广东东莞汉族mtDNA遗传多态性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过研究广东东莞汉族的线粒体DNA(mtDNA)突变位点,分析其单倍型类群,充实广东汉族线粒体DNA基因库。同时通过将东莞汉族线粒体DNA单倍型数据同其他地区的汉族以及少数民族的线粒体DNA数据比较,了解东莞汉族与其他地区汉族人群之间的关系,了解东莞汉族与其他民族之间的母系遗传关系,为有关广东汉族人群的起源与迁移的历史记载提供遗传学方面的依据。
     方法:在知情同意原则下,采用EDTA抗凝收集广东东莞汉族三代之内无亲缘关系的107名健康个体,抽提其DNA,建立基因库。对所有个体的线粒体高变区进行测序,通过与线粒体DNA标准序列(即剑桥序列,CambridgeReference Sequence,CRS)进行比较,寻找突变位点,初步划分单倍型类群,再结合编码区的限制性片段多态性、部分序列突变位点等信息,确认样本的线粒体DNA进行单倍型分型。参考已经发表的mtDNA数据,计算东莞汉族与其他地区汉族和少数民族之间的遗传距离,并进行主成分分析。
     结果:获得了东莞汉族线粒体DNA高变区序列信息和部分编码区的限制性片段多态性、部分序列数据。通过单倍型划分,发现在东莞汉族群体中存在多种(亚)单倍型类群,比较高频率的单倍型类群是D、M7、B和F1,分别为18.7%,18.7%,17.8%和14.0%,而单倍型类群A、C、G2、Z的频率很低,分别是2.8%,1.9%,1.9%和1.9%。
     结论:通过各地区汉族人群之间,以及东莞汉族和其他少数民族的比较,发现广东东莞汉族具有典型的南方汉族人群特点,并能代表广东地区汉族人群的母系遗传结构。通过东莞汉族与少数民族限制性片段多态性单倍型数据的分析,发现广东汉族与百越后裔、苗、瑶族等族关系密切,符合广东汉族是百越后代,在其形成的过程中融合了苗、瑶等少数民族的历史记载。
Objective: To amplify the mtDNA gene pool of Guang-Dong Han Populations which is a ancient population in Guang-Dong Province, the research the mtDNAs of the Dong-Guan Han Population and analysis the mtDNA haplogroups have been done. Comparing the mtDNA gene pool with other region Han Populations and ethnic Populations to know the Guang-Dong Han Population origins, evolving, migration and the genetic characters.
     Methods: Blood samples of 107 unrelated individuals from Dong-Guan Han Population were collected with appropriate informed consent. Genomic DNA was extracted by. Sequencing the HVSⅠ,Ⅱto find the mutation sites in the HVSⅠ,Ⅱby comparing with the CRS. Haplotyping the mtDNAs by the mutation sites and other data include the RFLP etc. The genetic distance and principal component analysis have been done with these mtDNA data.
     Results: Blood samples of 107 unrelated individuals from Dong-Guan Han Population were collected with appropriate informed consent. The mtDNA mutation sites in HVSⅠ,Ⅱand coding region have been funded. There are some (sub-) haplogroups existing in the Dong-Guan Han Population. Haploroup D, M7, B and F1 are existed with high frequency. These haplogroups including A, C, G2 and Z have a relative low frequency. By comparing the other regional Han Populations, Dong-Guan Han's maternal genetic construction is similar with the Guang-Zhou Han and Yun-Nan Han Populations. At the same time Dong-Guan Han Population have a proximate genetic relationship between the Yao, Miao and Dai ethnic Groups.
     Conclusion: The Guang-Dong Han Populations have a typical south origin mtDNA haplogroup profile by analysis the Han Populations. The maternal genetic structure of Guang-Dong Han Population can be representing by the Dong-Guan Han Population. The Guang-Dong Han population have originate from Bai-Yuei Tribe and gene admixture with other ethic populations, such as Miao populations, Yao populations..
引文
[1] 侯亚梅.东亚和早期人类第一次大迁徙浪潮.人类学学报.1998,17(14):293-309.
    [2] 杜若甫,肖春杰.从遗传学探讨中华民族的源与流.中国社会科学.1997,4:139-149
    [3] 许丽萍,杜若甫.人类基因组多样性计划的新动态.中华医学遗传学杂志.1999,16(2):108-110
    [4] Jarvik GP, Brunzell JD, Austin MA, etal. Genetic predictors of FCHL in four large pedigrees, Influence of ApoB level major locus predicted genotype and LDL subclass phenotype. Arterioscler Thromb Vasc Biol. 1994, 14: 1687-1694
    [5] 肖春杰,郝露萍,张卫红,陶永琏,周曾娣,杜若甫.德昂族红细胞血型分布的研究.遗传学报,1995,17(5):8—10.
    [6] 肖春杰,郝露萍,张卫红,陶永琏,周曾娣,杜若甫.纳西族和普米族的红细胞血型分布.遗传学报,1995,22(4):252-257.
    [7] 郝露萍,肖春杰,张卫红,陶永琏,周曾娣,杜若甫.云南“本人”红细胞血型分布与契丹人血缘关系的讨论.人类学学报,1995,14(3):247-254
    [8] 贺林.解码生命一人类基因组计划和后基因组计划.北京:科学出版社,2000.
    [9] Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990, 18(22): 6531-6535.
    [10] Zabeau M, Vos P. Selective restriction fi-agment amplification: a general method for DNA fingerprinting. European Patent Office, 1993, publication 0534858A1.
    [11] Edwards AL, Civitello A. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet, 1991, 49 (4): 746-752.
    [12] Brookes AJ. The essence of SNPs. Gene, 1999, 234: 177-186.
    [13] 刘万清,贺林.SNP一为人类基因组描绘新的蓝图.遗传,1998,20(6):38—40.
    [14] Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Lane CR, Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley GQ, Lander ES. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet, 1999, 22 (3): 2312-2381
    [15] Lander ES, Linton LM, Birren B; et al. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822): 860-921
    [16] Jorde LB, Rogers Ar, Bamshad M, Watldns WS, Krakowaik P, Sung S, Kere J, Harpending HC. Microsatellite diversity and the demographic history of modern humans. Proc Natl Aced Sci USA, 1997, 94: 3100-3103.
    [17] Chu J Y, Huang W, Kuang S Q. Genetic relationship of populations in China. Proc Natl Aced Sci USA, 1998, 95: 11763-11768.
    [18] Hammer MF. A recent insertion of an Alu element on the Y chromosome is a useful marker for human population studies. Mot Biol Evol, 1994, 11(5): 749-761
    [19] Althetid TK, Hammer MF. Ecidence for a possible Asian origin of YAP+Y chromosomes. Am J Hum Genet, 1997, 61 (2): 462-466
    [20] Anderson S, Bankier AT, Barrell BG, Bruijin MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG. Sequece and organization of the human mitochondrial genome. Nature, 1981, 290(5806): 457-465
    [21] Brown WM, Gerorge M Jr, Wilson AC. Rapid evolution of animal mitochondrial DNA. Proc Natl Aced Sci USA, 1979, 76(4): 1967-1971
    [22] Wallace DC. Mitochondrial genetics: aparadigrn for aging and degenerative disease. Science, 1992, 256(5057): 628-632
    [23] Santorelli FM, Shanske S, Macaya A, DeVivo DC, DiMauro S. The mutation at nt 8993 of mitochondrial DNA is a common cause of Leigh' s syndrome. Ann. Neurol, 1993, 34: 827-834.
    [24] Ballinger SW, Shoffner JM, Gebhart S, et al. Mitochondrial diabetes revisited. Nature Genet, 1994, 7 (4): 458.
    [25] Kadowaki T, Sakura H, Otabe S, et al. A subtype of diabetes mellitus associated with a mutation in the mitochondrial gene. Muscle Nerve, 1995, 3(11): S137.
    [26] Huoponen K, Vilkki J, Aula P, et al. A new mtDNA mutation associated with Leber hereditary optic neuroretinopathy. Am J Hum Genet, 1991, 48(6): 1147-1153
    [27] 周雪平,张伟娟,贾振军,吴谨,李英碧,侯一平.线粒体DNA的研究进展及其法医学应用.法医学杂志,2004,20(2):113—119
    [28] Wallace DC. Mitochondrial DNA variation in human evolution, degenerative disease, and aging, Am J Hum Genet, 1995, 57: 201-223
    [29] Torroni A. mtDNA haplogroups in human populations and disease studies, J Cult Heritage, 2000, 1: 3334
    [30]Ballinger SW, Schurr TG, Torroni A, Gan YY, Hodge JA, Hassan K, Chen KH, Wallace DC. Southeast Asian mitochondrial DNA analysis reveals genetic continuity of ancient monogoloid migrations. Genetics, 1992,130:139-152
    [31] Wallance DC, Brown MD, Lott MT. Nucleotide mitochondrial DNA variation in human evolution and disease. Gene, 1999,238:211-30.
    [32]Horai S, Hayasaka K. Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondrial DNA. Am J Hum Genet, 1990, 46:828 - 42.
    [33]Antonio B, D James H, Cintia A, Jose Jesus, Thomarat F, Luis Vicente. Structure and evolution of the mitochondrial DNA complete control region in the Lizard Lacerta Dugesii (Lacertidae, Sauria). J Mol Evol, 2003, 56(1):46 - 53.
    [34] Vigilant L, Stoneking M, Harpending H, Hawkes K, Wilson AC. African populations and the evolution of human mitochondrial DNA. Science, 1991,253(5027): 1503-1507
    [35]Macaulay V, Richards M, Hickey E, Vega E, Cruciani F, Guida V, Scozzari R, Bonne -Tamir B, Sykes B, Torroni A. The emerging tree of West Eurasian mtDNAs: a synthesis of control-region sequences and RFLPs. Am J Hum Genet, 1999, 64:232-249
    
    [36]Ingman M, Kaessmann H, Paabo S, Gyllensten U. Mitochondrial genome wariation and the origin of modern humans. Nature, 2000, 408:708-713.
    [37]Finnila S, Mervi S, Lehtonen, Majamaa K, Phylogenetic Network for European mtDNA. Am J Hum Genet. 2001, 68:1475 - 1484.
    [38]Kivisild T, Tolk HV, Parik J, Wang YM, Papiha SS, Bandelt HJ, Ville R. The Emerging Limbs and Twigs of the East Asian mtDNA Tree. Mol Biol Evol, 2002, 19(10):1737-1751.
    [39]Mishmar D, Pesini DR, Golik R, Macaulay V, Clark AG, Hosseini S, Brandon M, Easley K, Chen E, Brown MD, Sukernik RI, Olckers A, Wallace DC. Natural selection shaped regional mtDNA variation in humans. PNAS, 2003, 100 (1):171 - 179.
    [40]Kong QP, Yao YG, Sun C, Bandelt HJ, Zhu CL, Zhang YP. Phylogeny of East Asian Mitochondrial DNA Lineages Inferred from Complete Sequences. Am J Hum Genet, 2003, 73:671 - 676.
    [41]Cann RL, Stoneking M, Wilson AC. Mitochondrial DNA and human evolution. Nature, 1987, 325(6099):31-36
    [42] Yao YG, Kong QP, Bandelt HJ, Kivisild T, Zhang YP. Phylogeographic differentiation of mitochondriai DNA in Han Chinese. Am J Hum Genet, 2002, 70(3): 635-651
    [43] Wallace DC, Brown MD, Lott MT. Nucleotide Mitochondrial DNA variation in human evolution and disease. Gene, 1999, 238: 211-30
    [44] Comas D, Calafell F, Matey E, Perez-Lezaun A, Bosch E, Martinez-Arias R, Clarimon J, Facchini F, Fiori G, Luiselli D, Pettener D, Bertranpetit J. Trading genes along the Silk Road: mtDNA sequences and the origin of central Asia: evidence from maternal DNA lineages. Am J Hum Genet, 1998, 63: 1824-1838
    [45] Yao YG, Lu XM, Luo HR, Li WH, Zhang YP. Gene admixture in the silk road region of China: evidence from mtDNA and melanocortin 1 receptor polymorphism. Genes Genet Syst, 2000, 75(4): 173-178
    [46] Calli-Sforza LL, Feldman MW. The application of molecular genetic approaches to the study of human evolution. Nat Genet, 2003, 33: 266-75
    [47] 贺林,严明,王世浚.中国汉族人群线粒体DNA RFLP的初步研究.科学通报,1987,32(23):1826-1828
    [48] 俞明彭,邱信芳,薛京伦,等中国汉族、维吾尔族、哈萨克族和回族群体线粒体DNA多态性的研究.中国科学(B辑),1988,1:60-70
    [49] Kong Q P, Bandelt H J, Sun C, Yao YG; Salas A, Achilli A, Wang CY, Zhong L, Zhu CL, Wu SF, Torroni A, Zhang YP. Updating the East Asian mtDNA phylogeny: a prerequisite for the identification of pathogenic mutations, Hum Mol Genet, 2006, 15(13): 2078-2080
    [50] 文波.Y染色体、mtDNA多态性与东亚人群的遗传结构(博士论文).上海:复旦大学,2003
    [51] 《广东年鉴·1998)》(广东年鉴社1998年版)
    [52] 广东省博物馆等.《广东饶平古墓发掘简报》.文物资料丛刊,第八辑,1983年
    [53] 李新魁.《广东的方言》.第47-48页,广州:广东人民出版社,1984年
    [54] 练铭志.试论广东汉族的形成及其与瑶、壮、畲等族的融合关系.山客之家,2006
    [55] 曾骐.《潮汕史前文化的新研究》.暨南大学出版社,1994年
    [56] 高雅,阎春霞,金天博,赖江华,陈腾,李生斌.中国19个不同地区汉族亚群的分子遗传学关系.西安交通大学学报(医学版),2005,26(2):111-114
    [57] 班贵宏,褚嘉,许绍斌,杨昭庆,钱亚屏,俞建昆,纳剑波,刘晓娟,张思仲.MICA基因微卫星多态在中国13个群体中的分布.遗传学报,2001,28(12):1085~1092
    [58] 李焱,汤雪薇,吴洁莹,袁思敏,杨昕,黄以宁,廖灿.广东汉族人群HLA-B基因多态性研究.中华医学遗传学杂志,2006,23(1):50-54,
    [59] 台运春,陆惠玲,李海燕,唐振亚,宁忠.广东汉族人群15个STR基因座的遗传多态性.广东公安科技,2004,4:17-21
    [60] 张幼芳.浙江汉族人群13个STR基因座的遗传多态性及法医学应用研究.公安学刊(浙江公安高等专科学校学报),2002,73(5):54~56
    [61] 李志强等,青岛地区汉族人群13个STR基因座的频率分布及法医学应用.法律与医学杂志,2002,9(4):219-222
    [62] 庾蕾,曹露媚,刘秋玲等.广州汉族mtDNA高变区Ⅰ的多态性.中国法医学杂志,2002,17(2):100-102
    [63] Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Tumbull DM, Howell N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet, 1999, 23: 147
    [64] Yao YG; Zhi GY, Zeng DZ, et al. Frequence of the mtDNA 9 bp deletion among Chinese ethnic groups. Prog Nat Sci, 2001, 11: 358~364.
    [65] 高路,董永利,郝肇菁,王欧,杨智丽,苏艳华,郑冰蓉,昝瑞光,肖春杰.云南16个少数民族群体的线粒体DNA多态性研究.遗传学报,2005,32(2):118-123
    [66] Yao YG, Nie L, Harpending H, Fu YX, Yuan ZG, Zhang YP. Genetic Relationship of Chinese Ethnic Populations Revealed by mtDNA Sequence Diversity. Am J Phys Anthropol, 2002, 118: 63-76
    [67] 陆韧.明代云南汉族移民定居区的分布与拓展.中国历史地理论丛,2006,21(3):74-83
    [68] Wen B, Li H, Gao S, Mao XY, Gao Y, Li F, Zhang F, He YG, Dong YL, Zhang YJ, Huang WG, Jin JZ, Xiao CJ, Lu DR, Chakraborty R, Su B, Deka R, Jin L. Genetic Structure of Hmong-Mien Speaking Populations in East Asia as Revealed by mtDNA Lineages. Mol Biol Evol vol. 2005, 22 (3): 725-734
    [69] Yao Y G, Zhang Y P. Phylogeographic analysis of mtDNA variation in four ethnic populations from Yunnan Province: new data and a reappraisal. J Hum Genet, 2002, 47: 311-318

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700