金属离子改性TiO_2纳米颗粒的可见光光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题通过采用金属离子掺杂技术,旨在制备出具有可见光响应的新型TiO_2光催化剂,使其光响应波长红移至可见光区,能更大程度地利用可见光降解有机污染物。具体进行了以下几个方面的研究:(1)铋掺杂改性TiO_2纳米粒子的制备及其可见光光催化性能研究;(2)铈掺杂改性TiO_2纳米粒子的制备及其可见光光催化性能研究;(3)镨掺杂改性TiO_2纳米粒子的制备及其可见光光催化性能研究;(4)钕掺杂改性TiO_2纳米粒子的制备及其可见光光催化性能研究。
     通过XRD、XPS、FT-IR、UV-Vis、TEM、BET以及荧光光谱等手段对样品的结构、形貌、组成以及光谱特性进行了表征,研究结果如下:
     1. TiO_2经铋掺杂改性后,晶型以锐钛矿为主,晶粒粒径较纯TiO_2小,说明掺杂铋离子有效抑制了纳米晶体的转化及生长。掺杂后催化剂的吸收光谱发生了红移,光生电荷复合率降低。可见光照射下降解罗丹明B的实验显示,Bi掺杂的TiO_2具有较高的稳定的催化活性,其中掺杂量为2.0 %(mol %)时光催化效率最佳。在光催化降解过程中,催化剂表面吸附的·OH对罗丹明B的降解起着最重要的作用。
     2.经铈掺杂的TiO_2,其可见光催化活性明显得以提高,并且稳定性较好。在光催化降解过程中,催化剂表面吸附的·OH对罗丹明B的降解起着最重要的作用。其最佳掺杂量为3.0 %(mol %),溶胶-水热法合成的Ce-TiO_2的晶型以锐钛矿为主,掺铈后晶粒粒径变小,表明Ce掺杂有效抑制了纳米晶体的生长。紫外可见吸收光谱表明,Ce的掺杂使TiO_2的吸收光谱发生显著红移。荧光光谱分析结果表明Ce掺杂可有效降低光生电荷的复合几率。
     3.镨掺杂TiO_2光催化剂具有良好的稳定性,晶型以锐钛矿为主,且晶粒粒径比未掺杂的要小,说明Pr掺杂有效抑制了纳米晶体的生长。光催化降解实验表明,掺杂量为2.0 %(mol %)时,样品的光催化活性最佳。Pr掺杂后,TiO_2表面吸附的H2O和羟基的数量有所增加,益于TiO_2光催化剂活性的提高。荧光光谱表明,2.0 % Pr-TiO_2的表面捕获态比纯TiO_2低,并能够抑制光生电荷的复合,从而提高TiO_2的光催化活性。在光催化降解过程中,催化剂表面吸附的·OH对罗丹明B的降解起着最重要的作用。
     4.经钕元素掺杂改性的TiO_2光催化剂,具有良好的稳定性。当Nd:Ti=3.0:100 (mol %)时,其光催化活性最佳。Nd-TiO_2的晶型以锐钛矿为主,且其晶粒粒径比未掺杂的粒径小。低温N2吸附-脱附测试结果表明,Nd的掺杂使得TiO_2粉体比表面积增大,孔体积也随掺杂量的增大而增大。红外吸收图谱显示,Nd掺杂后的TiO_2表面的H2O和羟基的数量有所增加,利于TiO_2光催化剂活性的提高。另外,实验表明,在光催化过程中产生的O2·-和·OH都是对有机物的降解起重要作用的活性氧物种,而催化剂表面吸附的·OH是光催化反应过程中最重要的活性氧物种。
New TiO_2 photocatalysts of visible response were prepared by metal ions doping in order to extend its range of photo-response spectrum and increase its photocatalytic activity. The present studies include the following aspects: (1) the preparation of Bi-doped TiO_2 and its photocatalytic performance under visible light illumination; (2) the preparation of Ce doped TiO_2 and its visible light photocatalytic property; (3) the preparation of Pr-doped TiO_2 and its photocatalytic performance under visible light illumination; (4) the preparation of Nd doped TiO_2 and its visible light photocatalytic property.
     1. The Bi doped TiO_2 is mainly anatase and its grain size is smaller than pure TiO_2, which indicate that doping effectively suppresses the phase transformation and growth of nanocrystals. UV-vis DRS show an extension of light absorption into the visible region. Fluorescence spectra indicate the recombination rate of photo-generated charge decreases. The results of the degradation of Rhodamine B under visible light irradiation show that Bi-doped TiO_2 has a high and stable photocatalytic activity, when the optimal doping concentration is 2.0 % (mol %). In the photocatalytic degradation process, the·OH which adsorbed on the surface of TiO_2 plays the most important role.
     2. The Ce-doped TiO_2 (Ce-TiO_2) has good durability and enhanced visible light photocatalytic activity. In the photocatalytic degradation process, the adsorbed·OH of Ce-modified TiO_2 plays the crucial role. The results of the degradation of Rhodamine B in the visible experiments show that the optimum doping amount is 3.0 % (mol %). The Ce-TiO_2 consists mainly of anatase and the grain size is smaller than that of pure TiO_2, suggesting that doping Ce effectively inhibits the growth of nanocrystals. UV-visible absorption spectra show that Ce doping lead to the red shift of absorption spectra. Fluorescence spectra show lower recombination rate of the photogenerated charge by Ce doping.
     3. Pr-doped TiO_2 (Pr-TiO_2) has good durability and the main crystal anatase, and its grain size is smaller than pure TiO_2, indicating that Pr doping effectively inhibits the growth of nanocrystals. The optimal doping amount is 2.0 % (mol %). The increasing of the amount of the adsorbed H2O and hydroxyl groups which showed by FT-IR improves the photocatalytic activity of Pr-TiO_2. Fluorescence spectra show that the surface state of 2.0 % Pr-TiO_2 is lower than that of pure TiO_2, which suggests that photo-charge recombination rate decreases. These results cause the enhanced photocatalytic property of Pr-TiO_2. Furthermore, the·OH which adsorbed on the surface of TiO_2 plays the most important role on the degradation of RhB.
     4. Nd-doped TiO_2 (Nd-TiO_2) has good durability. When the Nd: Ti = 3.0:100 (mol %), the photocatalyst shows the highest activity among the samples of different contents. The Nd-TiO_2 consists mainly of anatase and the grain size is smaller than that of pure TiO_2, suggesting that doping Nd effectively inhibits the growth of nanocrystals. Compared with pure TiO_2, the results of BET analysis demonstrate by Nd doping the surface area powder and pore volume of Nd-TiO_2 significantly increase. According to FT-IR, the amount of the surface-adsorbed H2O and hydroxyl groups increase, which improves the activity of photocatalyst. In addition, the experiments show that the reactive oxygen species of O2? - and ?OH generated in the photocatalytic process play significant roles. Whereas, the·OH adsorbed on the surface of TiO_2 plays the most important role on the photocatalytic degradation of dye RhB under visible light illumination.
引文
[1] Fujishima A., Honda K..Electrochmical Photolysic of Water at Semiconductor Electrode [J].Nature, 1972, 37(1): p.238-245.
    [2] Carey J. H. ,Lawrence J. , Tosine H M. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions [J] . Bull Environ Contam Toxical ,1976 ,16 : p.697– 706.
    [3] Yamashita H., Harada M., Misaka J., Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion—implanted TiO2, Catalysis Today,2003, 84(3-4): p.191.
    [4] Chun H, Xuexing H, Liusuo W, Jiuhui Q, Anmin W, Visible-Light-Induced Photocatalytic Degradation of Azodyes in Aqueous AgI-TiO2 Dispersion[J]. Environmental Science & Technology, 2006, 40(24): p. 7903-7907.
    [5]许凤秀,冯光建,刘素文,修志亮,俞娇仙.TiO2降解有机染料废水的研究进展[J].硅酸盐通报, 2008, 27(5):p.991-995.
    [6] Pichiah Saravanan, K. Pakshirajan, Prabirkumar Saha, Degradation of phenol by TiO2-based heterogeneousphotocatalysts in presence of sunlight[J]. Journal of Hydro-environment Research, 2009, 3(1): p.45-50.
    [7] Wong C.C., Chu w., The Direct Photolysis and Photocatalytic Degradation of Alachlor at Different TiO2 and UV sources[J]. Chemosphere, 2003, 50(8): p.981-987.
    [8] Yamashita H., Harada M., Misaka J., Takeuchi M., Ikeue K., Anpo M., Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2002, 148(1-3):p.257-261.
    [9]赵秀峰,孟宪锋,张志红,等.Pb掺杂TiO2薄膜的制备及光催化活性研究[J].无机材料学报, 2004, 19(1):p.140-146.
    [10] Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y., Visible-light photocatalysis in nitrogen-doped titanium oxides[J].Science,2001,293 (5528): p.269-271.
    [11] Liu G, Li X, Zhao J, Photooxidation Pathway of Sulforhodamine-B.Dependence on the Adsorption Mode on TiO2 Exposed to Visible Light Radiation[J]. Environmental Science & Technology, 2000,34(18): p.3982-3990.
    [12] Zhao W, Chen C, Li X, Zhao J, Photodegradation of Sulforhodamine-B Dye in Platinized Titania Dispersions under Visible Light Irradiation: Influence of Platinum as a Functional Co-catalyst [J]. The Journal of Physical Chemistry B, 2002,106(19): p.5022-5027.
    [13] Serpone N., Texier I., Emeline A. V., Pichat P., Hidaka H., Zhao J, Post-irradiation Effect and Reductive Dechlorination of Chlorophenols at Oxygen-free TiO2/water Interfaces in the Presence of Prominent Hole Scabengers[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2000,136(3):p.145-152.
    [14]杨丽君,张世鸿,王家强,章新,王林.Pt/TiO2光催化降解3-甲基吲哚的研究[J].化学研究与应用, 2010, 22(1): p.91-94.
    [15]吴湘江,蒋耀辉,彭振山,韦宗元,邓谦,蔡铁军, Au/TiO2催化剂的制备及低级醇类的光催化消除[J].中国有色金属学报, 2009, 19(1): p.139-147.
    [16] Vogal R., Pohl K., Weller H., Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS[J]. Chemical Physics Letters, 1990, 174(3-4):p.241-246.
    [17] Testa, Juan J, Maria A. Grela, Marta I. Litter, Experimental Evidence in Favor of an Initial One-Electron-Transfer Process in the Heterogeneous Photocatalytic Reduction of Chromiun (IV) over TiO2[J]. Langmuir, 2001, 17(12):p.3515-3517.
    [18]康传红,郭桐,井立强,崔虎成,周佳,付宏刚,多孔SiO2与TiO2复合纳米材料的制备及光催化性能[J].无机材料学报, 2009, 24(2) : p.229-233.
    [19] Lin F, Wu C, Onn Z, Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 Systems[J]. Journal of Hazardous Materials, 2008,154(1-3): p. 1033-1039 .
    [20] Oosawa Y., Gr?tzel M., Effect of Surface Hydroxyl Density on Photocatalytic Oxygen Generation in Aqueous TiO2 Suspensions[J]. Journal of the Chemical Society ,Faraday Transactions, 1988, 84(1): p.197-205.
    [21]秦旭,井立强,薛连鹏,栾云博,付宏刚,磷酸对TiO2纳米粒子光催化剂的改性[J].无机化学学报, 2008, 24(7): p.1108-1112.
    [22] Wang Z, Shui H, Effect of PO43? and PO43?–SO42? Modification of TiO2 on Its Photocatalytic Properties[J]. Journal of Molecular Catalysis A: Chemical, 2007,263(1-2): p.20-25.
    [23] Abe R., Sayama K., Arakawa H., Efficient Hydrogen Evolution from Aqueous Mixture of I- and Acetonitrile using a Merocyanine Dye-sensitized Pt-TiO2 Photocatalyst under Visible Light Irradiation[J]. Chemical Physics Letters, 2002, 362(5-6):p.441-444.
    [24] Zhang F, Zang J, Zang L, Shen T, Hidaka H, Pelizzetti E, Serpone N, Photoassisted degradation of dye pollutants in aqueous TiO2 dispersions under irradiation by visible light[J]. Journal of Molecular Catalysis A: Chemical, 1997, 120(1-3): p.173-178.
    [25] Zhang F, Zang J, Shen T, Hidaka H, Pelizzetti E, Serpone N, TiO2-assisted Photodegradation of Dye Pollutants II. Adsorption and Degradation Kinetics of Eosin in TiO2 Dispersions under Visible Light Irradiation[J]. Applied Catalysis B:Environmental, 1998, 15(1-2): p.147-156.
    [26] Nasr C., Liu D., Hotchandani S., Kamat P. V., Dye-Capped Semiconductor Nanoclusters. Excited State and Photosensitization Aspects of Rhodamine 6G H-Aggregates Bound to SiO2 and SnO2 Colloids[J]. The Journal of Physical Chemistry, 1996, 100(26): p.11054-11061.
    [27] Ping Q, Zhao J, Zhang L, Shen T, Hidaka H, Enhancement of the Photoinduced Electron Transfer from Cationic Dyes to Colloidal TiO2 Particles by Addition of an Anionic Surfactant in Acidic Media[J]. Colloids and Surface A:Physicochemical and Engineering Aspects, 1998, 138(1): p.39-50.
    [28] Ranjit K. T., Willner I., Iron(III) Phthalocyanine-Modified Titanium Dioxide: A Novel Photocatalyst for the Enhanced Photodegradation of Organic Pollutants[J]. The Journal of Physical Chemistry B, 1998, 102(47): p.9397-9403.
    [29] Hong A. P., Bahnemann D. W., Hoffmann M. R., Cobalt(II) tetrasulfophthalocyanine on titanium dioxide: A new efficient electron relay for the photocatalytic formation and depletion of hydrogen peroxide in aqueous suspensions[J]. The Journal of Physical Chemistry, 1987, 91(8): p.2109-2117.
    [30] Stuchinskaya T., Kundo N., Gogina L., Schubert U., Lorenz A., Maizlish, Cobalt Phthalocyanine Derivatives Supported on TiO2 by Sol–gel Processing: Part 2. Activity in Sulfide and Ethanethiol Oxidation[J]. Journal of Molecular Catalysis A: Chemical, 1999, 140(3): p.235-240.
    [31] Liu W, Wang Y, Gui L, Tang Y, Preparation and Characterization of Novel Nanoscopic Titanium Dioxide/Phthalocyanine Complex Films[J]. Langmuir, 1999, 15(6): p.2130-2133.
    [32]刘畅,暴宁钟,杨祝红,陆小华,过渡金属离子掺杂改性TiO2的光催化性能研究[J].催化学报, 2010, 22(2): p.215-218.
    [33] Choi W., Termin A., Hoffmann M. R., The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics[J]. The Journal of Physical Chemistry, 1994, 98(51): p.13669-13679.
    [34] Yu J C, Lin J, Kwok R., Enhanced Photocatalytic Activity of Ti1?xVxO2 Solid Solution on the Degradation of Acetone[J]. Journal of Photochemistry and Photobiology A: Chemistry ,1997, 111(1-3):p.199-203.
    [35] Li X Z, Li F B, Yang C L, Ge W K, Photocatalytic Activity of WOx-TiO2 under Visible Light Irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 141(2-3): p.209-217.
    [36] Ohno T., Tanigawa F., Fujihara K., Izumi S., Matsumura M, Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 127(1-3): p.107-110.
    [37] Takeda N., Iwata N., Torimoto T., Yoneyama H., Influence of Carbon Black as an Adsorbent Used in TiO2 Photocatalyst Films on Photodegradation Behaviors of Propyzamide[J]. Journal of Catalysis, 1998, 177(2): p.240-246.
    [38] Tryba B., Tsumura T., Janus M., Morawski A. W., Inagaki M., Carbon-coated Anatase: Adsorption and Decomposition of Phenol in Water[J]. Applied Catalysis B:Environmental,, 2004, 50(3): p.177-183.
    [39] Ao C H, Lee S C, Combination Effect of Activated Carbon with TiO2 for the Photodegradation of Binary Pollutants at Typical indoor Air Level[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2004, 161(2-3): p.131-140.
    [40] Carpio E, Zuniga P, Ponce S, Solis J, Rodriguez J, Estrada W, Photocatalytic Degradation of Phenol Using TiO2 Nanocrystals Supported on Activated Carbon[J]. Journal of Molecular Catalysis A:Chemical,2005, 228(1-2): p.293-298.
    [41] Khan S .U. M., Al-Shahry M., Ingler Jr W. B., Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2[J], Science, 2002, 297(5590): p.2243-2245.
    [42] Irie H., Watanabe Y., Hashimoto K., Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst [J]. Chemistry Letters,2003,32(8): p.772-773.
    [43] Chen X, Burda C, Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles[J]. The Journal of Physical Chemistry B, 2004, 108(40): p.15446-15449.
    [44] Lindgren T., Mwabora J. M., Avendano E., Jonsson J., Granqvist C. G., Lindquist S. E., Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide FilmsPrepared by Reactive DC Magnetron Sputtering[J]. The Journal of Physical Chemistry B, 2003, 107(24): p.5709-5716.
    [45] Valentin C. D., Pacchioni G., Selloni A., Livraghi S., Giamello E., Characterization of Paramagnetic Species in N-Doped TiO2 Powders by EPR Spectroscopy and DFT Calculations[J]. The Journal of Physical Chemistry B, 2005, 109(23): p.11414-11419.
    [46] Yin J, Zou Z, Ye , A Novel Series of the New Visible-Light-Driven Photocatalysts MCo1/3Nb2/3O3 (M = Ca, Sr, and Ba) with Special Electronic Structures[J]. The Journal of Physical Chemistry B, 2003, 107(21): p.4936-4941.
    [47] Wang Y, Feng C, Zhang M, Yang J, Zhang Z, Enhanced Visible Light Photocatalytic Activity of N-doped TiO2 in Relation to Single-electron -trapped Oxygen Vacancy and Doped-nitrogen [J]. Applied Catalysis B: Environmental, 2010, 100(1-2) :p. 84-90.
    [48] Kun R., Tarján S., OszkóA., Seemann T., Z?llmer V., Busse M., Dékány I., Preparation and Characterization of Mesoporous N-doped and Sulfuric Acid Treated Anatase TiO2 Catalysts and Their Photocatalytic Activity under UV and Vis Illumination [J]. Journal of Solid State Chemistry, 2009, 182(11):p. 3076-3084.
    [49] Nakano Y., Morikawa T., Ohwaki T., Taga Y., Origin of Visible-light Sensitivity in N-doped TiO2 Films [J]. Chemical Physics, 2007, 339(1-3):p. 20-26.
    [50] Guo Y, Zhang X, Han G, Investigation of Structure and Properties of N-doped TiO2 Thin Films Grown by APCVD [J]. Materials Science and Engineering: B, 2006, 135(2):p. 83-87.
    [51] Higashimoto S., Tanihata W., Nakagawa Y., Azuma M., Ohue H., Sakata Y., Effective Photocatalytic Decomposition of VOC under Visible-light Irradiation on N-doped TiO2 Modified by Vanadium Species[J]. Applied Catalysis A: General, 2008,340(1):p. 98-104.
    [52] Wu G., Chen A.,Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications [J]. Journal of Photochemistry and Photobiology A: Chemistry,2008,195(1): P.47-53.
    [53] Kim H., Choi W., Effects of Surface Fluorination of TiO2 on Photocatalytic Oxidation of Gaseous Acetaldehyde[J]. Applied Catalysis B: Environmental, 2007,69(3-4): p.127-132
    [54] Vohra M. S., Kim S., Choi W., Effects of Surface Fluorination of TiO2 on the Photocatalytic Degradation of Tetramethylammonium [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003,160(1-2):p. 55-60.
    [55] Wang Y, Li J, Peng P, Lu T, Wang L,Preparation of S- TiO2 Photocatalyst and Photodegradationof L-acid under Visible Light[J] .Applied Surface Science, 2008,254(16):p. 5276-5280.
    [56] Tian H, Ma J, Li K, Li J, Hydrothermal Synthesis of S-doped TiO2 Nanoparticles and Their Photocatalytic Ability for Degradation of Methyl Orange [J]. Ceramics International, 2009,35(3):p. 1289-1292.
    [57] Liu Y, Liu J, Lin Y, Zhang Y, Wei Y, Simple Fabrication and Photocatalytic Activity of S-doped TiO2 under Low Power LED Visible Light Irradiation [J]. Ceramics International,2009,35(8):p. 3061-3065.
    [58] Ohno T., Murakami N., Tsubota T., Nishimura T., Development of Metal Cation Compound-loaded S-doped TiO2 Photocatalysts Having a Rutile Phase under Visible Light[J]. Applied Catalysis A: General, 2008,349(1-2):p.70-75.
    [59]吕树臣,宋国利,肖芝燕,张家骅,黄世华,纳米氧化锌粉体的制备及发光性质的研究[J].发光学报, 2002, 23(3): p.306-310.
    [60] Bian Z, Zhu J, Wang S, Cao Y, Qian X, Li H, Self-Assembly of Active Bi2O3-TiO2 Visible Photocatalyst with Ordered Mesoporous Structure and Highly Crystallized Anatase[J]. The Journal of Physical Chemistry C, 2008, 112(16): p.6258-6262.
    [61] Yu J, Yu J, Ho W, Jiang Z, Zhang L, Effects of F-doping on the photocatalytic activity and microstructures of nanocrystal-line TiO2 powers[J]. Chemistry of Materials, 2002, 14(9): p.3808-3816.
    [62] Peng T, Song H, Xiao J, Liu H, Qin J, The effect of acidity on the structural and textural evolution of titania in the presence of primary amine and inorganic precursor[J]. Journal of Non-Crystalline Solids, 2006, 352(30-31): p.3167-3274.
    [63] Rengaraj S.,Li X. Z.,Tanner P. A., et a1.Photocatalytic Degradation of Methylparathion-An Endocrine Disruptor by Bi3+-doped TiO2[J].Journal of Molecular Catalysis A: Chemical , 2006, 247(1-2): p.36-43.
    [64] Choi J, Park H, Michael R H, Effects of Single Metal-Ion Doping on the Visible-Light Photoreactivity of TiO2[J]. The Journal of Physical Chemistry C, 2010, 114(2):p.783–792.
    [65] Fang J, Bi X, Si D, Jiang Z, Huang W, Spectroscopic studies of interfacial structures of CeO2-TiO2 mixed oxides[J]. Applied Surface Science, 2007, 253(22): p.8952-8961.
    [66] Titheridge D, Barteau M, Idriss H, Reaction of Acrylic Acid on TiO2(001) Single Crystal Surfaces. Evidence of Different Pathways for Vinyl and Carboxyl Groups[J]. Langmuir, 2001, 17(7): p.2120-2128.
    [67] Roddguez-Talaveraa R, Vargas S, Arroyo-Murillo R, Montiel-Campos R, Haro-Poniatowski E, Modification of the Phase Transition Temperatures in Titania Doped with Various Cations[J]. Materials Research Society, 1997,12(2): p.439-443.
    [68] Sainza M A, Duran A, Fernandez Navarroa J M, UV Highly Absorbent Coatings with CeO2 and TiO2[J]. Journal of Non-Crystalline Solids, 1990, 121(1-3): p.315-318.
    [69] Takagahara T., Effects of Dielectric Confinement and Electron-hole Exchange Interaction on Excitonic States in Semiconductor Quantum Dots[J]. Physical Review B, 1993, 47(8): p.4569-4584.
    [70] Xie Y, Yuan C, Li X, Photosensitized and Photocatalyzed Degradation of Azo Dye Using Lnn+-TiO2 Sol in Aqueous Solution under Visible Light Irradiation[J]. Materials Science and Engineering B , 2005,117(3): p.325-333.
    [71] Choi W., Termin A., Hoffmann M. R.., The Role of Metalion Dopants in Quantum–sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics[J]. The Journal of Physical Chemistry, 1994,, 98(51): p.13669-13679.
    [72] Karakitsou K E, Verykios X E, Effect of Altervalent Cation Doping of TiO2 on Its Perform-ance as a Photocatalyst for Water Cleavage[J]. The Journal of Physical Chemistry, 1993, 97(6): p.1184-1189.
    [73] Soria J, Conesa J C, Augugliaro V, Palmisano L, Schiavello M, Sclafani A, Dinitrogen Photoreduction to ammonia over Titanium Dioxide Powders Doped with Ferric Ions[J]. The Journal of Physical Chemistry, 1991, 95(1): p.274-282.
    [74] Chen J, Yao M, Wang X, Investigation of Transition Metal Ion Doping Behaviors on TiO2 Nanoparticles[J]. Journal of Nanopaticle Research, 2008, 10(1): p.163-171.
    [75] Di Paola A, Garcia-Lopez E, Ikeda S, Marci G, Ohtani B, Palmisano L, Photocatalytic Degradation of Organic Compounds in Aqueous Systems by Transition Metal Doped Polycrystalline TiO2 [J]. Catalysis Today, 2002, 75(1-4): p. 87-93.
    [76] Kim S, Hwang S J, Choi W, Visible Light Active Platinum-ion-doped TiO2 Hotocatalyst[J]. The Journal of Physical Chemistry B, 2005, 109: p. 24260-24267.
    [77] Klosek S., Raftery D., Visible Light Driven V-doped TiO2 Photocatalyst and Its Photooxidation of Ethanel[J]. The Journal of Physical Chemistry B, 200l, 105(14): p.2815-2819.
    [78] Iwasaki M., Hara M., Kawada H., Tada H., Ito S., Cobalt Ion-doped TiO2 PhotocatalystResponse to Visible light[J]. Journal of Colloid and Interface Science, 2000, 224(1):p.202-204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700