铝电解槽阳极铁—碳接触压降仿真与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的不断发展,在国民生产生活中铝需求量不断增加,铝工业的规模发展十分迅速。铝电解行业是耗能大户,在世界能源日益紧张的今天,对其进行节能降耗研究是十分必要的。针对国内铝电解槽阳极铁-碳压降过高的现状,本文以ANYSY有限元软件为平台,建立了铝电解槽阳极热场、应力场、电场耦合模型,对铝电解槽阳极铁-碳接触压降进行模拟计算,研究不同磷生铁膨胀性对接触压降的影响、不同质量的阳极炭块与磷生铁膨胀匹配性,并运用所建模型模拟计算了碳碗尺寸、形状的改变对阳极接触电阻的影响。主要成果如下:
     1)运用ANSYS有限元分析软件建立了含接触电阻的铝电解槽阳极热场、应力场和电场仿真模型,并对其进行了正确性验证。
     2)讨论了影响接触电阻的各项因素,得出影响铝电解槽阳极铁-碳接触电阻的主要因素为接触压力。针对接触压力为主要影响因素的接触电阻计算公式,通过仿真与现场测试相结合的手段确定铁-碳接触的接触电阻系数Kc,从而实现铝电解槽阳极铁-碳接触电阻的计算。
     3)运用仿真的手段确定某铝厂最佳磷生铁膨胀系数,仿真结果表明:在确保安全生产的前提下,通过膨胀系数的调整,可以降低阳极接触压降20.4 mV。
     4)通过不断调整磷生铁膨胀系数,得到不同磷生铁膨胀系数下阳极炭块应力及阳极压降,拟合出膨胀系数与阳极压降的匹配曲线。对各个铝厂不同质量阳极炭块采取不同的磷生铁膨胀系数进行匹配,以期最大限度的减小铁-碳接触电阻。
     5)针对阳极碳碗尺寸对接触压降的影响进行仿真模拟研究,分别对碳碗直径增大、深度增加进行了热场,应力场和电场研究,并与传统碳碗进行比较,分析总结了不同改造方式对降低阳极接触压降的贡献。
     6)针对阳极上开槽技术,本文对其进行仿真模拟研究,并与传统阳极进行比较,确定其对接触电阻的影响,并分析了上开槽在实践过程中可能存在的问题。
With the development of economy, there is a increasing demand for aluminum production, thus the aluminum industry is developing rapidly. The aluminum industry is a main energy consumer, as the energy crisis, is becoming increasingly serious, it is extremely necessary to conduct research on its energy-saving. To reduce the high contact voltage drop of anode in the aluminum reduction cell, in this paper, the finite element software-ANYSY was used to build thermal, stress, electric field coupled model in aluminum reduction cell anode, and the numerical simulation was conducted for the aluminum anode iron-carbon contact voltage drop. The influences of the expansion of phosphorous pig iron on the contact voltage drop was studied, and the matching attribute of the anode carbon blocks of different qualities and the expansion of phosphorus pig iron were determined. Additionally the model was used to simulate how various the carbon bowl size and shape affect the anode contact resistance. The main results are as follows:
     1) The finite element software ANSYS was used to build the coupled thermal, stress, electric field model of the aluminum reduction cell anode with contact resistance. Its correctness was verified.
     2) The various factors which affect the contact resistance were discussed, indicating that the main influence factor of anode iron-carbon contact resistance is the contact pressure. Based on the contact pressure dominated formula of the contact resistance, the coefficient Kc of iron-carbon contact resistance was determined with the combination of simulating and field test. In this way the anode iron-carbon contact resistance could be calculated.
     (3) The simulation method was used to determine the best expansion coefficient of phosphorus pig iron of a operating smelter, the results show that:on the premise of safety in production, an adjustment of the expansion coefficient of phosphorus pig iron, could decrease the contact voltage drop of the anode to up to 20.4 mV.
     (4)By adjusting the coefficient of expansion of phosphorus pig iron, the stress of the anode carbon block and the anode voltage drop with different Kc can be obtained, and the curve was fitted between expansion coefficient and the anode voltage drop. Different qualities of anode carbon block in aluminum could be matched with different expansion coefficients of phosphorus pig iron, in order to reduce the iron-carbon contact resistance to the highest extent.
     (5) The impact of the carbon bowl size on the contact voltage drop was studied numerically, the thermal, stress, electric fields of carbon bowl with increased diameter and depth were compared with the conventional anode, the contribution of the different rehabilitate methods to reduce the anode contact drop were analyzed.
     (6) The anode upper-surface-slotting technology was numerically studied and compared with the conventional anode. Its'effect on the contact resistance was determined. The possible problems of the technology in practice were analyzed
引文
[1]刘业翔,李劫.现代铝电解[M].北京:冶金工业出版社,2008:2-10.
    [2]李清.大型预焙槽炼铝生产工艺与操作实践[M].长沙:中南大学出版社,2005:5-20
    [3]周正明.导流型铝电解槽的电热场仿真与优化研究[D].长沙:中南大学,2004:1-4.
    [4]C. Vanvoren, P. Homsi, J. Basquin. AP 50:The Pechiney 500kA Cell[J]. Light Metals.2001,12(10):221-226.
    [5]邱竹贤.21世纪伊始铝工业的新进展[J].中国工程科学,2003,5(4):41-46.
    [6]S. Larsen, J. Akhtar. Carbon Nanofiber Additions to Electrode Binder Phase for the Aluminium Electrolysis [J]. Light Metals,2007,2(25):859-864.
    [7]Aladdiny.2010年中国电解铝产量数据[EB/OL].[2011,4].http://www.ometal.com /bin/new/2011/1/27/stat/20110127171116097197.htm.
    [8]余海波,张延安.我国铝工业循环经济问题浅析[J].中国有色金属,2010,10:39-42.
    [9]Les Edwards. Inert Anodes and Other Technology Changes in the Aluminum Industry-the Benefit Challenges and Impact on Present Technology[J]. Journal of Metals,2001,5:28-30.
    [10]张成行,宋明刚,钱开平等.铝电解槽用干式保温防渗料的研制及应用[J].耐火材料,2003,37(6):339-441.
    [11]N.R Dando, Tang.R. Impact of Tending Practices on Fluoride Evolution and Emission from Aluminum Smelting Pots[J]. Light Metals,2006,11:203-206.
    [12]I. Tabsh, M. Dupuis, A. Gomes. Process Simulation of Aluminum Reduction Cells[J]. Light Metals,1996,12(10):451-457.
    [13]M. Dupuis, R. Lacroix. Development of 2D Dynamic Model of an Aluminum Reduction Cell[C]. Proceeding of the 38th Conference on Light Metal, CIM.1999:41-55.
    [14]李贺松,梅炽,廖爱华.铝电解槽焦粒焙烧过程中热应力场数值模拟[J].中南大学学报,2004,10(05):778-781.
    [15]周乃君,周正明,姜昌伟.铝电解槽电、磁、流场数值计算方法的进展[J].甘肃冶金,2003,12(25):1-5.
    [16]周萍,周乃君,梅炽,等.铝电解槽内铝液电磁搅拌流动的数值模拟[J].过 程控制学报,2003,8(03):295-299.
    [17]李茂,周孑民.大型铝电解槽母线配置的数值仿真与优化[J].中南大学学报(自然科学版),2009,40(3):562-567.
    [18]冯乃祥.一种异型阴极炭块结构铝电解槽:中国,ZL 200710010523.4(P).2007.
    [19]田应甫,冯乃祥,王永祥.新型阴极高效节能铝电解槽工业试验[C].2009中西部第二届有色金属工业发展论坛,重庆,2009:144-146.
    [20]Liang xuemin. Investgation and Application of Stopping or Starting Aluminium Cells with Full Current[J]. Aluminium,2009,12(4):77-81.
    [21]Donald R. Sadoway. Inert Anodes for the Hall-Heroult Cell:The Ultimate Materials Challenge[J]. Journal of Metals,2001,5(4):34-35.
    [22]谢刚,俞小花,李荣兴.惰性可湿润性TiB_2阴极材料在铝电解中的应用[J].云南冶金,2010,12(04):121-125.
    [23]刘业翔.铝电解惰性阳极与可湿润性阴极的研究与开发进展[J].轻金属,2001.5:26-27.
    [24]刘先曙.电接触材料的研究和应用[M].北京:国防工业出版社,1979:3-6.
    [25]李劫,程迎军,周乃君,等.预焙阳极铝电解槽阳极电、热场的数值仿真与优化[J].中国有色金属学报,2003,4:485-490.
    [26]Marc Dupuis. Development and Application of an Ansys Based Thermo-Electro-Mechanical Anode Stub Hole Design Tool[J]. Light Metals 2010.
    [27]M. Dupuis, C. Fradet. Using ANSYS Based Aluminium Reduction Cell Energy Balance Models to Assist Efforts to Increase Lauralco's Smelter productivity[C]. ANSYS 8 Int. Conf., Vol 1998,6(2):233-240.
    [28]T.X. Hou, Q. Jiao, E. Chin, W. Crowell, at al. A Numerical Model for Improving Anode Stub Design in Aluminum Smelting Process [J]. Light Metals, TMS,1995:755-761.
    [29]H. Fortin, M. Fafard, N. Kandev, P. Goulet. FEM Analysis of Voltage Drop in The Anode Connector Assembly[J]. TMS,2009:1055-1060.
    [30]Daniel Richard, Mario Fafard. Aluminum Reduction Cell Anode Stub Hole Design Using Weakly Coupled Thermo-Electro-Mechanical Finite Element Models[J]. Finite Elements in Analysis and Design,2001,3(7):287-304.
    [31]Daniel Richardl, Patrice Goulet. Challenges in Stub Hole Optimisation of Cast Iron Rodded Anodes[J]. Light Metal,2009,12(2):1161-1175.
    [32]Daniel Richarda, Mario Fafarda. Carbon to Cast Iron Electrical Contact Resistance Constitutive Model for Finite Element Analysis[J]. Journal of Materials Processing Technology,2003,13(2):119-131.
    [33]Daniel Richard, Mario Fafard. Aluminum Reduction Cell Anode Stub Hole Design Using Weakly Coupled Thermo-Electro-Mechanical Finite Element Models [J]. Finite Elements in Analysis and Design,2001, (37):287-304.
    [34]殷恩生,蔡祺风.铝电解阳极组装用磷生铁:中国,ZL CN99104248.4(P).1999.
    [35]靳文军,任必军,李贺松等.伊川铝厂阳极组装新型磷生铁配方的研究[J].轻金属,2008.10:30-34.
    [36]陈国青.降低阳极铁-炭压降的生产实践[J].技术创新,2006,2:1-3.
    [37]赵红军.预焙阳极炭块相邻碗孔之间开槽技术节能降耗的作用[J].材料与冶金学报,2010,6:92-94.
    [38]刘建刚.上开槽预焙阳极的生产实践和节能探索[J].有色冶金节能,2010,8(4):24-26.
    [39]李鸿道,张松江,李殿周.中孚320kA电解槽降低阴极压降的措施浅析[C].第四届豫晋两省有色金属工业发展论坛,郑州,2006:361-364.
    [40]刘伟,李劼.采用电接触模型的铝电解槽阴极电压降分析[J].材料与冶金学报,2008,7(2):99-102.
    [41]高鹏.质子交换膜燃料电池接触电阻的数值模拟分析[D].天津:天津大学,2005.
    [42]杨世民,陶文铨.传热学[M].北京:高等教育出版社,2006.
    [43]周孑民,李茂,王长宏.石墨化阴极铝电解槽电热场仿真研究[J].碳素技术,2007,2:7-12.
    [44]李劫程迎军.预焙阳极铝电解槽阳极电、热场的数值仿真与优化[J].中国有色金属学报,2003,4:485-451.
    [45]刘伟.铝电解槽多物理场数学建模及应用研究[D].长沙:中南大学,2008:46-47.
    [46]邵红艳,朱润祥,任茶仙.结构温度场和温度应力场的有限元分析[J].宁波大学学报(理工版),2003,16(1):57-59.
    [47]付伟峰,余明清,俞康泰.梭式窑内卫生瓷烧成过程热应力场的三维有限元分析[J].硅酸盐通报,2000,12(6):16-21.
    [48]周萍,周乃君等.传递过程原理及其数值仿真[M].长沙:中南大学出版社,2006:304-307.
    [49]孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社,1986.
    [50]杨小琼.计算机辅助教学丛书(传热学)[M].西安:西安交通大学出版社,1992.
    [51]郭宽良.计算传热学[M].合肥:中国科学技术大学出版社,1988.
    [52]程迎军.预焙阳极铝电解槽阳极电、热场的数值仿真与优化[D].长沙:中南大学,2003.
    [53]I. Bajo and E. Liz. Periodicity on Discrete Dynamical Systems Generated by a Class of Rational Mappings[J]. Difference Equations and Applications,2006,12: 1201-1211.
    [54]梅炽.有色冶金炉窑仿真与优化[M].北京:冶金工业出版社,2001:138-158.
    [55]ANSYS INCORPORATED.ANSYS用户手册[M].北京:ANSYS中国分公司,2000:122-147.
    [56]孔祥谦.有线单元法在传热学中的应用(第三版)[M].北京:科学出版社,1998:45-54.
    [57]王长宏.300kA石墨化阴极铝电解槽工业试验与数值仿真研究[D].长沙:中南大学,2006:20-21.
    [58]P. Terriault, F. viens,V. Brailovski. Non-Isothermal Finite Element Modeling of a Shape Memory Alloy Actuator Using ANSYS[J]. Computation Materials Science,2006,7(36):397-410.
    [59]Prosenjit Santra, Vijay Bedakihale, Tata Ranganath. Thermal Structural Analysis of SST-1 Vacuum Vessel and Cryostat Assembly Using ANSYS[J]. Fusion Engineering and Design,2009,6(84):1708-1712.
    [60]R. J. Ball, R. Evans, R. Stevens. Finite Element(FE) Modeling of Current Density on the Valve Regulated Lead/acid Battery Positive Grid[J]. Journal of Power Sources,2002,1(103):213-222.
    [61]马素红.基于ANSYS的大型预焙铝电解槽热电场的仿真[D].北京:北方工业大学,2007:9-13.
    [62]梅炽,汤洪清.铝电解槽电、热解析数学模型及数值仿真试验[J].中南矿冶学院学报,1986,12(2):31-32.
    [63]张程浩,何生平,兰周等.降低预焙铝电解槽阳极覆盖料厚度的实践与分析[J].有色冶金节能,2010,05.
    [64]田本良.碳素材料的弹性模量、强度和破坏变形率[J].碳素技术,1994,(4):1-8.
    [65]余肇元,李艳梅,朱扶先.热处理工艺对建筑用PC钢棒强韧性的影响[J].材料与冶金学报,2002,10(3):212-214.
    [66]Ren Yao, Sun zhi. Study on Electrolytic Aluminium Carbon Anode Preparation with Calcined Anthracite[J]. Procedia Earth and Planetary Science,2009,9 (1): 694-699.
    [67]邓星球.160KA预焙阳极电解槽阴极内衬电-热-应力计算机仿真研究[D].2004.7:19-20.
    [68]李景江,邱竹贤.工业铝电解槽内衬材料的导热系数[J].轻金属,1987,11:20-25.
    [69]李德祥,郭天立.铝电解槽槽内熔体与槽帮间换热系数的计算[J].有色金属,1993,(1):45-52.
    [70]梅炽.有色冶金炉设计手册[M].北京:冶金工业出版社,2000.
    [71]Xie Hongwei, Wang Jinxia. Research on Low Temperature Aluminium Electrolysis in Molten Salts [J]. Materials Review,2009,11:24-29.
    [72]Kai Grjotheim, Halvor Kvande. Understanding the Hall-Heroult Process for Production of Aluminum[M]. Germany:Aluminum-Verlag, Dusseldorf.1986: 152-158.
    [73]杨重愚.轻金属冶金学[M].北京:冶金工业出版社,1991.
    [74]马永国.铝电解预焙阳极综合评述[J].矿业工程,2000,20(3):6-8.
    [75]程礼椿.电接触理论及应用[M].北京:机械工业出版社,1988.
    [76]程礼椿.论接触电阻模型与应用问题[J].高压电器,1993,2:34-40.
    [77]R. Mauluci. Multispot Model of Contacts Based on Surface Features[C].15th International Conference on Electrical Contact. Canada:1990:625-634.
    [78]霍福特,施耐德.电接触[M].程积高,宋羽.北京:机械工业出版社,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700