Tm、N掺杂TiO_2纳米复合光催化剂的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以提高纳米TiO_2的太阳能利用率、抑制光生电子和空穴复合、提高量子化效率为目的,开发出高性能的TiO_2纳米复合光催化剂,为利用光催化技术治理环境污染提供了新型光催化材料。
     利用溶胶-凝胶法制备Tm掺杂TiO_2纳米复合光催化剂,采用XRD、DRS和PL技术研究了Tm掺杂量和焙烧温度对样品的相结构、晶粒尺寸、光吸收及光致发光性能的影响;以亚甲基蓝(MB)溶液的光催化降解评价其紫外光活性。结果表明:低量Tm掺杂强烈抑制TiO_2由锐钛矿相向金红石相转变,但随Tm掺杂量增加,抑制相变作用减弱。Tm掺杂导致样品的紫外吸收能力略有降低,光吸收带边蓝移。Tm掺杂样品的PL谱强度降低与其紫外光活性升高顺序并不完全一致。当Tm掺杂量为0.075wt%,焙烧温度为550℃时,制得的Tm掺杂TiO_2纳米复合光催化剂呈双相结构,锐钛矿相占91%,晶粒尺寸为24.48 nm,其紫外光活性最佳。紫外光活性提高的主要根源是Tm掺杂能有效促进TiO_2纳米光催化剂表面光生e-/h+的分离,提高量子化效率。
     在此基础上,采用溶胶-水热法系统开展Tm、N单掺杂及共掺杂TiO_2纳米复合光催化剂的制备工艺研究,利用XRD、BET、XPS、FT-IR、DRS及PL技术对其进行了结构性能表征,探讨了Tm和N掺杂对TiO_2光活性的影响机制。结果表明:当Tm掺杂量为0.075%,焙烧温度为550℃时,制得的Tm掺杂样品紫外光活性为63.19%,比光活性为5.92×10~(-5) mol·g~(-1)·h~(-1),是溶胶-凝胶法制备的Tm掺杂样品(比光活性为8.64×10~(-6) mol·g~(-1)·h~(-1))的6.85倍。当氨水添加量为2 mL,焙烧温度为440℃时,制得的N掺杂样品可见光活性为62.63%,比光活性为5.87×10~(-5) mol·g~(-1)·h~(-1),是溶胶-凝胶法制备的N掺杂样品(比光活性为6.59×10~(-6) mol·g~(-1)·h~(-1))的8.91倍。显然,采用溶胶-水热法制得的样品微观织构特性好、结晶度高、粒径小,光活性高,说明溶胶-水热法明显优于溶胶-凝胶法。Tm掺杂导致样品光生e-/h+分离效率提高,有效抑制相变,提高晶化程度,均有利于其紫外光活性的提高。N掺杂样品呈现优异的可见光活性。N掺杂导致样品吸收带边红移,拓宽光响应范围至可见光区,产生大量表面态及缺陷、增加表面羟基含量,有利于可见光活性的提高。Tm、N共掺杂样品的可见光活性介于TiO_2样品及N掺杂样品的可见光活性之间,紫外光活性低于TiO_2样品,表明Tm和N共掺杂并未产生协同作用。
To improve the solar utilization ratio of nano-TiO_2, inhibit the recombination of photogenerated e-/h+ and enhance the quantum efficiency. TiO_2 nano-composite photocatalyts with high performance have been exploited, which could offer novel photocatalytic materials used in the treatment of environmental pollutants with photocatalytic technique.
     Tm-doped TiO_2 nano-composite photocatalysts with different doping contents or calcined at different temperatures were prepared by a sol-gel method. The effects of Tm-doping contents and calcination temperatures on their phase structures, crystallite sizes, light absorption performances and photoluminescence properties were investigated by the techniques such as XRD, DRS and PL. Their photocatalytic activities were evaluated by the photocatalytic degradation of methylene blue (MB) in aqueous solution. The results indicated that the presence of low amount Tm in TiO_2 could strongly inhibit the phase transformation from anatase to rutile. However, the effect of inhibition could gradually weaken with the increase of Tm-doping content. Tm-doping could result in both a slight decrease of their light absorption performance in ultraviolet region and a blue shift of their optical absorption edge. It can be verified that the decrease sequence of PL spectrum intensity for the samples doesn’t accord with the increase sequence of their photoactivity completely. Tm-doped sample with doping contents of 0.075wt% calcined at 550℃show the highest photocatalytic activity, which present two phase structure and include the anatase phase of 91%. Its crystallite size is 24.48 nm. The main origin of the higher UV photoactivity of the Tm-doped sample is that the separation of the photogenerated electron-hole pairs can be promoted by Tm-doping, leading to increasing quantum efficiency.
     On this basis, preparation process research of Tm-doped, N-doped and (Tm, N)-codoped TiO_2 nano-composite photocatalysts synthesized via a sol-hydrothermal method was systematically carried out. The structures and performance characterizations of prepared samples were investigated by the techniques such as XRD, BET, XPS, FT-IR, DRS and PL. In the meantime, the influencing mechanism of Tm and N doping on TiO_2 photoactivity was discussed. The results indicated that Tm-doped sample with doping contents of 0.075wt% calcined at 550℃showed excellent UV photoactivity. Its UV photoactivity is 63.19%, its specific photoactivity is 5.92×10~(-5) mol·g~(-1)·h~(-1). Compared with Tm-doped sample (its specific photoactivity is 8.64×10~(-6) mol·g~(-1)·h~(-1)) prepared by sol-gel, its specific photoactivity markedly improved 6.85 times. N-doped sample with ammonia water adding amount of 2 mL calcined at 440℃showed excellent visible light photocatalytic activity. Its visible light photoactivity is 62.63%, its specific photoactivity is 5.87×10~(-5) mol·g~(-1)·h~(-1). Compared with N-doped sample (its specific photoactivity is 6.59×10~(-6) mol·g~(-1)·h~(-1)) prepared by sol-gel, its specific photoactivities markedly improved 8.91 times. Obviously, samples prepared by the sol-hydrothermal process could lead to excellent microstuctural properties, higher crystallinities, smaller grain sizes, higher photoactivies. These indicated that the sol-hydrothermal process were significantly better than sol-gel process. The Tm-doping can bring about higher photogenerated electron-hole separation efficiency, effectively inhibit the phase transformation, improve crystallinity degree. These factors facilitate its improvement of UV photoactivity. The N-doped sample exhibits outstanding visible light photoactivity. The N-doping can bring out its absorption edge red-shift, broaden light response range to visible light region, produce large numbers of surface states and defects, as well as increase the contents of surface hydroxyl groups, which result in the enhancement in visible light photoactivity. Visible light photoactivity of (Tm, N)-codoped sample was between that of TiO_2 and that of N-doped TiO_2, UV photoactivity lower than TiO_2, indicating no expectative synergetic effects produced from Tm and N codoping.
引文
1 A. Fujishima, K. Honda. Electrochemical Photocatalysis of Water at a Semiconduct- or Electrode. Nature. 1972, 238:37~38
    2高濂,邓珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社, 2002
    3 J. H. Pan, H. Q. Dou, Z. G. Xiong, C. Xu, J. Z. Ma, X. S. Zhao. Porous Photocatalysts for Advanced Water Purifications. Journal of Materials Chemistry. 2010, 20: 4512~4528
    4 M. N. Chong, B. Jin, Christopher W.K. Chow, Chris Saint. Recent Developments in Photocatalytic Water Ttreatment Technology: A Review. Water Research. 2010, 44: 2997~3027
    5 Marta I. Litter. Heterogeneous Photocatalysis Transition Metal Ions in Photocatalytic Systems. Applied Catalysis B: Environmental, 1999, 23(2-3): 89~114
    6 H. B. Li, G. C. Liu, S. G. Chen, Q. C. Liu. Novel Fe Doped Mesoporous TiO_2 Microspheres: Ultrasonic-hydrothermal Synthesis, Characterization, and Photocatalytic Properties. Physica E, 2010, 42(6): 1844~1849
    7 U. G. Akpan, B. H. Hameed. The Advancements in Sol-Gel Method of Doped-TiO_2 Photocatalysts. Applied Catalysis A: General, 2010, 375(1): 1~11
    8 H. J. Liu, G. G. Liu, X. Y. Shi. N/Zr-codoped TiO_2 Nanotube Arrays: Fabrication, Characterization, and Enhanced Photocatalytic Activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 363(1-3): 35~40
    9 H. R. Zhang, K. Q. Tan, H. W. Zheng, Y. Z. Gu, W. F. Zhang. Preparation,Characterization and Photocatalytic Activity of TiO_2 Codoped with Yttrium and Nitrogen. Materials Chemistry and Physics, 2011, 125(1-2): 156~160
    10 Q. C. Xu, D. V. Wellia, M. A. Sk, K. H. Lim, J. S. C. Loo, D. W.Liao, R. Amal, T. T. Y. Tan. Transparent Visible Light Activated C–N–F-codoped TiO_2 Films for Self-cleaning Applications. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 210(2-3): 181~187
    11 Amy L. Linsebigler, Guangquan Lu, John T. Yates. Photocatalysis on TiO_2: Surfaces: principle, Mechanisms, and Selected Results. Chemical Reviews, 1995, 95(3):735~758
    12 L. Kronik, Y. Shapira. Surface Photovoltage Phenomena: Theory, Experiment, and Applications. Surface Science Reports. 1999, 37(1-5): 1~206
    13 G. Sivalingam, K. Nagaveni, M.S. Hegde, Giridhar Madras. Photocatalytic Degradation of Various Dyes by Combustion Synthesized Nano Anatase TiO_2. Applied Catalysis B: Environmental, 2003, 45(1): 23~38
    14 W. Choi, A. Termin, M. R. Hoffmann. The Role of Metal Ion Dopants in Quantum-sized TiO_2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. Journal of Physical Chemistry, 1994, 98(51): 13669~13675
    15 A. W. Xu, Y. Gao, H. Q. Liu. The Preparation, Characterization, and Their Photocatalytic Activities of Rare-earth-doped TiO_2 Nanoparticles. Joumal of Catalysis. 2002, 207(2): 151~157
    16周艺,李志伟,徐协文. Pr3+, Ho3+掺杂TiO_2纳米粒子的光催化性能.湖南师范大学自然科学学报, 2003, 26(2): 70~72
    17 S. Sato. Photocatalytic Activity of NOx-doped TiO_2 in the Visible Light Region. Chemical Physics Letters. 1986, 123~126
    18 R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Visible-Light Photocatalysis in Nitrogen-doped Titanium Oxides. Science. 2001, 293(5528): 269~271
    19 A. Zaleska, E. Grabowska, J. W. Sobczak, M. Gazda, J. Hupka. Photocatalytic Activity of Boron-modified TiO_2 under Visible Light: The Effect of Boron Content, Calcination Temperature and TiO_2 Matrix. Applied Catalysis B: Environmental, 2009, 89(3-4): 469~475
    20 X. X. Lin, F. Rong, X. Ji, D. G. Fu. Carbon-doped Mesoporous TiO_2 Film and its Photocatalytic Activity. Microporous and Mesoporous Materials, 2011, 142: 276~281
    21 Q. Xiao, L. L. Ouyang. Photocatalytic Activity and Hydroxyl Radical Formation of Carbon-doped TiO_2 Nanocrystalline: Effect of Calcination Temperature. Chemical Engineering Journal, 2009, 148(2-3): 248~253
    22 X. X. Yang, C. D. Cao, L. Erickson, K. Hohn, R. Maghirang, K. Klabunde. Photo-catalytic Degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO_2 under Visible-light Irradiation. Applied Catalysis B: Environmental, 2009, 91(3-4):657~662
    23 F. Y. Wei, L. S. Ni, P. Cui. Preparation and Characterization of N-S-codoped TiO_2 Photocatalyst and Its Photocatalytic Activity. Journal of Hazardous Materials, 2008, 156(1-3): 135~140
    24 Rahima A. Lucky, Paul A. Charpentier. N-doped ZrO_2/TiO_2 Bimetallic Materials Synthesized in Supercritical CO_2: Morphology and Photocatalytic Activity. Applied Catalysis B: Environmental, 2010, 96(3-4): 516~523
    25 K. Lv, H. S. Zuo, J. Sun, K. J. Deng, S. C. Liu, X. F. Li, D. Y. Wang. (Bi, C and N) codoped TiO_2 Nanoparticles. Journal of Hazardous Materials, 2009, 161(1): 396~401
    26 G. H. Tian, Y. J. Chen, K. Pan, D. J. Wang, W. Zhou, Z. Y. Ren, H. G. Fu. Efficient Visible Light-induced Degradation of Phenol on N-doped Anatase TiO_2 with Large Surface Area and High Crystallinity. Applied Surface Science, 2010, 256: 3740~3745
    27 S. H. Wang, S. Q. Zhou. Photodegradation of Methyl Orange by Photocatalyst of CNTs/P-TiO_2 under UV and Visible-light Irradiation. Journal of Hazardous Materials, 2011, 185(1): 77~85
    28 C. Jin, R. Y. Zheng, Y. Guo, J. L. Xie, Y. X. Zhu, Y. C. Xie. Hydrothermal Synthesis and Characterization of Phosphorous-doped TiO_2 with High Photocatalytic Activity for Methylene Blue Degradation. Journal of Molecular Catalysis A: Chemical, 2009, 313(1-2): 44~48
    29 T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura. Preparation of S-doped TiO_2 Photocatalysts and Their Photocatalytic Activities under Visible Light. Applied Catalysis A: General. 2004, 265(1): 115~121
    30 Yuka W. Sakai, K. Obata, K. Hashimoto, H. Irie. Enhancement of Visible Light-induced Hydrophilicity on Nitrogen and Sulfur-codoped TiO_2 Thin Films. Vacuum, 2009, 83(3): 683~687
    31 X. Dong, J. Tao, Y. Y. Li, H. Zhu. Enhanced Photoelectrochemical Properties of F-containing TiO_2 Sphere Thin Film Induced by its Novel Hierarchical Structure. Applied Surface Science, 2009, 255(16): 7183~7187
    32 S. G. Yang, C. Sun, X. Y. Li, Z. Q. Gong, X. Quan. Enhanced Photocatalytic Activity for Titanium Dioxide by co-modifying with Silica and Fluorine. Journal of Hazardous Materials, 2010, 175(1-3): 258~266
    33 W. A. Wang, Q. Shi, Y. P. Wang, J. L. Cao, G. Q. Liu, P. Y. Peng. Preparation and Characterization of Iodine-doped Mesoporous TiO_2 by Hydrothermal Method. Applied Surface Science, 2011, 257: 3688~3696
    34 H. Irie, Y. Watanabe, K. Hashimoto. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO_2-xNx Powders. Journal of Physical Chemistry B. 2003, 107(23): 5483~5486
    35 T. Ihara, M. Miyoshi, Y. Iriyama, O. Marsumato, S. Sugihara. Visible-light-active Titanium Oxide Photocatalyst Realized by an Oxygen-deficient Structure and by Nitrogen Doping. Applied Catalysis B: Environmental. 2003, 42(4): 403~409
    36 S. Sato, R. Nakamura, S. Abe. Visible-light Sensitization of TiO_2 Photocatalysts by Wet-method N Doping. Applied Catalysis A: General. 2005, 284(1-2): 131~137
    37石建稳,陈少华,王淑梅,罗红元.纳米二氧化钛光催化剂共掺杂的协同效应.化工进展. 2009, 28(2): 251~258
    38 H. Y. Wei, Y. S. Wu, N. Lun, F. Zhao. Preparation and Photocatalysis of TiO_2 Nanoparticle co-doped with Nitrogen and Lathanum. Journal of Materials Science, 2004, 39(4): 1305~1308
    39 Y. Sakatani, J. Nunoshige, H. Ando, K. Okusako, H. Koike, T.Takata, J. N. Kondo, M. Hara, K. Domen. Photocatalytic Decomposition of Acetaldehyde Under Visible Light Irradiation over La3+ and N co-doped TiO_2. Chemistry Letters, 2003, 32(12): 1156~1157
    40 Y. Cong, B. Z. Tian, J. L. Zhang. Improving the Thermal Stability and Ptocatalytic Activity of Nanosized Titanium Dioxide via La3+ and N co-doping. Applied Catalysis B: Environmental. 2011, 101: 376~381
    41 Y. F. Ma, J. L. Zhang, B. Z. Tian, F. Chen, L. Z. Wang. Synthesis and Characterization of Thermally Stable Sm, N co-doped TiO_2 with Highly Visible Light Activity. Journal of Hazardous Materials, 2010, 182(1-3): 386~393
    42 T. Yu, X. Tan, L. Zhao. Characterization and Mechanistic Analysis of the Visible Light Response of Cerium and Nitrogen co-doped TiO_2 Nano-photocatalyst Synthesized Using a One-step Technique. Journal of Hazardous Materials. 2010, 176(1-3): 829~835
    43 T. Yu, X. Tan, L. Zhao, Y. X. Yin, P. Chen, J. Wei. Characterization, Activity and Kinetics of a Visible Light Driven Photocatalyst: Cerium and Nitrogen co-doped TiO_2Nanoparticles. Chemical Engineering Journal. 2010, 157(1): 86~92
    44 J. J. Xu, Y. H. Ao, D. G. Fu, C. W. Yuan. A Simple Route for the Preparation of Eu, N-codoped TiO_2 Nanoparticles with Enhanced Visible Light-induced Photocatalytic Activity. Journal of Colloid and Interface Science. 2008, 328(2): 447~451
    45 H. J. Liu, G. G. Liu, G. H. Xie, M. L. Zhang, Z. H. Hou, Z. W. He. Gd3+, N-codoped Trititanate Nanotubes: Preparation, Characterization and Photocatalytic Activity. Applied Surface Science, 2011, 257(8): 3728~3732
    46 J. H. Carey, J. Lawrence, H. M. Tosine. Photodechlorination of PCB′s in the Presence of Titanium Dioxide in Aqueous Suspensions. Bull Environ Contam Toxicol, 1976, 16(6): 697~701
    47 M. A. Rosana, F. J. Wilson. Photocatalytic Destruction of VOCs in the Gas-phase Using Titanium Dioxide. Applied Catalysis B: Environmental, 1997, 14(1-2): 55~68
    48张君,马江涛.纳米TiO_2光催化剂在抗菌方面的应用和研究进展.当代化工. 2006, 35(2): 212~215
    49 Q. Xiao, L. L. Ouyang, L. Gao, W. J. Jiang. One-step Hydrothermal Preparation and Photocatalytic Activity of (C, S, Sm)-tridoped Mesoporous TiO_2 Photocatalyst under Visible Light Irradiation. Materials Chemistry and Physics, 2010, 124(2-3): 1210~1215
    50 M. Z. Xie, L. Q. Jing, J. Zhou, J. S. Lin, H. G. Fu. Synthesis of Nanocrystalline Anatase TiO_2 by One-pot Two-phase Separated Hydrolysis-solvothermal Processes and its High Activity for Photocatalytic Degradation of Rhodamine B. Journal of Hazardous Materials. 2010, 176(1-3): 139~145
    51蔡河山,刘国光,吕文英,余林,李大光.钬掺杂提高TiO_2纳米晶光催化活性的光谱性能机制研究.中国稀土学报. 2007, 25(1): 16~21
    52 D. Zhao, T. Y. Peng, M. Liu, L. L. Lu, P. Cai. Fabrication, Characterization and Photocatalytic Activity of Gd3+-doped Titania Nanoparticles with Mesostructure. Microporous and Mesoporous Materials, 2008, 114(1-3): 166~174
    53 C. Y. Huang, W. S. You, L. Q. Dang, Z. B. Lei, Z. G. Sun, L. C. Zhang. Effect of Nd3+ Doping on Photocatalytic Activity of TiO_2 Nanoparticles for Water Decomposition to Hydrogen. Chin J Catal, 2006, 27(3): 203~209
    54 W. J. Shi, T. J. Zheng, Y. Hu, C. Y. Zhao. Influence of Fe3+ and Ho3+ Co-doping on the Photocatalytic Activity of TiO_2. Materials Chemistry and Physics, 2007,106(2-3):247~249
    55 X. H. Wu, P. B. Su, H. L. Liu, L. L. Qi. Photocatalytic Degradation of Rhodamine B under Visible Light with Nd-doped Titanium Dioxide Films. Journal of Rare Earths, 2009, 27(5): 739~743
    56 D. delaCruz, J. C. Arévalo, G. Torres, R. G. Bautista Margulis, C. Ornelas, A. Aguilar-Elguézabal. TiO_2 Doped with Sm3+ by Sol-Gel: Synthesis, Characterization and Photocatalytic Activity of Diuron under Solar Light. Catalysis Today, 2010, doi:10.1016/j.cattod.2010.08.023
    57张华星,张玉红,徐永熙,王彦广.铽(Ⅲ)掺杂TiO_2纳米材料相转移和光催化性质研究.化学学报, 2003, 61(11): 1813~1818
    58卢维奇,王德清,何肖群,赵黎明.钆及双稀土元素掺杂TiO_2可见光催化降解罗丹明B的研究.中国稀土学报, 2007, 25(4): 427~431
    59姜洪泉,王鹏,线恒泽.低量Yb3+掺杂的TiO_2复合纳米粉体的制备及光催化活性.化学学报. 2006, 64(2): 145~150
    60 L. Q. Jing, Y. C. Qu, B. Q. Wang, S. D. Li, B. J. Jiang, L. B. Yang, W. Fu, H. G. Fu, J. Z. Sun. Review of Photoluminescence Performance of Nano-sized Semiconductor Materials and its Relationships with Photocatalytic Activity. Solar Energy Materials & Solar Cells. 2006, 90(12): 1773~1787
    61陈崧哲,徐盛明,徐刚,李林艳.稀土元素在光催化剂中的应用及作用机理.稀有金属材料与工程. 2006, 35(4): 505~509
    62吴俊明,王亚平,杨汉培,范以宁,许波连. Ce及N共掺杂改性TiO_2光催化性能及Ce组分的作用.无机化学学报. 2010, 26(2): 203~210
    63陈其凤,姜东,徐耀,吴东,孙予罕.溶胶-凝胶-水热法制备Ce-Si/TiO_2及其可见光催化性能.物理化学学报, 2009, 25(4): 617~623
    64冯光建,刘素文,修志亮,俞娇仙,罗杰.氮离子和稀土离子共掺杂纳米TiO_2光催化性能的研究.中国稀土学报. 2008, 26(2): 148~152
    65唐玉朝,黄显怀,李卫华. N掺杂TiO_2光催化剂的微结构与吸光特性研究.分子催化. 2010, 24(4): 363~371
    66 D. Meroni, S. Ardizzone, G. Cappelletti, C. Oliva, M. Ceotto, D. Poelman, H. Poelman. Photocatalytic Removal of Ethanol and Acetaldehyde by N-promoted TiO_2 Films: The Role of the Different Nitrogen Sources. Catalysis Today, 2011, 161(1):169~174
    67 J. A. Rengifo-Herrera, E. Mielczarski, J. Mielczarski, N. C. Castillo, J. Kiwi, C. Pulgarin. Escherichia Coli Inactivation by N, S Co-doped Commercial TiO_2 Powder sunder UV and Visible Light. Applied Catalysis B: Environmental. 2008, 84(3-4): 448~456
    68 M. Y. Xing, J. L. Zhang, F Chen. New Approaches to Prepare Nitrogen-doped TiO_2 Photocatalysts and Study on Their Photocatalytic Activities in Visible Light. Applied Catalysis B: Environmental, 2009, 89(3-4): 563~569
    69 M. D’Arienzo, R. Scotti, L. Wanba, C. Battocchio, E. Bemporad, A. Nale, F. Morazzoni. Hydrothermal N-doped TiO_2: Explaining Photocatalytic Properties by Electronic and Magnetic Identification of N Active Sites. Applied Catalysis B: Environmental, 2009, 93(1-2): 149~155
    70 H. Diker, C. Varlikli, K. Mizrak, A. Dana. Characterizations and Photocatalytic Activity Comparisons of N-doped nc-TiO_2 Depending on Synthetic Conditions and Structural Differences of Amine Sources. Energy, 2011, 36(2): 1243~1254
    71 Yang J, Bai H Z, Tan X C, Lian J S. IR and XPS Investigation of Visible-light Photocatalysis-nitrogen-carbon-doped TiO_2 Film. Applied Surface Science, 2006, 253(4): 1988~1994
    72姜洪泉,王城英,王鹏,李井申,卢智宇. N掺杂TiO_2纳米粉体的表面特性及可见光活性,材料科学与工程学报. 2011, 29(2):161~166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700