochemical index could be sensitive indicators for the change of soil quality. Investigation on the changes of soil biochemical properties under intensive agricultural management would be of practical significance to understand deeply the mechanism of soil degradation, and then propose rational measures for sustainability of soil ecosystem.
     In this paper, effects on microbial biomass, basal respiration and biomass yield in red paddy soils of Jiangxi province under different fertilities were investigated through potted experiment, field sampling and incubation experiment. Dynamical mineralization of microbial biomass in different soil fertility levels and treatments were also observed. Factors influencing microbial biomass N mineralization and its contributions to soil total N were discussed.
     The results from potted experiment showed that soil available nutrients increased with fertilizer application. But microbial biomass didn't increase constantly, change of which also related to original soil and fertility level. Soil microbial biomass C changed irregularly in different levels of fertilization. Microbial biomass N in different soils changed similarly, which all decreased after 1.5 times of conventional fertilizer application. Changes in different soils were: Quaternary red clay with high fertility level(CH)> Tertiary sandstone weathering product with high fertility level(SH)> Quaternary red clay with low fertility level(CL)> Tertiary sandstone weathering product with low fertility level(SL).
     Soil basal respiration increased with soil organics in no fertilization treatment. In fertilization treatment, basal respiration in paddy soils of subtropical China decreased after 1.5 times of conventional fertilizer application. Metabolic quotient in different soils changed irregularly.
     Researches on microbial biomass under different fertilizations and crop residue cycling demonstrated that microbial biomass C increased significantly in fertilization + crop residue cycling treatment. And microbial biomass C in only fertilization even increased more quickly. Crop residue cycling in different fertilizations could significantly increase the content of microbial biomass N. Microbial biomass N increase in fertilization+1/2 crop residue cycling treatment had no significant difference with control treatment.
     In different fertilization treatments, trends of grain and traw yield were: NPK+C > NPK+1/2JG > NPK > NP > N+C > C > NK > CK > N. The grain and traw yield in crop residue cycling treatment was higher than non-cycling treatment. Crop residue cycling on fertilizations could significantly promote the grain and traw yield, which had extremely significant relationships with soil nutrient and microbial biomass N.
     In the aerobic leaching incubation experiment, microbial biomass N mineralization could be divided into two parts: quick mineralization(first 4 weeks)and relatively slow mineralization(later 8 week). Mineralization rate of microbial biomass N in first 4 weeks was almost fourfold the rate in 10-12 weeks. The mineralization amount and rate increased with soil fertility. The proportion of microbial biomass N mineralization in total N mineralization increased with incubation time and soil organics.
     Fertilization evidently increased the amount and rate of microbial biomass mineralization. The amount of microbial biomass mineralization were: NPK > C > NPK+C > CK, and 167.71mg/kg, 123.22mg/kg, 117.18mg/kg, 40.75mg/kg, separately. Microbial biomass N in NPK+C treatment is 37.45mg/kg, which was relatively higher than other treatments. Fertilization only and crop residue cycling could significantly increase microbial biomass C.
     In conclusion, fertilization application and crop residue cycling on high fertility soil would not always increase microbial biomass and basal respiration. Fertilization treatment should be made based on different soils. Fertilization with crop residue cycling treatment would make soil keep high fertility and increased microbial biomass N and crop yield. Microbial biomass had high mineralization efficience. Its contributions to soil total N mineralization increased with fertility level. Microbial biomass N mineralization amount in high fertility soil was high.
引文
[1]Singh J S, Raghubanshi A S, Singh RS, etal. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna..Nature. 1989, 338:499~500
    [2]Hargreaves, P R, Brookes P C, Ross G J S, etal. Evaluation soil microbial biomass carbon as an indicator of long term environmental change. Soil Biol. Biochem. 2003, 35:401-407
    [3]Jenkinson DS. The effect of bicoidal treatments on metabolism in soil Ⅳ. The decomposition of fumigated organisms in soil [J]. Soil Biol. Biochem. 1976, 8: 203~208
    [4]Nelson, etal. Method for stimulating biodegradation of halogenated aliphatic hydro carbons. US:4925802,1990
    [5]Anderson,J.P.E, Domsch K.H. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry. 1978,10:215-221
    [6]Marumoto TJ, Domsch KH. Mineration of nutrients from soil microbial biomass. Soil Biology and Biochemistry. 1982,14: 469- 475
    [7]Jenkinson D S. Determination of microbial biomass carbon and nitrogen in soil [A]. In: Wilson J R, ed. Advances in Nitrogen C in Agricultural Ecosystems. Wallingford: C A B International. 1988, 368~386
    [8]孔维栋,朱永官,傅伯杰.农业土壤微生物基因与群落多样性研究进展[J].生态学报,2004,24(12):2894—2900
    [9]张磊,肖剑英,谢德体,魏朝富.长期免耕下水稻田土壤的生物特征研究[J].水土保持学报.2002,16(2):111—114
    [10]张平究,李恋卿,潘根兴,张俊伟.长期不同施肥下太湖地区黄泥土表土微生物量碳、氮量及基因多样性变化[J].生态学报,2004,24(12):2818—2824
    [11]王霞,胡锋,李辉信,沈其荣.秸秆不同还田方式下蚯蚓对旱作稻田土壤碳、氮的影响[J].生态环境,2003,12(4):462-466
    [12]来璐,郝明德,王永功.黄土高原旱地长期轮作与施肥土壤微生物量磷的变化[J].植物营养与肥料学报,2004,10(5):546—549
    [13]谢正苗,卡里德,黄昌勇.镉铅锌污染对红壤中微生物生物量碳、氮磷的影响[J].植物营养与肥料学报,2000,6(1):69—74
    [14]赵祥伟,骆永明,滕应,等.重金属复合污染农田土壤的微生物群落遗传多样性研究[J].环境科学学报,2005,25(2):186—191
    [15]任天志.持续农业中的土壤生物指标研究[J].中国农业科学,2000,33(1):68—75
    [16]王岩、沈其荣.土壤微生物量及其生态效应.南京农业大学学报.1996,19(4):45-51
    [17]龙健等.矿区废弃地土壤微生物及其活性.生态学报.2003,23(3):496-503
    [18]龙健等.红壤矿区复垦土壤的微生物生态特征及其稳定性恢复的研究Ⅱ.对土壤微生物生态特征和群落结构的影响.应用生态学报.2004,15(2):237-240
    [19]Brookes P C, Landman A, Pruden G, etal. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure MB-N in soil. Soil Biol&Biochem. 1985, 12: 837-842
    [20]Brookes P C, Mcgrath S P. Effects of metal toxicity on the size of the soil microbial biomass. Soil. Sci, 1984, 35: 341~346
    [21]Chapman S J. Microbial sulfur in some Scottish soils. Soil Biol&Biochem, 1987,19: 301~305
    [22]Hassink J. Effects of soil texture and grassland management on soil organic C and N and rate of C and N mineralization. SoilBiol&Biochem, 1994, 26: 1221~1231
    [23]McLaren R G. Sulfur transformation in soils using sulfur-35labelling. SoilBiol & Biochem, 1985, 17: 73~79
    [24]Saggar S, Bettany J R, Stewart J W B. Measurement of microbial sulfure in soil. SoilBiol & Bio chem, 1981, 13: 493~498
    [25]Strick L E, Nakas J P. Calibration of a microbial sulfur technique for use in forest soils. Soil Biol & Biochem, 1984, 16: 289~498
    [26]Powlson D S, Brookes P C, Christensen BT. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology and Biochemistry, 1987, 19(2): 159-164
    [27]Chaussod R, Houat S, Guiraud G. Size and turnover of the microbial biomass in agricultural soils, laboratory and field measurements. In Jenkinson D S, Smith K A. eds. Nitrogen Efficiency in Agricultural Soils. London and New York: Elsevier, 1988.312~328
    [28]Marumoto Y, Sato Y, Fujiwara H, et al. Hyperproduction of polyhedrin-IGF Ⅱ fusion protein in silk worm larvae infected with recombinant Bombyx mori nuclear polyhedrosis virus [J]. J Gen Virol. 1987, 68(10):2599-2606
    [29]Sparling G P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Australian Journal of Soil Research, 1995,(30):195-207
    [30] Voroney R P, Paul E A. Determination of Kc and Kn for calibration of the chloroform fumigation -incubation method[J]. Soil Biol and Biochem, 1984,16:9-14
    [31]Jenkinson D S, Powlson D S, wedderburn R W M. The effect of biocide treatments on metabolism in soil: III The relationship between soil biovolume, measured byoptical microscopy, and the flush of decomposition caused by fumigation [J]. Soil Biol Biochem, 1976,8:189-202
    [32] Wu J S, Joergensen R G, Pommerening B, Chaussod R, Brooks P C. Measurement of soil microbial biomass C by fumigation-extraction- an automated procedure. Soil Biology and Biochemistry, 1990,20: 1167-1169
    [33] Nicolardot B. Behaviour of newly immobilized nitrogen in three agricultural soils after addition of organic carbon substrates [A]. In: Jenkinson D S, Smith K A, eds. Nitrogen Efficiency in Agricultural Soils [C]. London: Elsevier Applied Science, 1988.342-354
    [34] Carter M R, Rennie D A. Changes in soil quality under zero2tillage farming system : distribution of microbial biomass and mineralizable C and N potentials [J ]. Can J Soil Sci. 1982,62 :587 - 597
    [35] Inubushi K,Brookes p C,Jenkinson D S.Adenosine 5'-triphosphate and adenylate energy charge in waterlogged soil.Soil Biol.Biochem.,1989,21:733-739
    [36] Williams R L, Sparling G P. Extractable N and P in relation to microbial biomass in UK acid organic soils. Plant and Soil, 19 84,76:139—148
    [37] Marten G C, Shenk J S, Barton II F E. Near Infrared Reflectance Spectroscopy (NIRS): Analysis of Forage Quality. Agriculture handbook No. 643. United States Department of Agriculture, Agricultural Research Service, 1985
    [38] Vance E D,Brookes P C,Jenkinson D C. An extraction method for measuring soil microbial biomass C.Soil Biol & Biochem. 1987,19:703 -707
    [39] Brookes P C, Jenkinson D S. Field incorporation of straw and its effects on soil microbial biomass and soil inorganic N. Soil Biol. Biochem., 1991,23(2): 171—176
    [40] Amato M, Ladd JN. 1988. Assay for microbial biomass based on ninhydrin- Reactive nitrogen in extracts of fumigated soils. Soil Biol Biochem, 20( 1): 107- 114
    [41] Ocio JA,Brookes PC.1990.An evaluation of methods for measuring the microbial biomass in soils following recent additions of wheat straw and the characterization of the biomass that develops.Soil Biol Bioehem,22:685~694
    [42] Anderson J P E, Domsch K H. Mineralization of bacteria and fungi in chloroform-fumigated soil[J]. Soil Biol Bioehem, 1978,10:207-213
    [43] West A W, Sparling G P, Speir T W, Wood J M. Dynamics of microbial C, N-flush and ATP, and enzyme activities of gradually dried soils from a climosequence[J]. Australian Journal of Soil Research,1988, 26:519-530
    [44] Amstrong M J,Kirkby E A. Estimation of potassium recireulation in tomato plants by comparison of the rates of potassium and calcium accumulation in the tops with their fluxes in the xylem stream [J] . Plant Physiol., 1979, 63:1143~1148
    [45] Jenkinson D S&Odes J M. A method for measuring adenosine troposphere in soil. Soil Biol.& Bioehem. 1979, 11: 193~199
    [46] Tate K R.The biological transformation of P in soil[J]. Plant and Soil, 1984, 76:245-256
    [47] Witter E, Martnsson A M, Gariea F V. Size of the soil microbial biomass in a long term experiment as affected by different tN-fertilizers and organic manures. SoilBiol&Biochem, 1993,25:659~669
    [48] 沈其荣,余铃,刘兆普,等.有机无机肥料配合施用对滨海盐土土壤生物量态氮及土壤供氮特征的影响.土壤学报,1994,31(3):287~294
    [49] 陈安磊,王凯荣,谢小立.施肥制度与养分循环对稻田土壤微生物生物量碳氮磷的影响.农业环境科学学报.2005,24(6):1094~1099
    [50] CollinsH P, Rasmussen P E. Corporation and residue management effects on soil carbon and microbialdynamies. SoilSeiSoeAmJ, 1992,56:783~788
    [51] Garcia F O, Rice C W. Microbial biomass dynamics in tall grass prairie. Soil Sei Soc AmJ. 1994, 58:816~824
    [52] Klemedtsson L, Berg P, Clarholm M, etal. Microbial nitrogen transformation in the root environment of barley. Soil Biol & Bioehem. 1987,19: 551~558
    [53] Powlson D S, Jenkinson D S. A comparison of the organic matter、biomass、adenosine troposphere and mineralizable nitrogen contents of ploughed and direct-drilled soils. Agricultural Science. 1981, 97: 713~721
    [54] 崔骁勇,陈佐忠,陈四清.草地土壤呼吸研究进展.生态学报.2001,21(2):315~325
    [55]Appuhn A, Joergensen R G, Raubuch M.. The automated determination of glucosamine, galactosamine, muramic acid ,and mannosamine in soil and root hydrolysates by HPLC. Plant Nutr Soil Sci. 2004.167:17~21
    [56]黄承才,葛滢,常杰.中亚热带东部三种主要木本群落土壤呼吸的研究.生态学报.1999,19(3):324~328
    [57]陈四清等.内蒙古锡林河流域大针茅草原土壤呼吸和凋落物分解的CO2排放速率研究.植物学报.1999,41(6):645~650
    [58]李凌浩,陈佐忠.草地群落的土壤呼吸.生态学杂志.1998,17(4):45~51
    [59]Oomes M J M, Kuikman P J, Jacobs F H. Nitrogen availability and uptake by grassland in mesocosms at two water levels and two water qualities[J]. Plant and Soil, 1997,192(2): 249~259
    [60]Keith H,Jacobsen K L,Raison R J.Effects of soil phosphorus availability, temperature and moisture on soil...Soil, 1997,190(1): 127-141
    [61]杨靖春,倪平,祖元刚等.东北羊草草原土壤微生物呼吸速率的研究.生态学报.1989,9:139~143
    [62]Tesarova M, Gloser J. Total CO2output from alluvial soils with two types of grassland communities. Pedobiologia. 1976, 16:364~372
    [63]Ca1derson F J, Jackson L E, et al. Microbial responses to simulated tillage in cultivated and uncultivated soils[J]. Soil Biology and Biochemistry, 2000, 32:1547-1559
    [64]Odum E. Trends expected in stressed ecosystems. Bioscience. 1985, 35:419~422
    [65]Anderson TH and Domsch KH. Application of eco-physiological quotients (qCO2 and qD)on microbial biomasses from soils of different cropping histories.Soil Biol Biochem. 1990, 22:251~255
    [66]薛萐,翟胜,王国梁.侵蚀环境小流域生态经济系统健康定量评价.2006,26:2219~2228
    [67]Andrews J H,Harris F.r-and k-selection and microbial ecology. Adv. Microb. Ecol., 1986, 9:99-147
    [68]Singh JS, Raghubanshi AS, Srivatava SC. Microbial biomass act as a source of plant nutrients in dry tropical forest and savanna. Nature. 1989,338: 499~500
    [69]Srinstava SC, Singh JS. Microbial C, N and P in dry tropical forest soils: Effects of alternate land-uses and nutrient flux[J].Soil Biol.Biochem. 1991,23:117~124.
    [70]Lethbddge G. Davidson MS.1983.Microbial biomass as a source of nitrogen for cereal.Soil Biol Biochem. 15: 375~376
    [71]zagal E, Persson J.1994.Immobilization and remineralization of ni— trate during glucose decomposition at four rates of nitrogen additions. Soil Biol Biochem. 26:1313~1321
    [72]Aoyana M, Nozawa T. Microbial biomass nitrogen and mineralization-immobilization processes of nitrogen in soils incubated with various organic materials. Soil Science and Plant Nutrition, 1993, 39: 23~32
    [73]Patra DD, Bhandari SC, Misra A. 1992. Effect of plant residues on the size of microbial biomass and nitrogen mineralization in soil in corporation of cowpea and wheat straw. Soil Sci Plant Nutr, 38(1): 1~6
    [74]沈其荣,王岩,土壤微生物生物量和土壤固定铵的变化及水稻对残留N的利用.土壤学报.2000,37(3):330~338
    [75]Carter M R, Rennie D A. Changes in soil quality under zero tillage farming systems: Distribution of microbial biomass and mineralizable C and N potentials. Canadian J. of Soil Science, 1982, 62: 587~597
    [76]Follett R, Schimel D S. Effect of tillage practices on microbial dynamics[J]. Soil Soc Am J,1989,53:1091~1096
    [77]Franzluebbers AJ, Hons FM, Zuberer DA. Long-term changes in soil carbon and nitrogen pools in wheat management systems. Soil Sei Soc Am1994, 58: 1639~1645
    [78]巨晓棠,刘学军,张福锁.冬小麦生长期土壤固定态铵与微生物氮的动态研究[J].中国生态农业学报.2004,12(1):90~91
    [79]王淑平,周广胜,孙长占.2003.土壤微生物量氮的动态及其生物有效性研究[J].植物营养与肥料学报,9(1):87~90
    [80]Amato, Ladd J N, Ellington A, et al. Aust. J. Soil Res., 1987, 25 : 95~105
    [81]Gregorich E G, Carter M R, Angers D A. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Canadian Journal of Soil Science, 1994, 74: 367~385
    [82]Sakamoto K, Yoshida T, Satoch M. 1992.Comparison of carbon and nitrogen mineralization between fumigation and heating treatments[J]. Soil Sci. Plant Nutr., 38: 133~140
    [83]Doran J W. Microbial biomass and mineralizable nitrogen distributions in no tillage and plowed soils [J]. Biol. Fertil.Soils 1987, 5:68~75
    [84]Franzluebbers K, Weaver R W, Juo A S R, etal. Mineralization of carbon and nitrogen from cow pea leaves decomposing soils with different levels of microbial biomass [J]. Biol. Fertil Soils. 1995,19:100~102
    [85]Hossain A K M A, Raison R J, Khanna P K. Effect of fertilize application and fire regime on soil mineralization in an Austral sub alpine eucalypt forest[J]. Biol. Fertil. Soils. 1995, 19: 246~252
    [86]王成,王钊英,李世清.作物生长期间土壤可矿化氮的变化规律研究[J].新疆农业科学.2003,40(5):320~323
    [87]Holems W E, Zak D R. Soi lmicrobial biomass dynamics and netnitrogen mineralization in northern hard wood ecosystem[J].Soil.Sci.Soc.Am.1994,58:238~243
    [88]Fish M C, Schmidt S K. Nitrogen mineralization and microbial biomass dynamics in three alpine tundre communities [J].Soil Sci.Soc.Am.J. 1995,59:1036~1043
    [89]马树国,黄锦法.嘉兴市治理水污染的土壤肥料措施及建议.迈向21世纪土壤科学.中国环境科学出版社.1999,246-248
    [90]曹志洪.科学施肥与中国的粮食安全.土壤.1998,30(2):59-63
    [91]张桃林,李忠佩,王兴祥.高度集约农业利用导致的土壤退化及其生态环境效应.土壤学报.2006,43(5):843-850
    [92]徐阳春,沈其荣.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报.2002,39(1):89-95
    [93]Repnevskaya M A. Liberation of CO_2 from soil in the pine sands of the Kola Peninsula. Soil Science. 1967, 68:1067-1072
    [94]王继红,刘景双.氮磷肥对黑土玉米农田生态系统土壤微生物量碳、氮的影响.水土保持学报.2004,18(2):35-38
    [95]张东秋,石培礼,张宪洲.土壤呼吸主要影响因素的研究进展.地球科学进展.2005,20(7):778-785
    [96]侯彦林,王曙光.尿素施肥量对土壤微生物和酶活性的影响.土壤通报.2004,35(3):303-306
    [97]路磊,李忠佩,车玉萍.不同施肥处理对黄泥土微生物量碳氮和酶活性的影响.土壤.2006,38(3):309-314
    [98]Vanc E D, Brookes, P. C, Jenkinson, D. C. An extraction method for measuring soil microbial biomass. Soil Biol. Biochem. 1987, 19: 703-707
    [99]杜丽娟,文启孝,张晓华.应用费尔恩法测定氯化钠盐土或底土中的有机碳.土壤.1982,14(4):149-153
    [100]Anderson T H. Dormsch K H. Application of eco-physiological quotients on microbial biomass from soils of different cropping histories. Soil Biol and Biochem. 1990, 22: 251-255
    [101]黎宁,李新华.菜园土壤微生物生态特征与土壤理化性质的关系.应用生态学报.2006,17(2):285-290
    [102]Bauhus, J., Pare, D., Cote, L.. Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest [J].Soil Biol. Biochem. 1998, 30: 1077~1089
    [103]张成娥,梁银丽.不同氮磷施肥量对玉米生育期土壤微生物量的影响.中国生态农业学报.2001,9(2):72-74
    [104]王志明,朱培立.14C15N标记秸秆对土壤微生物量碳,氮动态变化的影响.江苏农业学报,1999,15(3):173~176
    [105]蒋平安,罗明.不同种植年限苜蓿地土壤微生物区系及商值(qMB,qCO2).干旱区地理.2006,29(1):115-119
    [106]Grego. S, Kennedy. A. Y. Effect of ammonitrate and stabilized farm yard manureonmicrobial biomass and metablic quotient of soil under Zeamaysl. Agric. Mediterranea. 1989, 128: 132-137
    [107]张崇邦,金则新,施时迪.天台山不同林型土壤微生物区系及其熵值(qMB,qCO2).生态学杂志.2003,22(2):28-31
    [108]许月蓉.不同施肥条件下潮土中微生物量及其活性[J].土壤学报.1995.32(3):349~352
    [109]Sparling GP. Soil microbial biomass activity and nutrient cycling an indicator of soil health. CAB INTERNATIONAL. 1997: 97~119
    [110]Srivastava SC, Singh JS.1991.Microbial C,N and P in dry tropical forests: Effect of alternate land uses and nutrient flux. Soil Biology & Biochemistry, 23: 117-124
    [111]Zhan jian-shan, Guo jian-fen. Soil microbial biomass and its controls. Journal of forest research. 2005, 16(4): 327~330
    [112]徐阳春,沈其荣,冉伟.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学 报,2002,39(1):89~96
    [113]张英,褚秋华,邱少生,等.11年连续肥料处理对水稻土碳、氮及微生物量的影响.南京农业大学学报,2001,24(4):112~114
    [114]韩晓日,邹德乙,郭鹏程.长期施肥条件下土壤生物量氮的动态及其调控氮素营养的作用[J].植物营养与肥料学报,1996,2(1):16-22
    [115]刘守龙,肖和艾,童成立,等.亚热带稻田土壤微生物生物量碳、氮、磷状况及其对施肥的反应特点[J].农业现代化研究,2003,24(4):278-282
    [116]何电源.中国南方土壤肥力与栽培作物施肥[M].北京:科学出版社.1994,37~46
    [117]沈善敏,刘鸿翔,王凯荣,等.农业生态系统养分循环再利用作物产量增益的地理分异[J].应用生态学报.1998,9(4):379~385
    [118]Sorenson L H. Organic matter and microbial biomass in a soil incubated in the field for 20 years with [14]C-labelled barley straw[J].Soil Biol.Biochem.,197,19:39-42
    [119]鲍士旦.土壤农化分析.中国农业出版社.2000
    [120]Singh S, Singh J S. Microbial biomass associated with water-stable aggregates in forest, savanna, and cropland soils of seasonally dry tropical region, India [J]. Biol.Fertil.Soil,1995, 27(8): 1027-1033
    [121]韩晓日,郭鹏程,陈恩凤,邹德乙.土壤微生物对施入肥料氮的固持及其动态研究.土壤学报,1998,35(3):412~418
    [122]Marumoto Y, Kai H,Yoshida T, et al. Chemical fractions of organic nitrogen in acid hydrolysates given from...Sci.Pl.Nutr., 1977, 23:125-134
    [123]Jiang P-K, Zhou G-M. Changes in soil microbial biomass carbon and nitrogen under eroded red soil by vegetation recovery. Soil Water Conser. 2003, 17(1): 112~127
    [124]姚槐应,何振立,黄昌勇.红壤微生物量氮的周转期及其研究意义.土壤学报.1999,36(3):387-394
    [125]沈宏,徐志红,曹志红.用土壤生物和养分指标表征土壤肥力的可持续性[J].土壤与境.1998,8(1):31-35
    [126]孙波,张桃林,赵其国.我国东南丘陵区土壤肥力的综合评价[J].土壤学报,1995,32(4):362~369
    [127]Manna M C, Batra L, Kumar A,et al. Microbiological and chemical amelioration of alkaline soil by growing Karnalgrass and gypsum application[J]. Exp Agric, 1997, 33:389-397
    [128]Caer M R. Microbial biomass and mineralization N in solonetzic soils influence of gypsum and lime amendments. Soil Biol & Biochem. 1986, 18(5): 531~537
    [129]SuiteS, Palma-Lopez D, JacouinF, etal. Study of immobilization and remobilization of nitrogen fertilizer in cultivated soils by hydrolytic fractionation. EuropeanSoilSci, 1996, 47: 249-255
    [130]Anderson JPE, Domsch KH. Quantities of plant nutrients in the microbial biomass of selected soils.Soil Sci.1980, 130:211~216
    [131]Jenkinson DS, add JN. Microbial biomass in soil: Measurement and turnover.In:Paul EA,Ladd JN,eds.Soil Biochemistry.Marcel New York:Dekker Inc1981.415~458
    [132]Jenkinson D S. Determination of microbial biomass carbon and nitrogen in soil. Advances in Nitrongen Cycling in Agricultural Ecosystems. C.A.B. International, Wallingford, 1988. 368-386
    [133]Anderson J P E, Domash K H. Quantities of plant nutrients in the microbial biomass of selected soils. SoilSci. 1980, 130:211-216
    [134]仇少君,彭佩钦.土壤微生物生物量氮及其在氮素循环中的作用.生态学杂志.2006,25(4):443~448
    [135]SakamotoK,YoshidaT, SatochM. Comparison of carbo and nitrogen mineralization between fumigation and heat in treatments[J]. SoilSci.PlantNutr. 1992,38:133~140
    [136]Holems W E, Zak D R. Soil microbial biomass dynamic sonnet nitrogen mineralization in northern hardwood ecosystem[J].Soil.Sci.Soc.Am.J. 1994, 58:238~243
    [137]HossainAKMA, RaisonRJ, KhannaPK. Effect of fertilize application and fire regime on soil mineralization in an Australi sub alpine eucalypt forest[J].Biol.Fertil.Soils. 1995,19:246~252
    [138]Stanford G, Smith S J. Nitrogen mineralization potential of soils. Soil Sci Soc Amer Prec. 36, 465-472
    [139]Torben A Bonde, Thomas Rosswall. Microbial biomass as a fraction of potentially mineralizable nitrogen in soils from long-term field experiment. Soil Biol. Biochem. 1988, 20(4): 447-452
    [140]Hassink J. Density fractions of soil macroorganic matter and microbial biomass as predictor as of C and N mineralization.SoilBiol.Biochem. 1995, 27:1099~1108.
    [141]王淑平,周广胜.土壤微生物量氮的动态及其生物有效性研究.植物营养与肥料学报.2003, 9(1): 87-90
    [142]Jenkinson D S, Hart P B S. Modeling the turnover of organic matter in long-term experiments at Roth Amsted. Soil Organic Matter Dynamics and Soil Productivity, Intercol Bulltion 15, 1987. 1-8
    [143]Anna B. Determination of potentially mineralization nitrogen in agricultural soil. Biol. Fertil. Soil, 21:114-120
    [144]El-Haris M K. Effect of tillage, cropping and fertilizer management on soil nitrogen mineralization potential. Soil Sci. Soc. Amer. 1983, 47:1157-1161
    [145]Torben A. Seasonal variation of potentially mineralization of nitrogen in four cropping systems. Soil Sci. Soc. Amer. 1987, 51:1508-1514
    [146]周卫军.王凯荣.有机物循环对红壤稻田系统土壤N矿化的影响.生态学杂志.2004,23(1):39-43
    [147]Islam M M. Effect of organic residue amendment on mineralization of nitrogen in flooded rice soils under laboratory conditions. Commun. Soil Sci. Plant Anal. 1998, 29(7&8): 971~981
    [148]Stanford G. Effect of partial removal of soil organic N with sodium pyrophosphate in sulfuric acid solution on subsequent mineralization of nitrogen. SoilSci.Soc.Amer.Proc. 1968,32:679~682
    [149]Shiga H. Nitrogen supplying ability of paddy soils under field conditions in the Philippines. Soil Sci. Plant Nutr. 1976, 22:387-399
    [150]王胜佳.多熟制稻田土壤有机质平衡的定位研究.土壤学报.2002,39(1):9~15
    [151]Ross D J、Sparling G P. Microbial biomass C and N in litter and mineral soil under pinus radiata on a coastal stand: Influence of stand age and harvest measurement. Plant and Soil. 1995, 175: 167-177
    [152]Joe rgenson R G. Carbon and nitrogen relationships in the microbial biomoss of soils in beech forests. Biol Fertil Soils. 1995, 9(2): 141-147
    [153]Glendining M J, Powlson D S. The effects of long-term application of inorganic nitrogen fertilizer on soil nitrogen in the Broadbalk Wheat Experiment. Agri. Sci(Camb). 1996, 127: 347-363
    [154]朱兆良.土壤中氮素转化研究的几个问题.中国科学院南京土壤研究所、土壤圈物质循环开放研究实验室编,土壤圈物质循环研究导向论文集.江苏科学出版社.1989.76-91
    [155]Paul E A. Mineralization and immobilization of soil nitrongen by microorganisms. Terrestrial Nitrogen Cycles, Ecol. Bull. 1981, 33:179-195
    [156]庞欣,张福锁,王敬国.不同供氮水平对根际微生物量氮及微生物活度的影响[J].植物营养与肥料学报.2000,6(4):476~480

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700