纳米TiO_2的掺杂改性及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的迅速发展,能源危机和环境污染日益严重。如何节约能源,控制和处理环境污染已成为当前的重大课题。在众多纳米光催化材料中,TiO2因具有氧化性强、稳定性好、廉价无毒等优点,成为最有发展前景的纳米光催化剂。但TiO2的量子产率低,光催化性能不高;禁带能量较高(3.2ev),只能在紫外光下才有活性,耗费能源。因此,对TiO2进行改性以提高其光催化活性,拓展光谱响应范围是光催化发展进一步走向实用化的关键。本文在总结纳米TiO2光催化剂改性研究进展的基础上,重点进行了以下几个方面的研究。
     1.为了提高光催化剂的活性,用燃烧法制备了Bi离子掺杂TiO2和Eu离子掺杂TiO2纳米光催化剂。对掺杂机理进行了研究,并通过光降解实验确定了Bi离子、Eu离子的最佳掺杂浓度。结果表明:掺杂可以使晶格发生畸变,降低电子–空穴对的复合,提高量子产率,从而提高光催化效果。掺杂后的样品光催化活性得到明显提高,并且不同的掺杂离子存在着不同的最佳掺杂浓度,Bi离子的最佳掺杂浓度为3%, Eu离子的为0.5%。
     2.为了拓展TiO2的光响应波长范围并提高其光催化活性,采用非金属离子掺杂的方法对TiO2进行改性。分别用溶胶–凝胶法和溶剂热法制备了N掺杂TiO2和S掺杂TiO2。通过X射线衍射、透射电镜、比表面积测定仪、红外光谱、紫外–可见吸收光谱等对样品的晶相、形貌、比表面积、吸收边等进行了表征。与纯TiO2相比较,掺杂样品的粒径较小,比表面积较大,由于掺杂使价带上移,禁带宽度减小,或者形成杂质能级,使样品在可见光区的吸光强度明显增加。通过对硝基苯的降解表征了其可见光光催化活性,发现不同的非金属离子掺杂样品均表现出很好的可见光催化活性。
     3.通过溶胶–凝胶法制备了N–La共掺杂TiO2纳米晶。研究了掺杂浓度对光催化活性的影响。结果表明在N的掺杂浓度为5%、La的掺杂浓度为0.5%时,光催化效果最好。在此基础上,用溶胶–凝胶法制备了N–La共掺杂的纳米光催化薄膜,研究了离子掺杂、镀膜层数对光催化活性、晶格畸变等方面的影响。研究结果表明,半径较大的La3+取代半径较小的Ti4+形成新的结构缺陷,从而有益于表面粒子的羟基化,使薄膜的光催化能力明显增强。镀膜层数为四层的样品的光催化活性最强,在紫光灯下照射3h对甲基橙和硝基苯的降解率分别达到73.98%、96.29%;同时N掺杂可以使禁带宽度窄化,引起催化剂吸收边的红移,从而使可见光响应活性明显增加,在日光灯下照射3h对甲基橙和硝基苯的降解率可达到56.19%和87.86%。由此可见N–La共掺杂除了能将催化剂的光响应波长拓展至可见光区域外,还不降低样品在紫外光区的光催化活性,在利用太阳光光催化方面展现出广阔的应用前景。
     综上所述,本文通过不同离子的掺杂对TiO2进行改性,在改性TiO2的离子掺杂浓度、制备方法、降解效果、光催化剂的作用机理等方面获得了一些有意义的结果,具有一定的创新性,为纳米光催化材料的进一步研究和实际应用奠定了基础。
With the rapid development of industry, energy crisis and environment pollution become more and more serious. So how to save energy, how to control and deal with the enviroment pollution have been the most important thing nowadays. Among all the nano-photocatalytic materials, TiO2 become a most promising photocatalyst for its strong oxidation activity, stability and nontoxic. However, TiO2 has two main disadvantages: Firstly, low quantum yield and low photocatalytic activity. Secondly, large band gap energy (3.2ev) which is only active to ultraviolet light and thus waste energy source. Therefore, how to modify TiO2 in order to increase its photocatalytic activity and extend its range of photo-response spectrum is the key to further utilize in photocatalysis. In this paper, on the foundation of summarizing the development of the modification of nano-scaled TiO2 photocatalyst, the following aspects were mainly studied.
     1. In order to raise the photocatalytic activity, TiO2 was modified by doping Bi ions and Eu ions using combustion method. Doping mechanism was investigated and photodegradation experiments were made to find the best ion concentration of Bi and Eu. The results showed that ions doping can lead to lattice aberrance, thus reducing the recombination of electrion-cavity pairs and increasing quantum yield photocatalytic activities. The optimum doping concentration was different according to different doping ions. The optimum doping concentration of Bi ions is 3% while the optimum doping concentration of Eu ions is 0.5%. 2. Non-metal doping TiO2 have been studied in order to extend its range of photo-response spectrum and increase its photocatalytic activity. N-doped TiO2 and S-doped TiO2 photocatalysts were prepared using sol-gel method, sovolthermal method, respectively. The crystal structure, morphology, BET and absorbency were characterized by XRD, TEM, IR, BET, UV-vis spectrophotometer. Compared with pure TiO2, the grain size of the doping samples was smaller, the BET was larger. The absorbency increased greatly in the visible region because of the narrower of the band gap and the formation of doping level. The photocatalytic activity of photocatalysts was investigated to be high by degrading methylorange and the samples all have a good photocatalytic properity under visible-light irradiation.
     3. N-La co-doped TiO2 crystals were synthesized using sol-gel method. The effect of ion doping concentration to photocatalytic activity was investigated. Results show that the highest photodegradation was obtained at the optimum concentration of N5% and La 0.5%. Based on the study of N-La co-doped TiO2 nano-sized photocatalysis, N-La co-doped nano-sized photocatalysis films were synthesized. The effects of co-doping and film layers to lattice deformation and photocatalytic activity were studied. The results showed that La3+-doped samples with bigger ion radius could easily result in lattice deformation, and the replacing of Ti4+ with La3+ could form structure defect which was favour for hydroxylation of the surface grains to obviously heighten the photocatalytic activity of films. The films with four layers possessed the highest photodegradation ratio. The degradation ratio to methylorange and nitrobenze under UV irradiation for 3h was up to 73.98%, 96.29%, respectively. At the same time N doping could narrow the bang gap energy, thus result in the red-shift of absorption edge and increase the photocatalytic activity responding to visible light. The degradation ratios to methylorange and nitrobenze were 56.19% and 87.86% after irradiating under visible-light for 3h. It can be seen that N-La co-doping can not only extend the wavelength to visible light but also maintain good property under UV light, which exhibit new application foreground in the use of solar light.
     In a word, TiO2 photocatalysts were modified by different ions doping and many significative results were obtained including ion doping concentration, preparation methods, degradation efficiency, photocatalysis mechanics and so on. To a certain extent all the results had some innovation, and at the same time laid the foundation for the further study and practical application on nano-photocatalysts.
引文
[1] 韩世同, 习海玲, 史瑞雪. 半导体光催化研究进展与展望[J]. 化学物理学报, 2003, 16(5): 339-349
    [2] 孙超, 黄浪欢, 刘应亮. 氮掺杂二氧化钛纳米管制备与光催化性能[J]. 功能材料, 2005, 36(9): 1412-1417
    [3] Wong C. C., Chu W..The Direct Photolysis and Photocatalytic Degradation of Alachlor at Different TiO2 and UV sources[J]. Chemosphere, 2003, 50 (8): 981-987
    [4] 李晓娥, 祖庸. 溶胶–凝胶法制备超细二氧化钛[J]. 化学新型材料, 1997, (10):28-31
    [5] Fujishima A., Honda K.. Electrochmical Photolysic of Water at Semiconductor Electrode[J]. Nature, 1972, 37(1): 238-245
    [6] Frank S. N., Bard A. J.. Heterogeneous Photo-catalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders [J]. Journal of Physical Chemistry, 1977, 81: 1484-1489
    [7] Frank S. N., Bard A. J.. Heterogeneous Photo-catalytic Oxidation of Cyanide Ion in Aqueous Solution at TiO2 powders[J]. Journal of the American Chemical Society, 1977, 99: 303-308
    [8] Hagfeldt A., Gr?tzel M.. Light-induced Redox Reactions in Nanocrystalline Systems[J]. Chemical Reviews, 1995, 95(1): 49-68
    [9] Matthew R. W.. Photooxidation of Organic Impurities in Water Using Thin Films of Titanium Dioxide, Journal of Physical Chemistry, 1987, 91(12): 3328-3333
    [10] Matthew R. W.. Photo-oxidation of Organic Material in Aqueous Suspensions of Titanium Dioxide, Water Research 1986, 20: 569-578
    [11] 石建稳, 郑经堂. 纳米 TiO2光催化剂可见光化的研究进展[J]. 化工进展, 2005, 24(8): 841-844
    [12] Teruhisa O., Toshiki T., Maki T., et al. Photocatalytic Activity of a TiO2 Photocatalyst Doped with C4+ and S4+ Ions having a Rutile Phase under Visible Light[J]. Catalysis Letters, 2004, 98(4): 255-258
    [13] Verwey J. W. M., Vander V. D., Dirksen G. J., et al. Luminescence Processes in the Crystalline and Glass Modifications of LnBGeO5-Type Compositions[J]. Journal of Solid State Chemistry, 1990, 89(1): 106-117
    [14] Asahi R., Morikawa T., Ohwaki T., et al. Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides[J]. Science, 2001, 293(13): 269-271
    [15] 高濂, 郑珊, 张青红. 纳米氧化钛光催化材料及应用[M]. 北京: 化学工业出版社, 23-45
    [16] Yamada T., Kayano K., Funabiki M.. Catalyst for Purification of Exhaust Gas[J]. Studies in Surface Science and Catalysis, 1993, 77: 329-334
    [17] 崔斌, 杨亚婷. TiO2 薄膜光催化降解 4-(2-吡啶偶氮)间二苯酚的研究[J]. 化学研究与应用, 2000, 12(4): 394-397
    [18] Kamat P. V.. Photochemistry on Nonreactive and Reactive Surfaces[J]. Chemical Reviews, 1993, 93: 267-300
    [19] Linsebigler A. L., Lu G., Yates J.T.. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results[J]. Chemical Reviews, 1995, 95:735-758
    [20] Hagfeldt A., Grtzel M.. Light-Induced Redox Reactions in Nanocrystalline Systems[J]. Chemical Reviews, 1995, 95: 49-68
    [21] Hoffman M. R., Martin S. T., Choi W., et.al. Environmental Applications of Semiconductor Photocatalysis[J]. Chemical Reviews, 1995, 95:69-96
    [22] Peral J., Ollis D. F.. Photocatalyst Deactivation: Oxidation of Decamethyl-tetrasiloxane, Pyrrole, Indole and Dimethyl Sulfide[C]. TiO2 Photocatalytic Purification and Treatment of Water and Air, 1993: 741-749
    [23] 张彭义, 余刚, 蒋展鹏. 半导体光催化剂及其改性技术进展[J]. 环境科学进展, 1997, 5(3): 1-10
    [24] Alberici R. M., Jardim W. F.. Photocatalytic Degradation of Phenol and Chlorinated phenols Using Ag-TiO2 in a Slurry Reactor[J]. Water Research, 1994, 28(8): 1845-1849
    [25] Nicole J. R., Pichat P.. Effects of Altervalent Cation Doping of TiO2 on its Performance as a Photocatalyst for Water Cleavage[J]. Journal of Physical Chemistry, 1986, 90(12): 2733-2738
    [26] Takahashi M., Mita K., Toyuki H., et al. Pt-TiO2 Thin Films on Glass Substrates as Efficient Photocatalysts[J]. Journal of Material Science, 1989, 24(1): 243-246
    [27] 彭峰, 任艳群. 提高二氧化钛光催化性能的研究进展[J]. 现代化工, 2002, 22(10): 6-9
    [28] Papp J., Soled S., Dwight K., et al. Surface Acidity and Photocatalytic Activity of TiO2, WO3/TiO2, and MoO3/TiO2 Photocatalysts[J]. 1994, 6: 496-500
    [29] Yoshinao O., Michael G.. Effect of Surface Hydroxyl Density on Photocatalytic Oxygen Generation in Aqueous TiO2 Suspensions[J]. Journal of the Chemical Society, Faraday Transactions[J]. 1988, 84(1): 197-205
    [30] 苏文悦, 陈亦琳, 付贤智. SO42-/TiO2 固体酸催化剂的酸强度及光催化性能[J].催化学报, 2001, 22(2): 175-176
    [31] 陈水辉, 彭峰, 王红娟. 具有可见光活性的光催化剂研究进展[J]. 现代化工, 2004, 24(7): 24-28
    [32] Kitano M., Matsuoka M., Ueshima M., et al. Recent Developments in Titanium Oxide-based Photocatalysts. Applied Catalysis A: General 2007, 325: 1-14
    [33] 彭峰, 黄垒, 陈水辉. 非金属掺杂的第二代二氧化钛光催化剂研究进展, 现代化工[J]. 2006, 26(2): 18-22
    [34] 籍宏伟, 马万红, 黄应平等. 可见光诱导 TiO2光催化的研究进展[J]. 科学通报, 2003, 48(21): 2199-2204
    [35] Jimmy Y. C., Jiaguo Y., Wingkei H., et al. Effects of F-doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 powders[J]. Chemistry of Materials, 2002, 14: 3808-3816
    [36] Shahed K. U., Mofareh A., William J., Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2[J]. Science, 2002, 297(27): 2243-2244
    [37] Ihara T., Miyoshi M., Ando M., et al. Preparation of a Visible-light-active TiO2 Photocatalyst by RF Plasma Treatment[J]. Journal of Materials Science, 2001, 36(17): 4201-4207
    [38] Li L., Wei L., Yue X. Z., Bi Y. Z.,et al. Phosphor-doped Titania -a Novel Photocatalyst Active in Visible Light[J]. Chemistry Letters, 2005, 34, (3): 284-285
    [39] 赵进才. 可见光光催化降解有毒有机污染物的研究 [M]. 2005 科技发展报告2005, 3
    [40] H. M. Luo., Tsuyoshi T., Yun G. L., et al. Photocatalytic Activity Enhancing for Titanium Dioxide by Co-doping with Bromine and Chlorine[J]. Chemistry of Materials, 2004,16, (5):846-849
    [41]Venkatachari K.R., Huang D., Ostrander, S.. Preparation of Nanocrystalline Yttria- Stabilized Zirconia[J]. Journal of Materials Research, 1995, 10: 748-755
    [42] Nagaveni K., Hedge M. S., Ravishankar N., et al. Synthesis and Structure of Nanocrystalline TiO2 with Lower Band Gap Showing High Photocatalytic Activity[J]. Langmuir, 2004, 20(7): 2900-2907
    [43] T. Ohno, M. Akiyoshi, T. Umebayashi, et al. Preparation of Activities under Visible Light[J]. Applied Catalysis A:General 2004, 265:115-121
    [44] Umebayashi T, Yamaki T, Itoh H, Band Gap Narrowing of Titanium Dioxide by Sulfur Doping [J]. Applied Physics Letter, 2002, 81(3):454-546
    [45] Y.Z. Li, D.S. Hwang, N. H. Lee, et al. Synthesis and Characterization of Carbon-doped Titania as an Artificial Solar Light Sensitive Photocatalyst [J].Chemical Physics Letters, 2005,404:25-29
    [46] Khan S.U.M, Al-Shahry M, Ingler Jr. W.B.. Efficient Photochemical Water Splitting by a Chemically Modified N-TiO2[J]. Science, 2002,297:2243-2245
    [47] Irie H., Watanable Y., Hashimoto K., Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst[J]. Chem Lett, 2003, 32(8):772-777
    [48] Choi Y., Umebayashi T., Yoshikawa M., Journal of Materials Science[J],2004,39(5):1837-1839.
    [49] Choi Y., Umebayashi T., Yamamoto S., et al. Journal of Materials Science Letters[J],2003,22(17):1209-1211
    [50] Legrini O., Oliveros E., Braun M. A.. Photochemical Processes for Water Treatment[J]. Chemical Reviews, 1993, 93: 671-698
    [51] Priessen M. D., Miller T. M., Grassian V. H.. Photocatalytic Oxidation of Trichloroethylene on Zinc Oxide: Characterization of Surface-bound and Gas-phase Products and Intermediates with FT-IR Spectroscopy[J]. Journal of Molecular Catalysis A: Chemical, 1998, 131 (1-3): 149-156
    [52] Zhang J. R., Gao L.. Synthesis and Characterization of Nanocrystalline Tin Oxide by Sol–gel Method[J]. Journal of Solid State Chemistry, 2004, 177(4-5): 1425-1430
    [53] Hwang B. J., Santhanam R., Liu D. G.. Characterization of Nanoparticles of LiMn2O4 Synthesized by Citric Acid Sol–gel Method[J]. Journal of Power Sources, 2001, 97-98: 443-446
    [54] Zhang H. J., Jia X. L., Y.J. Yan. The Effect of the Concentration of Citric Acid and pH Values on the Preparation of MgAl2O4 Ultrafine Powder by Citrate Sol–gel Process[J]. Materials Research Bulletin, 2004,39(6): 839-850
    [55] Xiu Z. L.,Lv M. K., Liu S. W., et al. Barium Hydroxyapatite Nanoparticles Synthesized by Citric Acid sol–gel Combustion Method[J]. Materials Research Bulletin, 2005, 40(9): 1617-1622
    [56] Hwang C. C., Wu T. Y., Wan J., et al. Development of a Novel Combustion Synthesis Method for Synthesizing of Ceramic Oxide Powders[J]. Materials Science and Engineering B, 2004, 111: 49-56
    [57] Navio J. A., Colon J., Trillas M., et al. Heterogeneous Photocatalytic Reactions of Nitrite Oxidation and Cr (Ⅵ) Reduction on Iron-doped Titania Prepared by the Wet Impregnation Method[J]. Applied Catalysis B: Environmental, 1998, 16: 187-196
    [58] 付川,祁俊生,傅扬武等. 金属丝网负载 TiO2 光催化降解染料废水环境科学与技术[J]. 2006, 29(1): 69-71
    [59] Hong W. J., Kang M.. The Super-hydrophilicities of Bi–TiO2, V–TiO2, and Bi–V–TiO2 Nano-sized Particles and their Benzene Photodecompositions with H2O Addition[J]. Materials Letters, 2006, 60(9-10) :1296-1305
    [60] Rengaraj S., Li X. Z., Tanner P. A.., et al. Photocatalytic Degradation of Methylparathion-An Endocrine Disruptor by Bi3+-doped TiO2[J]. Journal of Molecular Catalysis A: Chemical 2006, 247(1-2): 36-43
    [61] Poth J., Haberkon R., Beck H. P.. Combustion-synthesis of SrTiO3 Part I. synthesis and Properties of the Ignition Products [J]. Journal of the European Ceramic Society, 2000, 20(6): 707-713.
    [62] Liu S.W., Wang Y. M., Xiu Z. L., et al. Preparation and Photocatalytic Properties of La-doped TiO2/ZrTiO4 Heterogeneous Thin Films[J]. 2006, 425(1-2): 274-277
    [63] Zeng Q. G., Ding Z. J., Zhang Z. M., et al. Synthesis, Structure and Optical Properties of Eu3+/TiO2 Nanocrystals at Room Temperature[J]. Journal of Luminescence, 2006, 118 (2) :301-307
    [64] Ikari H., Okanishi K., Tomita M., et al. Fluorescence MDR Features of Eu3+ Doped Sol–gel TiO2 Hydrate Microspheres[J]. 2008, 30,(8) (2) :1323-1326
    [65] Priya M.H., Madras G.. Photocatalytic Degradation of Nitrobenzenes with Combustion Synthesized Nano-TiO2[J]. Journal of Photochemistry and Photobiology A: Chemistry 2006, 178(1): 1-7
    [66] Li W., Wang Y., Lin H., et al. Band Gap Tailoring of Nd3+-doped TiO2 Nanoparticles[J]. Applied Physics Letters, 2003, 83: 4143
    [67] Tang H., Berger H., Schimid P.E., et al. Photoluminescence in TiO2 Anatase Single Crystals[J]. Solid State Communications, 1993, 87: 847-500
    [68] Lee S. H., Kang M., Cho S. M., et al. Synthesis of TiO2 Photocatalyst Thin Film by Solvothermal Method with a small Amount of Water and its Photocatalytic Performance [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001,146(1-2):121-128
    [69] Roy R., Ceramics by the Solution-Sol-Gel Route[J]. Science,1987, 238(18): 1664-1669.
    [70] 杨南如, 余桂郁等. 溶胶–凝胶法简介[J]. 硅酸盐通报, 1992, 2: 56-63
    [71] Ihara T., Miyoshi M., Iriyama Y., et al. Visible-light-active Titanium Oxide Photocatalyst Realized by an Oxygen-deficient Structure and by Nitrogen Doping[J]. Applied Catalysis B: Environmental, 2003,42(4): 403-409
    [72] Sakatani Y., Koike H., Japan Patent, P2001-72419A, 2001
    [73] Irie H., Watanabe Y., Hashimoto K., Nitrogen-Concentration Dependence onPhotocatalytic Activity of TiO2-xNx Powders. Journal of Physical Chemistry B, 2003, 107, 5483-5486
    [74] 沈伟韧, 赵文宽, 贺飞等. TiO2 光催化反应及其在废水处理中的应用. 化学进展, 1998, 10(4): 349-361
    [75] Demazeau G.. Solvothermal Processes: A Route to the Stabilization of New Materials[J].Journal of Materials Chemistry, 1999, 9(1): 15-18
    [76] 施尔畏, 夏长泰, 王步国. 水热的应用与发展[J]. 无机材料学报, 1996, 11(2): 204-208
    [77] Aita Y., Komatsu M., Yin S., et al. Phase-compositional Control and Visible Light Photocatalytic Activity of Nitrogen-doped Titania via Solvothermal Process[J]. Journal of Solid State Chemistry 2004,177(9): 3235-3238
    [78] 白波, 赵景联. 纳米 TiO2 的微波水热法制备及其光催化性能的研究化学通报[J]. 2005, (10): 776-780
    [79] 张金勤, 张继之. 纳米技术新进展[M]. 北京: 国防工业出版社, 2005
    [80] 施尔畏, 夏长泰, 王步国. 水热法制备陶瓷粉体晶粒粒度[J]. 硅酸盐学报, 1997, 25(3): 287-293
    [81] Feng F. S., Xu R. R., New Materials in Hydrothermal Synthesis[J].Accounts of Chemical Research, 2001, 34(3): 239-247
    [82] 陈震, 郑曦, 陈日耀等. 有机溶剂热生长晶体及应用[J]. 材料研究学报, 2001, 15(2): 151-152
    [83] Gole J. L., Stout J. D., Burda C., et al. Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale[J]. Applied Catalysis B: Environmental, 2004; 108(4): 1230-1240
    [84] Wang Z. P., Cai W. M., Hong X. T., et al. Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources[J]. Applied Catalysis B: Environmental, 2005, 57(3): 223-231
    [85] Wang Y., Feng C.X., Jin Z.S., et al. A novel N-doped TiO2 with High Visible Light Photocatalytic Activity[J]. Journal of Molecular Catalysis A: Chemical, 2006, 260(1-2): 1-3
    [86] Orlov A., Tikhov M. S., Lambert R.M., Application of surface science techniques in the study of environmental photocatalysis: nitrogen-doped TiO2[J]. Comptes Rendus Chimie, 2006, 9 (5-6): 794-799
    [87] Wang Y. Q., Yu X. J., Sun D. Z.. Synthesis, Characterization and Photocatalytic Activity of TiO2?xNx Nanocatalyst[J]. Journal of Hazardous Materials, 2007,144(1-2): 328-333
    [88] Ohno T., Akiyoshi M., Umebayashi T., et al. Preparation of S-doped TiO2 Photocatalysts and their Photocatalytic Activities under Visible Light[J]. Applied Catalysis A: General 2004, 265 (1): 115-121
    [89] Umebayashi T., Yamaki T., Itoh H., et al. Band Gap Narrowing of Titanium Dioxide by Sulfur Doping[J]. Applied Physics Letters, 2002, 81: 454-456
    [90] Umebayashi T., Yamaki T., Tanaka S.,et al. Visible light-induced degradation of methylene blue on S-doped TiO2[J]. Chemistry Letters, 2003,32,(4): 330-331
    [91] Wang J., Zhang Q., Yin S., et al. Raman Spectroscopic Analysis of Sulphur-doped TiO2 by Co-grinding with TiS2[J]. Journal of Physics and Chemistry of Solids, 2007, 68(2): 189-192
    [92] 吴树新, 马智, 秦永宁等.掺杂纳米 TiO2光催化性能的研究[J]. 物理化学学报, 2004, 20(2): 138-143
    [93] Chatterjee D., Dasgupta S. Visible light induced photocatalytic degradation of organic pollutants[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2005, 6(2-3): 186-205
    [94] Zaleska A., Górska P., Sobczak J.W., et al. Thioacetamide and thiourea impact on visible light activity of TiO2[J]. Applied Catalysis B: Environmental, 2007,76(1-2):1-8
    [95] 张金龙, 陈峰, 何斌. 光催化[M]. 上海: 华东理工大学出版社, 2004
    [96] G. Sivalingam, G. Madras, Photocatalytic Degradation of Poly(bisphenol-A-carbonate) in Solution over Combustion-synthesized TiO2: Mechanism and Kinetics[J]. Applied Catalysis A: General 2004, 269 (1-2): 81–90
    [97] Tomkiewicz M.. The Potential Distribution at the TiO2 Aqueous Electrolyte Interface[J]. Journal of The Electrochemical Society, 1979, 126(9): 1505
    [98] 刘耘, 周磊. 无机及材料分析化学[M]. 济南:山东大学出版社, 2001
    [99] 王蜀霞, 王万录. LPPP 异质结构薄膜发光器性能增强的研究[J]. 光电子技术, 2000, 20(1) :17-20
    [100] 谭利文, 王俊, 冯新等. 热退火 γ-Al2O3/Si 异质结构薄膜质量改进[J]. 半导体学报, 2002, 23(11):1178-1181
    [101] 刘素文, 吕孟凯, 宋春风等. 纳米TiO2/ZrxTi1-xO2异质结构薄膜的制备及其光催化性质[J]. 功能材料, 2004, 2 (15):231-235
    [102] 周武艺, 唐绍裘, 张世英等. 制备不同掺杂稀土纳米 TiO2 光催化剂及其光催化活性比较研究[J]. 硅酸盐学报, 2004, 32(10): l203-1208
    [103] 陈松哲. 可见光响应光催化剂研究进展[J]. 现代化工, 2004, 16(4): 613-619
    [104] 翁之望, 郭范, 马剑华等. TiO2 基体掺杂铕、钇纳米粉体的制备和光谱特性[J].中国稀土学报, 2002, 20: 119-121
    [105] 刘畅, 暴宁钟, 杨祝红等. 过渡金属离子掺杂改性 TiO2 的光催化性能研究进展[J]. 催化学报, 2001, 22(2): 215-218
    [106] 卢萍, 姚明明, 张颖等. 钼离子掺杂对 TiO2 薄膜光催化性能的影响[J]. 硅酸盐通报, 2003, 2:34-37
    [107] 张兆敏, 李斌, 委培海等. 溶胶液浓度和镀膜层数对 TiO2 薄膜光催化活性的影响[J]. 华东师范大学学报(自然科学版), 2001, 1: 66-70
    [108] 郭清泉, 王得泰, 饶俊元. 纳米 TiO2光催化剂可见光化的最新进展[M]. 材料导报网刊, 2006, 9(5): 11-13
    [109] 孙剑辉, 乔利平. 氮掺杂型纳米 TiO2 在可见光及太阳光下的光催化性能研究[J]. 环境科学学报, 2006, 26(10): 1688-1694
    [110] 何荣亮, 张小宁, 韦神等. 氮掺杂纳米 TiO2 改性涂料的制备及其可见光下降解性能研究[J]. 中国涂料, 2006, 21(12): 34-37
    [111] 洪孝挺, 王正鹏, 陆峰等. 可见光相应非金属掺杂的研究进展[J]. 化工进展, 2004, 23(10): 1077-1080
    [112] Cooke D. W., Bennett B. L., Farnum E. H., et al. Thermally Stimulated Luminescence from X-irradiated Porous Silicon[J]. Applied Physics Letters, 1997, 70: 3594-3597

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700