Pt负载中空TiO_2纳米管的制备及其光催化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以TiO_2(Degussa P25)和NaOH为起始原料,采用传统水热法制备了钛酸盐纳米管,此纳米管经进一步水热“碳化”和溶胶-凝胶包覆SiO_2层的化学形貌冻结与高温煅烧处理后制得形貌得以保持的锐钛矿相核壳中空结构TiO_2纳米管(titania nanotube,简称TiNTs)。一方面,以该锐钛矿型TiNTs为载体,H_2PtCl6·6H_2O为Pt源,采用光沉积法制得载铂TiO_2纳米管(Pt/TiNTs);其次,又以钛酸盐纳米管为基体,H_2PtCl_6·6H_2O为Pt源,通过热还原法制备了Pt/TiNTs。借助透射电子显微镜(TEM)、场发射电子显微镜(FESEM)、X射线衍射(XRD)及电子能谱(EDS)等表征手段对制得纳米管的形貌、结构及组成进行分析,并研究了它们的光催化性能。主要研究内容和结论如下:
     水热反应制得的钛酸盐纳米管为无定形态,且组成为H_2Ti_2O_5·H_2O。纳米管形貌和尺寸分布均一,具有突出的大比表面积和高长径比结构性能;随着煅烧温度的提高,纳米管虽相转变为锐钛矿TiO_2,但管状形貌易发生形变,其结构长度迅速缩短,表现为许多聚结在一起的纳米棒状粒子,团聚情况较严重;在原来水热反应制得的钛酸盐纳米管基础上,作包碳包硅的化学形貌冻结后处理,然后500℃高温煅烧制得了热稳定性的且纳米管形貌完好的锐钛相TiNTs,它在物理性能参数上保持了大比表面积及高孔隙体积等的优势。在高温600℃煅烧后形貌有部分破坏,达到700℃则会导致结构几乎完全坍塌;在有空气参与的情况下光催化分解乙酸溶液的测试表明,随着煅烧温度的升高,纳米管的光催化活性也在增强,600℃煅烧的纳米管光催化性能较好。
     对于光沉积制得的Pt/TiNTs,Pt纳米颗粒以单质形式在纳米管表面均匀分散,且载Pt后纳米管的晶型结构没有发生明显变化;光还原条件如光照时间、光照强度及前躯体预处理条件等对Pt/TiNTs的性能和结构有较大影响,光还原时间以1.5h为佳;纳米管担载Pt后其光催化性能有了不同程度的提高,而且纳米管煅烧温度与Pt负载量共同决定Pt/TiNTs催化剂的活性,其中以Pt/TiNTs-600℃-1.5wt%为最佳;纳米管表面过量沉积Pt会降低其光催化活性。
     水热还原法制备的较低载Pt量Pt/TiNTs,Pt粒子可在纳米管表面均匀分散且粒径较小,此时Pt的负载对纳米管表面形貌没有大的影响;当载Pt量偏高时,Pt粒子在纳米管表面形成尺寸较大的球形颗粒或団聚体,造成纳米管晶型结构发生明显变化,甚至Pt的晶相覆盖过锐钛矿相,损害了催化剂的形貌和结构;而材料催化性能则受比表面积大小、晶相组成及Pt粒子存在形式等几方面因素影响,水热载Pt后纳米管的催化性能有不同程度提高,其中理论担载量为2.0wt%且经600℃热处理制备的Pt/TiNTs光催化效率较高,过量担载会显著损害Pt/TiNTs的活性。
Titanate nanotubes were synthesized via a typical hydrothermal method taking TiO_2 (Degussa P25) and NaOH as raw materials, and further core-shell titania nanotube (TiNTs) with intact morphology and anatase phase were obtained by chemical morphology freezing routes which consisted of carbon injection and silica-coated processes and high-temperature calcination treatment. On the one hand, Pt nanoparticles loaded titania nanotubes were prepared by photodeposition method using H_2PtCl6·6H_2O as a platinum source and methanol as a sacrificial electron donor and the finally obtained samples were referred as Pt/TiNTs; secondly, a combination processes of hydrothermal reactions and chemical morphology freezing method were also employed to synthesize Pt/TiNTs catalysis with titanate nanotubes as carriers and H_2PtCl6·6H_2O as a platinum source. The morphology, structures and compositions of the as-prepared TiNTs and Pt/TiNTs were investigated by TEM, FESEM, XRD and EDS spectrum; furthermore, the photo-catalytic activities of the samples were studied. The main content and key conclusions were summarized below:
     The titanate nanotubes were amorphous, and the structural formula was H_2Ti2O5·H_2O. With a unified shape and well-balanced size distribution, the nanotubes possessed an outstanding property of specific surface area and high length-diameter ratio structures; the nanotubes gradually transformed into anatase occurred as elevating the calcination temperature, however, the morphology of the nanotubes could easily be damaged with a rapid cut of structures in length, and finally became a mess of agglomerated nanorods or particles; But the thermally stable anatase TiNTs with undamaged morphology after 500℃calcination treatment could be achieved by adopting chemical morphology freezing method to protect the primary nanotubes against the possible shape deformation, and thus the prepared TiNTs maintained its advantages of large specific surface area and high pore volume. Calcinating at a higher temperature of 600℃, the TiNTs happened to be partially damaged, and the tube structure can hardly be found when the calcination temperature arrived at 700℃; the photo-catalytic activity tests were carried out with the participation of oxygen for the degradation of AcOH, and the increase of calcination temperature could significantly improve the catalytic performance of the samples, and the TiNTs calcined at 600℃acquired a better performance.
     For the catalysts prepared by photo-deposition method, the Pt nanoparticles on the surface of Pt/TiNTs were Pt metal and dispersed uniformly on the nanotubes, and the crystalline constitution of Pt/TiNTs was not apparently changed after a certain amounts of Pt loaded on the nanotubes; the photoreduction conditions such as irradiation time, intensity and pretreatment had a great impact on the performance and structures of the catalysts, and the optimal loading time were 1.5h; otherwise, the thermal treatment temperature also distinctively affected their photo-catalytic ability, and together with Pt loading amount determined the activities of the as-prepared Pt/TiNTs catalysts, among which Pt/TiNTs-600℃-1.5wt% exhibited the best performance, however, the excessive loading content of Pt particles would lower the photo-activities of the Pt/TiNTs.
     The Pt nanoparticles in the form of Pt metal deposited on the surface of Pt/TiNTs (low Pt loading amounts) neatly when a new hydrothermal-reduction method was employed to prepare the catalysts, and thereby the crystalline phase of Pt/TiNTs was not evidently changed; But the Pt particles started to appear even in the form of large spherical particles or agglomerations when the TiNTs loaded with a large quantity of Pt content which led to a pronounced variation of the phase composition of Pt/TiNTs and to damage catalyst’s shape and microstructures; the specific surface area, phase composition as well as the form of Pt particle state jointly decided the photo-catalytic ability of the prepared materials. The Pt/TiNTs had a certain degree of photo-catalytic activity improvement after being loaded with an appropriate amount of Pt and results showed that Pt/TiNTs-600℃with a theoretical loading content of 2.0wt% Pt had the most satisfactory catalytic performance. In addition, it was also found that the activities of the Pt/TiNTs with excessive Pt loading amounts would be significantly reduced.
引文
[1] Hoffmann M. R., Marti S. T., Choi W., et al. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev., 1995, 95(1): 69-96.
    [2] Mills A., Davies R. H., Worsley D. Water-purification by semiconductor photocatalysis [J]. Chem. Soc. Rev., 1993, 22: 417-425.
    [3] Kamat P. V. Photochemistry on nonreactive and reactive (semiconductor) surfaces [J]. Chem. Rev., 1993, 93: 267-300.
    [4] Fox M. A., Dulay M. T. Heterogeneous photocatalysis [J]. Chem. Rev., 1993, 93: 341-357.
    [5] Bahnemann, D W. Isr. Environmental applications of photo-catalysis [J]. J. Chem., 1993, 33: 115-136.
    [6] Pichat. P. Partial or complete heterogeneous photocatalytic oxidation of organic compounds in liquid organic or aqueous phases [J]. Catal. Today, 1994, 19(2): 313-333.
    [7] Aithal U. S., Aminabhavi T. M., Shukla S. S. Photomicroelectrochemical detoxification of hazardous materials [J]. Hazard. Mater., 1993, 33(3): 369-400.
    [8] Lewis L. N. Chemical catalysis by colloids and clusters [J]. Chem. Rev., 1993. 93: 2693-2730.
    [9] Linsebigler A. L., Lu G.. Q., Yates J. T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results [J]. Chem Rev., 1995, 95(3): 735-758.
    [10] Berger T., Sterrer M., Diwald O., et al. Light-induced charge separation in anatase TiO2 particles [J]. J. Phys. Chem. B, 2005, 109(15): 6061-6068.
    [11] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electode [J]. Nature, 1972, 37(1): 238-245.
    [12] Ireland J. C., Klostermann, P., Rice E. W., et al. Inactivation of escherichia coli by titanium dioxide photocatalytic oxidation [J]. Appl. Environ. Microbiol., 1993, 59(5): 1668-1670.
    [13] Sjogren J. C., Sierka R. A. Survival of enteric viruses on environmental fomites [J]. Appl. Enuiron. Microbiol., 1994, 60: 344-347.
    [14] Cai R. X., Kubota Y., Shuin, T., Sakai H., et al. Induction of cytotoxicity by photoexcited TiO2 particles [J]. A. Cancer Res., 1992, 52: 2346-2348.
    [15] Cai R., Hashimoto K., Kubota Y., et al. Inrement of photocatalytic killing of cancer cells using TiO2 with the aid of superoxide dismutase [J]. Chem. Lett., 1992, 243(3): 427-430
    [16] Karakitsou K. E., Verykios X. E. Effects of altervalent cation doping of TiO2 on its performance as a photocatalyst for water cleavage [J]. J. Phys. Chem., 1993, 97(6): 1184-1189.
    [17] Gratzel M. Artificial photosynthesis: water cleavage into hydrogen and oxygen [J]. Acc. Chem. Res., 1981, 14: 376-384.
    [18] Borgarello E., Kiwi, J., Pelizzetti E., et al. Angew. Chem. Int. Ed. Engl., 1981, 20: 987-1001.
    [19] Wold A. Photocatalytic properties of Ti02 [J]. Chem. Mater., 1993, 5: 280-283.
    [20] Gerischer H., Heller A. Photocatalytic oxidation of organic molecules at TiO2 particles by sunlight in aerated water [J]. J. Electrochem. Soc., 1992, 139: 113-118.
    [21] Jackson N. B., Wang C. M., Luo Z. Attachment of TiO2 powders to hollow glass microbeads activity of the TiO2 coated beads in the photoassisted oxidation of ethanol to acetaldehyde [J]. J. Electrochem. Soc., 1991, 138(12): 3660-3664.
    [22] Nair M., Luo Z. H, Heller A. Rates of photocatalytic oxidation of crude oil on salt water on buoyant, cenosphere-attached titanium dioxide [J]. Ind. Eng. Chem. Res., 1993, 32: 2318-2323.
    [23] Rouxoux A., Schulz J., Patin H. Reduced transition metal colloids: A novel family of reusable catalysts [J]. Chem. Rev., 2002, 102(10): 3757-3778.
    [24] Williams K. R., Burstein G. T. Low temperature fuel cells: interactions between catalysts and engineering design [J]. Catal. Today, 1997, 38(4): 401-410.
    [25] Lee J., Choi W. Photocatalytic reactivity of surface platinized TiO2: substrate specificity and the effect of Pt oxidation state [J]. J. Phys. Chem. B, 2005, 109(15): 7399-7406.
    [26] Park H., Lee J., Choi W. Study of special cases where the enhancedphotocatalytic activities of Pt/TiO2 vanish under low light intensity [J]. Catal. Today, 2006, 111(3/4): 259-265.
    [27] Zhao W., Chen C. C., Li X. Z, et al. Solid phase photocatalytic reaction on the soot/TiO2 interface: the role of migrating OH radicals [J]. J. Phys. Chem. B, 2002, 106(19): 5022-5028.
    [28] Wang S. H., Lee M.C., Choi W. Highly enhanced photocatalytic oxidation of CO on titania deposited with Pt nanoparticles: kinetics and mechanism [J]. Appl. Catal. B, 2003, 46(1): 49-63.
    [29] Chen H. W., Ku Y., Kuo Y. L. Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis [J]. Water Res., 2007, 41(10): 2069-2078.
    [30] An H. Q., Zhou J., Li J. X., et al. Deposition of Pt on the stable nanotubular TiO2 and its photocatalytic performance [J]. Cata. Commun., 2009, 11: 175-179.
    [31] Ahmadi T. S., Wang Z. L., Green T. C., et al. Shape-controlled synthesis of colloidal platinum nanoparticles [J]. Science, 1996, 272: 1924-1925.
    [32] Burda C., Chen X., Narayanan R., et al. Chemistry and properties of nanocrystals of different shapes [J]. Chem. Rev., 2005, 105(4): 1025-1102.
    [33] Narayanan R., El-Sayed M. A. Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J. Phys. Chem. B, 2005, 109(26): 12663-12676.
    [34] Nosaka Y., Fox M. A. Colloidal semiconductors to adsorbed methylviologen: dependence of the quantum yield on incident pulse width [J]. J. Phys. Chem., 1988, 92(7): 1893-1897.
    [35]Amy L., Linsebigler, Lu G. Q., John T., et al. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results [J]. Chem. Rev., 1995, 95(3): 735-758.
    [36] Matthews R. W. Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide [J]. J. Catal., 1988, 113: 549-555.
    [37] Bessekhouad Y., Robert D., Weber J. V. Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions [J]. J. Photochem.Photobiol. A: Chem., 2003, 157(1): 47-53.
    [38] Anpo M., Shina T., Kodama S., et a1. Photocatalytic hydrogenation of propyne with H2O on small-particle TiO2: Size quantization effect and reaction intermediates [J]. J. Phys. Chem., 1987, 91(16): 4305-4310.
    [39] Xu N. P., Shi Z. F., Fan Y. Q., et al. Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions [J]. Ind. Eng. Chem. Res., 1999, 38(2): 373-379.
    [40] River A P.Tanaka K, Hisanaga T.PhotocataIytic degradation of pollutants over TiO2 in different crystal structures [J]. Appl. Cata., 1993, 3: 37-44.
    [41] Linsebigler A. L., Lu G. Q., Yates J. T. Photocatalysis on TiO2 surfaces: principles, mechanisms and selected results [J]. Chem. Rev., 1995, 95(5): 735-758.
    [42] Sakthivel S., Hidalgo M. C., Bahnermann D. W., et al. Mesoporous SiO2-modified nanocrystalline TiO2 with high anatase thermal stability and large surface area as efficient photocatalyst [J]. Appl. Catal. B, 2006, 63: 31-40.
    [43] Busca G.., Saussey H., Saur O., et al. Characterization of denox catalysts supported on titania/silica [J]. Appl. Catal., 1985, 14, 245-260.
    [44] Busca G.., Ramis G.., M. J, et al. Nonstoichiometry, amorphicity and microstructural evolution during phase transformations of photocatalytic titania powders [J]. J. Chem. Soc. Faraday Trans., 1994, 90: 3181-3190.
    [45] Zhang J., Li M. J., Feng Z. C., et al. UV raman spectroscopic study on TiO2. I. phase transformation at the surface and in the Bulk [J]. J. Phys. Chem. B., 2006, 110: 927-935.
    [46] Zhang J., Xu Q., Zhao C. F., Li M., et al. Importance of the relationship between surface phases and photocatalytic activity of TiO2 [J]. Angew. Chem. Int. Ed., 2008, 47(10): 1766-1769
    [47] Iijima S. Helical mocrotunles of graphitic carbon [J]. Nature, 1991, 354: 56-58.
    [48]王保玉,郭新勇,张治军,等.热处理对TiO2纳米管结构相变的影响[J].高等学校化学学报, 2003, 24(10): 1838-1841.
    [49] Shrestha N. K., Macak M. J., Hahn R., et al. Magnetically guided titaniananotubes for site-selective photocatalysis and drug release [J]. Angew. Chem. Int. Ed., 2009, 48(5): 969-972.
    [50] Hoyer P., Formation of titanium dioxide nanotube array [J]. Langmuir, 1996, 12: 1411-1413.
    [51] Jung J. H., Kobayashi H., Shinkai S., et al. Creation of novel helical ribbon and double-layered nanotube TiO2 structures [J]. Chem. Mater., 2002, 14(4): 1445-1447.
    [52] Lee J. H., Leu I. C., Hsu M. C., et al. Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solution approach, J. Phys. Chem. B, 2005, 109(27): 13056-13059.
    [53] Kasuga T., Hiramatsu M., Hoson A., et al. Formation of titanium oxide nanotube [J], Langmuir, 1998, 14: 3160-3163.
    [54] Zwilling V., Aucouturier M., Darque-Ceretti E. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy [J]. Surf. Interface Anal., 1999, 27(7): 629-637.
    [55] Gong D., Grimes C. A., Varghese O. K., Hu W., et al. Titanium oxide nanotube arrays prepared by anodic oxidation [J]. J. Mater. Res., 2001, 16(12): 3331-3334.
    [56] Varghese O. K., Gong D., Paulose M., et al. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays [J]. J. Mater. Res., 2003, 18(1): 156-165.
    [57] Varghese O. K., Paulose M., Shankar K., et al. Water-photolysis properties of micro-length highly-ordered titanate nanotubes-arrays [J]. J. Nanosci. Nanotechnol., 2005, 5(7): 1158-1165.
    [58] Ghicov A., Tsuchiya H., Macak J. M.,et al. Titanium oxide nanotubes prepared in phosphate electrolytes [J]. Electrochem. Commun., 2005, 7(6): 505-509.
    [59] Tsuchiya H., Macak J. M., Taveira L., et al. Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes [J]. Electrochem. Commun., 2005, 7(6): 576-580.
    [60] Kasuga T., Hiramatsu M., Hoson A., et al. Titania nanotubes prepared bychemical processing [J]. Adv. Mater., 1999, 11(15): 1307-1311.
    [61] Du G. H., Chen Q., Che R. C., Peng L.M., et al. Preparation and structure analysis of titanium oxide nanotubes [J]. Appl. Phys. Lett., 2001, 79(22): 3702-3704.
    [62] Chen Q., Zhou W.Z., Peng L.M., et al. Tritanate nanotubes made via a single alkali treatment [J]. Adv. Mater., 2002, 14(17): 1208-1211.
    [63] Chen Q., Du G.H., Zhang S., Peng L.M. The structure of tritinate nanotubes [J]. Acta. Cryst. B, 2002, 58(10): 587-593.
    [64] Zhang S., Peng L. M., Chen Q., et al. Formation mechanism of H2Ti3O7 nanotubes [J]. Phys. Rev. Lett., 2003, 91(25): 256103-1:4.
    [65] Yang J., Jin Z., Wang X., et al. Study on composition, structure and formation process of nanotube Na2Ti2O4 (OH) 2 [J]. Dalton. Trans., 2003, 19: 3898-3901.
    [66] Zhang M., Jin Z., J. Zhang, Yang J., et al. Effect of annealing temperature on morphology, structure, and photocatalytic behavior of nanotubed H2Ti2O4 (OH) 2 [J]. J. Mol. Catal. A, 2004, 217(1-2): 203-210.
    [67] Zhang S., Li W., Jin Z., Yang J.,et al. Study on ESR and inter-related properties of vacumm-dehydrated nanotube titanic acid [J]. J. Solid. State. Chem., 2004, 177(11): 1365-1371.
    [68] Thorne A., Kruth A., Tunstall D., et al. Formation, structure, and stability of titanate nanotubes and their proton conductivity [J]. J. Phys. Chem. B, 2005, 109(12): 5439-5444.
    [69] Tsai C. C., Teng H., Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment [J]. Chem. Mater., 2004, 16(22): 4352-4358.
    [70] Tsai C. C., Teng H., Structure features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatment [J]. Chem. Mater., 2006, 18(2): 367-373.
    [71] Nian J. N., Teng H., Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor [J]. J. Phys. Chem. B, 2006, 110(9): 4193-4198.
    [72] Tsai C. C., Nian J. N., Teng H., Mesoporous nanotube aggregates obtained from hydrothermally treating TiO2 with NaOH [J]. Appl. Surf. Sci., 2006, 253(4): 1898-1902.
    [73] Zhang M., Jin Z. S., Zhang J. W., et al. Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2 [J]. J. Mol. Catal. A: Chem., 2004, 217: 203-210.
    [74] Suzuli Y., Yoshikawa S., Synthesis and thermal analyses of TiO2-derived nanotubes by the hydrothermal method [J]. J. Mater. Res., 19 (2004) 982-985.
    [75] Armstrong A.R., Armstrong G., Canales J., et al. TiO2–B nanowires [J]. Angew. Chem. Int. Ed., 2004, 43: 2286-2288.
    [76] Poudel B., Wang W. Z., Dames C., et al. Formaiton of crystallized titania nanotubes and their transformation into nanowires [J]. Nanotechnology, 2005, 16: 1935–1940.
    [77] Li D, Haneda H, Hishita S, Ohashi, N. Visible-light-driven nitrogen-doped TiO2 photoeatalysts: effect of nitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants [J]. Mater. Sci. Eng. B, 2005, 117: 67-75.
    [78] Choi W, Termin A, Hoffmann MR. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics [J]. Phys. Chem., 1994, 98(51): 13669-13679.
    [79] Martin ST, Morrison CI, Hoffmann M.R. Photochemical mechanism of size-quantized Vanadium-doped TiO2 particles [J]. Phys. Chem., 1994, 98(51): 13695-13704.
    [80] WiIke K., Breuer HD. The influence of transition metal doping on the physical and photocatalytic properties of titania [J]. J. Photochem. Photobiol A: Chem., 1999 121(1): 49-53.
    [81] Palmisano, L., Augugliaro, V., Selafani, A., Sehiavello, M. Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation [J]. Phys. Chem., 1988, 92(23): 6710-6713.
    [82] Irie H, Watanabe Y, Hashimoto K, Nitrogen-concentration dependence onphotocatalytic activity of TiO2-xNx powders [J]. J. Phys. Chem. B, 2003, 107(23): 5483-5486.
    [83]杨华明,史蓉蓉,张科,等.纳米二氧化钛光催化剂改性研究进展[J].化工新型材料, 2005, 33(6): 57-59.
    [84] Sun L., Li J., Wang C. L.,et al. An electrochemical strategy of doping Fe3+ into TiO2 nanotube array films for enhancement in photocatalytic activity [J]. Sol. Ener. Mater. Sol. Cells, 2009, 93(10): 1875-1880.
    [85] Murakami N., Fujisawa Y., Tsubota T., et al. Development of a visible-light-responsive titania nanotube photocatalyst by site-selective modification with hetero metal ions [J]. Appl. Cata. B: Environmental, 2009, 92(1-2): 56-60.
    [86] Ghicov Andrei, Schmidt Bernd, Kunze Julia,et al. Photoresponse in the visible range from Cr doped TiO2 nanotubes. Chem. Phys. Lett., 2007, 433(4-6): 323-326.
    [87] Alam Khan M., Han D., Yang O. B. Enhanced photoresponse towards visible light in Ru doped titania nanotube [J]. Appl. Surf. Sci., 2009, 255(6): 3687-3690.
    [88] Alam Khan M., Yang O. B, Photocatalytic water splitting for hydrogen production under visible light on Ir and Co ionized titania nanotube [J]. Catal. Today, 2009, 146(1-2): 177-182.
    [89] Geng J., Yang D., Zhu J., et al. Nitrogen-doped TiO2 nanotubes with enhanced photocatalytic activity synthesized by a facile wet chemistry method [J]. Mater. Res. Bulletin, 2009, 44(1): 146-150.
    [90] Zheng J, Yang F., Luo Nian, et al. Solvothermal synthesis of N-doped TiO2 nanotubes for visible light responsive photocatalysis [J]. Chem. Commun., 2008, 47: 6372-6374.
    [91] Su Y., Han S., Zhang X., et al. Preparation and visible-light-driven photoelectrocatalytic properties of boron-doped TiO2 nanotubes [J]. J. Mater. Chem. Phys., 2008, 110(2): 239-246.
    [92] Lu Na, Zhao H., Li J., et al. Characterization of boron-doped TiO2 nanotubearrays prepared by electrochemical method and its visible light activity [J]. J. Sep. Purif. Technol., 2008, 62(3): 668-673.
    [93] Liu G., Zhao Y., Sun C., Li F., et al. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2 [J]. Angew. Chem. Int. Ed., 2008, 47: 4516-4520.
    [94] Xu J. C., Lu M., Guo X. Y., Li H. L. Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water [J]. J. Mol. Catal. A, 2005, 226: 123-127.
    [95] Lee J., Choi W., Photocatalytic reactivity of surface platinized TiO2: substrate specificity and the effect of Pt oxidation state [J]. J. Phys. Chem. B, 2005, 109(15): 7399-7406.
    [96] Park H., Lee J., Choi W., Study of special cases where the enhanced photocatalytic activities of Pt/TiO2 vanish under low light intensity [J]. Catal. Today, 2006, 111(3): 259-265.
    [97] Zhao W., Chen C. C., Li X. Z, et al. Photodegradation of sulorhodamine-B dye in platinum as a functional co-catalyst [J]. J. Phys. Chem. B., 2002, 106(19): 5022-5028.
    [98] Wang S. H, Lee M. C., Choi W., Highly enhanced photocatalytic oxidation of CO on titania deposited with Pt nanoparticles: kinetics and mechanism [J]. Appl. Catal., B, 2003, 46(1): 49-63.
    [99] Vorontsov A. V, Savinov E. N, Zhen S. J. Influence of the form of photodeposited platinum on titania upon its photocatalytic activity in CO and acetone oxidation [J]. J. Photochem. Photobiol. A: Chem., 1999, 125(18): 113-117.
    [100] Lin C. H., Lee C. H., Chao J. H., et al. Photocatalytic generation of H2 gas from neat ethanol over Pt/TiO2 nanotube [J]. Catal. Lett., 2004, 98(1): 61-65.
    [101] Sato Y., Koizumi M., Miyao T., et al. The CO-H2 and CO-H2O reactions over TiO2 nanotubes filled with Pt metal nanoparticles [J]. Catal. Today, 2006, 111: 164-170.
    [102] Yu K. P., Yu W. Y., Kuo M. C., et al. Pt/titania-nanotube: a potential catalystfor CO2 adsorption and hydrogenation [J]. Appl. Catal. B: Environmental, 2008, 84(1/2): 112-118.
    [103] Chen H., Chen S., Quan X., et al. Fabrication of TiO2-Pt coaxial nanotube array schottky structures for enhanced photocatalytic degradation of phenol in aqueous solution [J]. J. Phys. Chem. C, 2008, 112(25): 9285-9290.
    [104] Alam Khan M., Shaheer Akhtar M., et al. Enhanced photoresponse under visible light in Pt ionized TiO2 nanotube for the photocatalytic splitting of water [J]. Catal. Commun., 2008, 10(6): 1-5.
    [105] An H. Q, Zhou J., Li J. X., Huang W. P. Deposition of Pt on the stable nanotubular TiO2 and its photocatalytic performance [J]. Catal. Commun., 2009, 11(3): 175-179.
    [106] Jiang J. H, Gao Q. M, Chen Z.Gold nanocatalysts supported on protonic titanate nanotubes and titania nanocrystals [J]. J. Mol. Catal. A: Chem., 2008, 280(1-2): 233-239.
    [107] Tsai J.Y., Chao J. H., Lin C. H. Low temperature carbon monoxide oxidation over gold nanoparticles supported on sodium titanate nanotubes [J]. J. Mol. Catal. A: Chem., 2009, 298(1/2): 115-124.
    [108] Sachin S. Malwadkar, Ramakrishna S. Gholap, Shobhana V. Awate, et al. Photo-catalytic and O2-adsorption properties of TiO2 nanotubes coated with gold nanoparticles [J]. J. Photochem. Photobiol. A: Chemistry., 2009, 203(1): 24-31.
    [109] Li H., Zhu B. L., Feng Y. Y., et al. Synthesis, characterization of TiO2 nanotubes-supported MS (TiO2NTs@MS, M=Cd, Zn) and their photocatalytic activity [J]. J. Solid State Chem., 2007, 180(7): 2136-2142.
    [110] Chen H. W., Ku Y., Kuo Y. L. Effect of Pt/TiO2 characteristics on temporal behavior of o-Cresol decomposition by visible light induced photocatalysis [J]. Water Res., 2007, 41(10): 2069-2078.
    [111] Li F. B., Li X. Z. The enhancement of photodegradation efficiency using Pt-TiO2 catalyst [J]. Chemosphere, 2002, 48(10): 1103-1111.
    [112] Zhu B. L., Guo Q., Huang X. L., et al. Characterization and catalyticperformance of. TiO2 nanotubes-supported gold and copper particles [J]. J. Mol. Catal. A., 2006, 249: 211-217.
    [113] Zhong Z. Y., Lin J. Y., Teh S. P., et al. A Rapid and Efficient Method to deposit gold particles on catalyst supports and its application for CO oxidation at low temperatures [J]. Adv. Funct. Mater., 2007, 17: 1402-1408.
    [114] Wu X. F., Song H. Y., Yu Y. T., et al. Synthesis of core-shell Au@TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties [J]. Langmuir. 2009, 25(11): 6438-6447.
    [115]冯光建,刘素文,修志亮,俞娇仙,可见光响应型TiO2光催化剂的机理研究进展[J].稀有金属材料与工程, 2009,38(7): 185-188.
    [116] Chen S., Paulose M., Ruan C. M., et al. Electrochemically synthesized CdS nanoparticle modified TiO2 nanotube array photoelectrodes: preparation, characterization, and application to photoelectrochemical cells [J]. J. Photochem. Photobiol. A: Chem., 2006, 177(2/3): 177-184.
    [117] Hou L. R., Yuan C. Z., Yang P. Synthesis and photocatalytic property of SnO2/TiO2 nanotubes composites [J]. J. Hazard. Mater. B., 2007, 139(2): 310-315.
    [118] Grandcolas M., Louvet A., Keller N., et al. Layer-by-Layer deposited titanate-based nanotubes for solar photocatalytic removal of chemical warfare agents from textiles [J]. Angew. Chem. Int. Ed., 2009, 48(1): 161-164.
    [119] Shiju N. R., Guliants V. V. Recent developments in catalysis using nanostructured materials [J]. Appl. Catal. A: General, 2009, 356: 1-17.
    [120] Subhramannia M., Pillai V. K. Shape-dependent electrocatalytic activity of platinum nanostructures [J]. J. Mater. Chem., 2008, 18: 5858-5870.
    [121] Liao S., Holmes K., Tsaprailis H., et al. High performance Pt/Ru catalysts supported on carbon nanotubes for the anodic oxidation of methano [J]. J. Am. Chem. Soc., 2006, 128(11): 3504-3505.
    [122] Rigsby M. A., Zhou W. P., Lewera A., et al. Experiment and theory of fuel cell catalysis: methanol and formic acid decomposition on nanoparticle Pt/Ru [J]. J. Phys. Chem. C, 2008, 112(39): 15595-15601.
    [123] Peng Z. M., Yang H. Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property [J]. Nano Today, 2009, 4(2): 143-164.
    [124] Manthiram A., Murugan A. V., Sarkar, A., et al. Nanostructured electrode materials for electrochemical energy storage and conversion [J]. Energy Environ. Sci., 2008, 1: 621-638.
    [125] Antolini E. Visualization of the local catalytic activity of electrodeposited Pt–Ag catalysts for oxygen reduction by means of SECM [J]. Appl. Catal. B, 2007, 74: 324-326.
    [126] Liao H. G., Jiang Y. X., Zhou Z. Y., et al. Angew. Chem., Int. Ed., 2008, 47(47): 9100-9103.
    [127] Zhou Z. Y., Tian N., Huang Z. Z., et al. Nanoparticle catalysts with high energy surfaces and enhanced activity synthesized by electrochemical method [J]. Faraday Discuss, 2008, 140: 81-92.
    [128] Narayanan R., El-Sayed M. A. Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability [J]. J. Phys. Chem. B, 2005, 109(26): 12663-12676.
    [129] Tian Na., Zhou Z. Y., Sun S. G., et al. Synthesis of tetrahexahedral platinum nanocrystals with high-Index facets and high electro-oxidation activity [J]. Science, 2007, 316: 732-735.
    [130] Mahmoud A. Mahmoud., Christopher E. Tabor., Mostafa A. El-Sayed., et al. A new catalytically active colloidal platinum nanocatalyst: the multiarmed nanostar single crystal [J]. J. AM. CHEM. SOC., 2008, 130: 4590-4591.
    [131] Wang C., Daimon H., Sun S. H., et al. A general approach to the size and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen [J]. Angew. Chem., 2008, 120: 3644-3647.
    [132] Byungkwon L., Majiong J., Pedro H. C., et al. Pd-Pt bimetallicnanodendrites with high activity for oxygen reduction [J]. Science, 2009, 324: 1302-1305.
    [133] Chupas P.J., Chapman K.W., Grey C.P., et al. Watching nanoparticles grow: the mechanism and kinetics for the formation of TiO2-supported platinumnanoparticles [J]. J. Am. Chem. Soc., 2007, 129(10): 13822-13824.
    [134] Wang T., Wang S., Cheng W.X., et al. Chemical morphology freezing: chemical protection of the physical morphology of high photoactivity anatase TiO2 nanotubes, J. Mater. Chem., 2009, 19(27): 4692-4694.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700