西藏藏族起源初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏藏族起源初探
     目的
     获得西藏藏族mtDNA和Y染色体DNA多态性信息,从母系遗传和父系遗传角度探索藏族的起源,同时也为藏族人群个体识别提供参考资料;评价藏族青少年的体型,获得藏族青少年的体型特点及发育规律,比较藏族与其他群体体型的差异,从体型角度分析藏族的起源;调查藏族的皮纹参数,丰富藏族的肤纹学资料,并从皮纹角度探索藏族的起源。
     方法
     采用分层整群抽样的方法,从西藏9所院校中抽取父母为藏族,本人始终在西藏生活,彼此间无亲缘关系,经体检健康的青少年为研究对象,年龄范围7~20岁,共调查2592人。在知情同意原则的基础上,分别进行问卷调查、体质测量(身高、体重、手长等12项体质指标)、掌指纹拓印、血样采集。采用Heath-Carter体型法计算并判定体型;观察指纹纹型、嵴线计数、掌褶纹类型、atd角等11项掌指纹参数;采用PCR、琼脂糖电泳分型法分析mtDNA V区和DYS287位点多态性;对mtDNA高变区I采用PCR扩增,然后测序,测序结果与剑桥标准序列比较,用EBI软件中ClustalW数据包进行排序,确定变异位点和变异类型,使用MEGA 2.1软件构建系统进化树,通过Arlequin2.0中的AMOVA程序进行分析拉萨、那曲藏族的遗传结构。
     结果
     1、拉萨、那曲两地区藏族mtDNA HVR I区序列与剑桥标准序列比较后,分别检测到31和34种单倍型,突变部位均有51处,碱基转换分别为141个和128个,分别占碱基突变的89.81%和88.89%,突变的热点部位分别出现在np16223和np16362,其突变频率分别为90.32%(npl6223)、64.51%(npl6362)和83.33%(np16223)、58.33%(np16362),两地区人群的核苷酸多样性分别为0.016058±0.008740(拉萨)和0.016084±0.008795(那曲);拉萨、那曲地区藏族在np 16180~16194区域形成的C重复单倍型分别为4种和9种。拉萨、那曲藏族群体的Mismatch分布曲线呈单峰,Tau值分别为6.331和5.590,进而推算出拉萨、那曲群体扩张时间分别发生在距今约5.3和4.7万年前。拉萨、那曲藏族群体间的差异占总变异的0.96%(P=0.1212)。系统进化树显示,拉萨、那曲藏族首先聚为一类,然后再与西安汉族、蒙古人和其他东亚人群聚为一类,各个人群最后与非洲人会聚成一大类。拉萨、那曲的基因变异度(h)分别为0.9862和0.9961;偶合概率分别为0.0466和0.0316。
     2、mtDNA V区检测到标准型和9bp缺失两种基因型,缺失型的频率为5.52%(其中拉萨市为4.88%,那曲地区为6.17%)。拉萨市和那曲地区两地藏族群体间mtDNAV区9bp缺失频率不具有显著性差异(X~2=0.131,P>0.05)。
     3、DYS287位点共检测到yAp~+和YAP~-两种基因型,YAP~+频率为54.28%(其中拉萨市为41.46%,那曲地区为62.50%),拉萨市和那曲地区两地藏族群体间DYS287位点yAp~+频率具有显著性差异(X~2=4.46,P<0.05)。
     4、藏族青少年的平均体型男性为偏中胚层的外胚层型(2.5-3.1-3.8),女性为外胚层-内胚层均衡型(3.7-2.6-3.4);男性的体型以外胚层系体型为主(58.52%),女性体型以内胚层系和(39.52%)外胚层系为主(38.81%);随着年龄的增长,藏族青少年的体型发展有一定的规律,男性由中胚层-外胚层均衡型经偏中胚层的外胚层型又发展回中胚层-外胚层均衡型,女性由中胚层-外胚层均衡型经历均衡的外胚层型发展为均衡的内胚层型。
     5、藏族指纹以斗型纹为主(58.99%),其次为箕型纹(38.25%),弓形纹出现频率最低(2.76.%),1手5指组合格局以5W出现频率最高(22.44%);总指嵴线计数为139.01(其中男性为144.75,女性为133.87);总指嵴线计数、ab嵴线计数、ad嵴线计数、td嵴线计数均表现男性大于女性,且总指嵴线计数、td嵴线计数男女性间比较有显著性差异(P<0.01);atd角在男性为42.95°,女性为43.28°,在男性均表现为右侧大于左侧,而在女性恰恰相反;掌褶纹中以普通型最多见(81.15%),悉尼型最少(1.31%),通贯手的出现频率为2.03%。藏族的皮纹密度随年龄的升高而减小,女性皮纹密度大于男性,且差异有显著性(P<0.05)。
     结论
     1、西藏藏族mtDNAHVRⅠ具有较高的核苷酸多态性,与东亚琉球人和台湾汉族非常接近,同时,系统进化树也显示藏族与蒙古人、东亚人具有较近的亲缘关系;拉萨、那曲藏族之间的基因多态性不具有显著性差异;本研究为藏族mtDNAD-loop区在法医学领域中的应用提供了基础数据,并进一步证实了mtDNA在法医学领域中可能具有很高的应用价值。
     2、藏族mtDNA V区9bp缺失的频率与蒙古族等北方起源的民族接近,验证了藏族属于我国北方族群的观点。
     3、藏族DYS287位点YAP~+频率很高,其中在牧区(那曲)保持最高的频率(62.5%),从而证明那曲是一个隔离群,是探索藏族起源的最佳人群。
     4、藏族男性青少年身体的线性程度高、外形上比较瘦削、肌肉较发达;藏族女性青少年较男性身体的脂肪含量多、线性程度相对较高;体型的地区差异(城区与牧区),主要发生在生长发育较快的时期,之后两个地区的体型较相似,但城区的营养状态好于牧区;与汉族等八个群体的青少年相比藏族青少年身体脂肪含量较少,骨骼、肌肉不甚发达,体型较纤细。
     5、藏族的体型与汉族很相似,与同属游牧民族的蒙古族和达斡尔族较相似,而与白色人种(芬兰、匈牙利)和黑色人种(尼日利亚)差异很大。从体型角度推测,藏族和汉族可能有共同的祖先。
     6、随着年龄的增长,藏族青少年的皮纹密度逐渐减小,ab皮纹密度、ad皮纹密度均是女性大于男性,藏族的皮纹密度大于同年龄组汉族的皮纹密度。通过对藏族等57个群体肤纹学参数的聚类分析推断藏族与汉族和氐羌氏族的亲缘关系较近,而与印度人和孟加拉人的亲缘关系较远。
Preliminary Study on the Origin of Tibetan Ethnic Population in Tibet
     Objective
     The purpose of this paper was to obtain the polymorphism information of mitochondria DNA and Y chromosome DNA on Tibetan ethnic population in Tibet for exploring the origin of Tibetan ethnic population with maternal and paternal inheritance, to provide the reference data for individual identification of Tibetan ethnic population, and to evaluate the somatotype of the Tibetan adolescent for obtaining the character and developmental regularity of the Tibetan ethnic population, to compare the Tibetan somatotype with the other groups' in order to analyzing the origin of Tibetan ethnic population with somatotype, and to investigate the parameter of dermatoglyphics on Tibetan ethnic population for accumulating the dermatoglyphical data of Tibetan ethnic population and exploring the origin of Tibetan ethnic population with dermatoglyphics
     Methods
     The 2592 samples who were healthy and lived in Tibet all the time were selected from unrelated adolescents aged from 7 to 20 years old in nine schools of Tibet with stratified cluster sampling method. 12 anthropometric measurement indexes including height, weight, hand length and so on were measured. The somatotype were evaluated by Heath-Carter somatotyping method. 11 dermatoglyphical parameters including the type of finger and palm, finger ridge count, atd angle and so on were assessed, mtDNA region Vand DYS287 locus were amplified and typed by gelose electrophoresis. The polymorphism of mtDNA Hypervariable regionⅠwas amplified by polymerase chain reaction, then sequenced on ABI-3100Avant. Compared to Combridge reference sequence, the sequences were sorted by ClustalW database in EBI software. The position and type of variation were found and arranged. Phylogenetic tree was constructed by MEGA2.1 software and the genetic structure of Tibetan ethnic population in Lhasa and Naqu was analysed by AMOVA program in Arlequin2.0.
     Results
     1. Compared to Combridge reference sequence, the sequence of Lhasa and Naqu were detected 31and 36 haplotypes, 51 loci, 141and 128 base conversion (89.81% and 88.89% total mutation), the positions of mutational hot spot were np16223 and np16362, the frequency of mutations in Lhasa and Naqu was 90.32%, 64.51% and 83.33%, 58.33% respectively. The nucleotide diversity in Lhasa and Naqu was 0.016058±0.008740, 0.016084±0.008795 respectively. The poly-C haplotype of Lhasa and Naqu in np16180-np16194 was 4 and 9 respectively. The mismatch distribution curve of Lhasa and Naqu were single peak, the Tau values was 6.331 and 5.590 respectively. The expending time of Lhasa Tibetan ethnic population was 53 thousands years ago and Naqu Tibetan ethnic population was 42 thousands years ago. The variation between Lhasa and Naqu population is 0.96 % (P=0.1212). Phylogenetic tree shows Lhasa and Naqu population first clustering, then Han nationality of Xi'an, Mongolian and other East-Asian group clustering, finally, the African and all population clustering. The genetic diversity of Lhasa and Naqu is 0.9862 and 0.9961, respectively. The genetic identity of Lhasa and Naqu is 0.0466 and 0.0316, respectively.
     2. We detected two gene types that was normal type and the type of 9bp deletion in mtDNA region V. The frequency of 9bp deletion was 4.88% in Lhasa group, 6.17% in Naqu group and the total frequency of 9bp deletion was 5.52%. There was no significant difference between Lhasa group and Naqu group in mtDNA region V 9bp deletion(X~2=0.131, P>0.05).
     3. We observed two gene types: YAP~+ and YAP in DYS287 locus. The frequency of YAP~+ 54.28%, of the total was 4.46%, 62.50 in Lhasa and Naqu respectively. There was no significant difference between Lhasa group and Naqu group in DYS287 locus YAP~+(X~2=4.46, P<0.05).
     4. The average somatotype of Tibetan adolescents in male is Mesomorphic Ectomorphy (2.40-3.29-3.72); in female, the average somatotype is central (3.65-2.87-3.32). The somatotype growth of Tibetan adolescents has special regularities: with age increasing the somatotypes develop from mesomorph-ectomorphy, mesomorphtic ctomorphy to mesomorph-ectomorphy in male, however, in female from Ectomorph-Endomorphy, Balanced Ectomorphy, Ectomorph-Endomorphy Ectomorphic Endomorphy to Balanced Endomorphy.
     5. In Tibetan ethnic population, whole(58.99%) was the dominant fingerprint type, Loop(38.25%) was secondly, arch(2.76. %) was the lowest. We observed the highest frequency on the combination pattern of five finger in one hand was 5W. Total finger ridge count was 144.75 in male, in female was 133.87 and the mean was 139.01. Total finger ridge count, ab finger ridge count, ad finger ridge count and td finger ridge count all showed man more than female, and significantly in total finger ridge count and td finger ridge count. Atd angle was 42.95°and 43.28°respectively in male and female. Atd angle showed right more than left in male, in female conversely. In palm crease, popular type (81.15%) was dominant, Sydney type (1.31%) was lowest and the frequency of simian line was 2.03%. The density of dermatoglyphics in Tibetan adolescents descent with age increasing, and differed in sex(P×0.05), man's more than female's.
     Conclusions
     1. Nucleotide diversity of Tibetan mtDNA is high, is closer to East Asian and Mongolian, and phylogenetic tree show the relation between Tibetan and East Asian and Mongolian is closer; the significant difference was not found between Lhasa and Naqu population. The study provides basic datas of Tibetan mtDNA D-loop for forensic medicine, these results suggest that sequence Polymorphism of mtDNA control region would be very useful in forensic practice as a marker for individual identification.
     2. The frequency of mtDNA regionⅤ9bp deletion in Tibetan ethnic population is similar to the races which origin from northen like Mongolia nationality, so it confirms that Tibetan ethnic population belongs to northern group in our country.
     3. Tibetan YAP~+ frequency of DYS287 locus is higher, and highest in Naqu(62.5%), so we conclude that the Tibetan ethnic population in Naqu is a isolate and they are the optimal samples to explore the origin of Tibetan ethnic population.
     4. The somatotypes of Tibetan adolescent in male are more slender and muscles are stronger, the shape is more slender and body fat is more in female. During the period of growing and developing quickly, the difference of the somatotypes of Tibetan adolescents between city(Lhasa) and pasture (Naqu) were significant and the nutritional status of city is prior to pasture. Compared with the other eight groups (like Han nationality and so on), body fat is less and skeleton and muscles are not very strong in Tibetan adolescents.
     5. The somatotype of Tibetan ethnic population is the most closed to Han nationality, and similar to nomads like Mongolian and dsfasfs, but differs from nordic (Finland, Hungary) and melanian (Nigeria). So we can conclude from somatotype that there are the common ancestor Tibetan ethnic population and Han nationality.
     6. The density of dermatoglyphics of Tibetan adolescents descent with age increasing, and differed in sex. Ab density of dermatoglyphics and ad density of dermatoglyphics show man more than female. The density of dermatoglyphics of Tibetan adolescents is more than Han nationality's. It is concluded that Tibetan ethnic population is closd to Han nationality and Diqiangshi nationality, however farther to Indian and Bengal through clustering 57 groups like Tibetan ethnic population.
引文
1 Anderson S, Bankier AT, Barrel BG, et al. Sequence and organization of the human mitochondria] genome. Nature, 1981,290:457.
    
    2 Brown WM, Prager EM, Wang A, et al. Mitochondrial DNA sequences of primates: tempo and mode of evolution.J Mol Evol, 1982,18(4):225-239.
    
    3 Clayton DA. Replication of animal mitochondrial DNA. Cell,1982 , 28(4):693-705.
    
    4 Wilson MR, StoneRing M, Holland MM,et al. Guidelines for use of mitochondrial DNA sequencing in forensic science. Crime Lab Digest, 1993, 20: 68.
    
    5 Giles RE, Blanc H, Cann HM, et al. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A . 1980, 77(11):6715-6719.
    
    6 Brown WM, Prager EM, Wang A, et al. Mitochondrial DNA sequences of primates: tempo and mode of evolution.J Mol Evol, 1982,18(4):225-239.
    
    7 Cann RL, Stoneking M, Wilson AC. Mitochondrial DNA and human evolution. Nature,1987,325:31-36.
    
    8 Torroni A, Lott MT, Cabell MF, et al. mtDNA and the origin of Caucasians: identification of ancient Caucasian-specific haplogroups, one of which is prone to a recurrent somatic duplication in the D-loop region. Am J Hum Genet, 1994,55:760-776.
    
    9 Horai S, Marogama K, Hayaska K, et al. mtDNA polymorphism in east Asian population with special reference to the people of Japan. Am J Hum Genet,1996, 59:579-590.
    
    10 Chen YS, Torroni A, Excoffier, et al. Analysis of mtDNA variation in Africans populations reveals the most ancient of all human continent-specific halogroups. Am J Hum Genet, 1995,57(1):133-149
    
    11 Affara NA, Lau YF, Briggs H, et al. Report and abstracts of the First International Workshop on Y Chromosome Mapping. Cytogenet Cell Genet, 1994, 67(4):359-402.
    
    12 Qian Y, Qian B, Su B, et al. Multiple origins of Tibetan Y chromosomes. Hum Genet,2000 ,106(4):453-454.
    
    13 Kim W, Shin DJ, Harihara S,et al. Y chromosome DNA variation in east Asian population and its potential for infering the people of Korea. J Hum Genet,2000, 45(2):76-83.
    
    14 Hammer MF, Horai S. Erratum in: Am J Hum Genet 1995 Jun;56(6):1512 Y chromosomal DNA variation and the peopling of Japan. Am J Hum Genet,1995,56(4):951-962
    
    15 Hammer MF, Spurdle AB, Karafet T,et al.The geographic distribution of human Y chromosome variation. Genetics, 1997,145(3):787-805
    
    16 Kayser M, Lao O, Anslinger K, et al. Significant genetic differentiation between Poland and Germany follows present-day political borders, as revealed by Y-chromosome analysis. Hum Genet, 2005,117:428-443.
    
    17 吴天一.高原人类群体研究及其重要性.高原医学杂志,2000,10(3):56-61.
    18 黄培堂,王嘉玺,朱厚础,等译·分子克隆实验指南·北京:科学出版社,2002·463.
    19 Andrews,R.M., Kubacka, I., Howell,N et al.Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet, 1999,23 (2): 147.
    20 赵桐茂,张工梁,刘鼎元,等.中国人免疫球蛋白同种异型的研究:中华民族起源的一个假说.遗传学报,1991,18(2):97-108.
    21 Horai S,Murayama K,Pan IH,et al.mtDNA polymorphism in East Asian populations, with special reference to the peopling of Japan.Am J Hum Genet,1996,59:579-590.
    22 Hiroki Oota, Takashi Kitano, Mark Stoneking.Extreme mtDNA homogeneity in continental Asian populations. Am J Phys Anthropol,2002,118(2): 146-153.
    23 Kolman CJ,Sambughin N,Bermingham E.Mitochondrial DNA analysis of Mongolian populations and implications for the origin of New World founders. Genetics, 1996, 142:1321-1334.
    24 Rousselet F,Mangin P.Mitochondrial DNA polymorphisms:a study of 50 French Caucasian individuals and application to forensic case work.Int J Legal Med,1998,111(2):292-298.
    25 Di Rienzo A,Wilson AC.Branching pattern in the evolutionary tree for human mitochondrial DNA.Proc.Natl Acad Sci,USA, 1991,88:1597-1601
    26 A Knight,P Underhiil,J Mountain,et al.African Y Chromosome and mtDNA divergence provides insight into the history of click languages.Curt Biol,2003,13(6):464-473.
    27 盛桂莲,赖旭龙,王頠.分子人类学与现代人的起源.遗传,2004,26(5):721-728
    28 Torroni A, Miller JA, Moore LG, et al. Mitochondrial DNA analysis in Tibet: implications for the origin of the Tibetan population and its adaptation to high altitude. Am J Phys Anthropol, 1994,93:189-199.
    29 顾明波,柳杰,李晓平,等.中国汉族人群的线粒体DNA控制区多态性研究.中国法医学杂志,2001,16(1):6-9.
    30 Horai S,Hayasaka K.Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondria DNA.Am J Hum Genet, 1990,46(4):828-842.
    31 Lee SD,Shin CH,Kim KB, et al.Sequence variation of mitochondrial DNA control region in Koreans.Forensic Sci Int, 1997,87(2):99-116.
    32 张小雷,崔银秋,周慧,等.系统发育分析在古DNA研究中的应用.吉林大学学报(理学版),2005,43(5):696-701.
    33 Balliet G, Rothhamer F, Carnese FR, et al. Founder mitochondrial haplotypes in Amerindian population. Am J Hum Genet,1994, 54:27-33.
    34 Easton RD, Merriwether DA, Crews De, et al. mt DNA variation in the Yanomami: Evidence for additional New World founding lineage. Am J Hum Genet, 1996, 59:213-225.
    35 Hagelberg E, Goldman N, Li P, et al. Nuclear DNA sequence from late Pleistocene megafauna. Mol Bio Evol,1999, 16:1466-1473.
    36 Thangaraj K, Sridhar V, Kivisild T, et al. Different population histories of the Mundari and Mon-Khmer-speaking Austro-Asiatic tribes inferred from the mtDNA 9-bp deletion/insertion polymorphism in Indian populations. Hum Genet, 2005,116:507-517.
    37 Ivanova R, Astrinidis A, Lepage V, et al. Mitochondrial DNA polymorphism in the Vietnamese population. Eur J Immunogenet, 1999,26:417-422.
    38 Handoko HY, Lum JK, Gustiani, et al. Length variations in the COⅡ-tRNA(Lys) intergenic region of mitochondrial DNA in Indonesian populations. Hum Biol, 2001,73:205-223
    39 Goonnapa F, Supan F, Satoshi H. Mitochondrial DNA polymorphisms in Thailand. J Hum Genet,2001, 46:115-125.
    40 孙宏钰,黄艳梅,伍新尧,等.中国6群体线粒体DNA Region V缺失多态性.中山大学学报(医学科学版),2004,25(4):308-311.
    41 姚永刚,袁志刚,周曾娣,等.中国民族人群线粒体DNA 9bp序列缺失的分部.自然科学进展,2000,11(4):353-359.
    42 褚讯,单可人,文波,等.贵州瑶族3支系Y-DNA及线粒体DNA序列多态性分析.遗传,2006,28(2):153-158.
    43 Hammer MF. A recent insertion of an alu element on the Y chromosome is a useful marker for human population studies. Mol Biol Evol, 1994,11:749-761.
    44 张勇,张贵寅,孙艳阳,等.中国东北汉族及3个少数民族DYSl9和DYS287多态性研究.人类学学报,1998,17(3):237-241.
    45 柯越海,宿兵,肖君华,等.Y染色体单倍型在中国汉族人群中的多态性分布与中国人群的起源及迁移.中国科学(C辑),2000,30(6):614-620.
    46 陈阳,褚嘉祜,俞建昆,等.中国28个民族群体Y染色体DYS287位点的遗传多态性.中国医学科学院学报,2006,28(2):196-201.
    47 Comas D,Calafell F,Mateu E,et al.Trading genes along the Silk Road:mtDNA sequences and the origin of central Asian populations.Am.J.Hum.Genet, 1998,63:1824-1838.
    48 李生斌,杨焕明·人类DNA遗传标记·北京:人民卫生出版社,2000·58.
    49 Nishimaki Y, Sato K, Fang L,et al.Sequence polymorphism in the mtDNA HVS-Ⅰ region in Japanese and Chinese.Legal Med, 1999,1 (4):238-249.
    50 金天博,高雅,李生斌,等.广西地区15个不同民族人群的群体遗传学关系.西安交通大学学报,2004,25(5):422-429.
    51 Carter JEL, Heath BH·Somatotyping Development and Application·London: Cambridge University Press, 1990·73-387.
    52 Weiner J.S.,Laurie J.A o Pratical Human Biology ~ London: Academic Press Inc, 1981·75-83.
    53 Sanchez-Andres A. Genetic and environmental influences on somatotype components: family study in a Spanish population. Hum Bio1,1995,67(5):727-738.
    54 Katzmarzyk PT, Malina RM, Perusse L et al. Familial resemblance for physique: heritabilities for somatotype components. Ann Hum Biol, 2000,27(5):467-477.
    55 Toselli S, Tarazona-Santos E, Pettener D. Body size, composition, and blood pressure of high-altitude Quechua from the Peruvian Central Andes (Huancavelica, 3,680 m). Am J Human Biol,2001,13(4):539-547.
    56 Sukhanova NN. Somatotype as an indicator of individual growth rates and maturation of a child. Gig Sanit,1998,(5):36-37.
    57 Koleva M, Nacheva A, Boer M. Somatotype and disease prevalence in adults. Rev Environ Heath.,2002,17(1):65-84.
    58 Monyeki KD, Toriola AL, de Ridder JH,et al. Stability of somatotypes in 4 to 10 year-old rural South African girls. Ann Hum Biol,2002,29(1):37-49.
    59 Katzmarzyk PT, Malina RM. Body size and physique among Canadians of First Nation and European ancestry. Am J Phys Anthropol, 1999,108(2): 161-172.
    60 朱钦,阎桂彬,刘东海,等.蒙古族体型的Heath-Carter人体测量法研究.人类学学报,1996,15(3):218-224.
    61 朱钦,郑连斌,王巧玲,等.回族成人的Heath-Carter法体型研究.解剖学杂志,1997,20 (6):600-604.
    62 郑连斌,朱钦,阎桂彬,等.达斡尔族成人体型研究.人类学学报,1998,17(2):151-157.
    63 朱钦,王树勋,阎桂彬,等.鄂伦春族成人体型.解剖学杂志,2000,23(3):208-212.
    64 朱钦,王树勋,陆舜华,等.鄂温克族成人的Heath-Carter法体型研究.人类学学报,2000,19 (2):114-120.
    65 金利新.山东汉族成人的Heath-Carter法体型研究.人类学学报,2003,22(1):37-44.
    66 赵凌霞.运用体型法研究中国学生(山西)的体格发育.人类学学报,1992,11(3):261-271.
    67 季成叶,袁捷,肖建文,等.3802名中国城市青少年体型分析.人类学学报,1992,11(3):250-259.
    68 西藏风物志·拉萨:西藏人民出版社.1999·1-13.
    69 吴汝康,吴新智,张振标·人体测量方法·北京:科学出版社,1984·102-120.
    70 Brozek. Densitometric analysis of body composition, revision of some quantitative assumptions. Ann NY acad sci,1963,110:113-140.
    71 Carter JEL·The Heath-Carter anthropometric somatotype (instruction manual)·London: Cambridge University Press, 2003·1-26.
    72 Heath BH, Carter JEL. Growth and somatotype patters of Manus children. Territory of Papua and New Guinea: application of a modified somatotype method to the study of growth patters. Am J Phys Anthropolo, 1977,35(1):49-68.
    73 张璐萍,席焕久,张曼,等.藏族女性青少年血清瘦素与青春期发育.中国医学检验杂志,2006,7(1):10-12.
    74 张镜如,乔建天,马青年,等·生理学·第四版·北京:人民卫生出版社,1998·370-442.
    75 Toselli S, Tarazona-Santos E, Pettener D. Body size, composition, and blood pressure of high-altitude Quechua from the Peruvian Central Andes (Huancavelica, 3,680 m). Am J Human Biol, 2001,13(4):539-547.
    76 金利新.汉族乡村青少年Heath-Carter法体型研究.青岛大学医学院学报,2003,39(1):66-70.
    77 齐连枝,朱钦,阎桂彬,等.蒙古族青少年体型的研究——应用Heath-Carter体型法.人类学学报,1999,18(1):22-27.
    78 王树勋,郑连斌,朱钦,等.达斡尔族青少年体型的Heath-Carter人体测量法研究.人类学学报,2001,20(1):45-51.
    79 黄世宁,浦洪琴,吴荣敏.壮族青少年体型的Heath-Carter人体测量法研究.右江医学院学报,2003,25(4):441-445.
    80 郝秀芳,马延祥,魏宝玉,等.朝鲜族儿童少年体型发育探讨.人类学学报,2001,20(1):52-58.
    81 Rebato E, Salces I, Rosique J, et al. Analysis of sibling resemblance in anthropometric somatotype components. Ann Hum Biol, 2000, 27(2):149-161.
    82 格勒·论藏族文化的起源、形成与周围民族的关系·广州:中山大学出版社出版,1988·15-61.
    83 黄飞骏,李英碧,吴谨,等.中国藏族群体TH 01和VWA STR基因座的遗传多态性.中华医学遗传学杂志,1998,15(5):293-296.
    84 Harrison GA, Weines JS and Tanner J.M, et al·Human Biology·Oxford:Orford University Press,. 1977·76-83.
    85 张海国·人类肤纹学·上海:上海交通大学出版社,2006·1,57-60.
    86 杜若甫·中国人群体遗传学·北京:科学出版社,2004·674-676.
    87 Igbigbi PS, Msamati BC. Palmar and digital dermatoglyphics of indigenous black Zimbabweans. Med Sci Monit,2002,8(11): 757-761.
    88 Kusuma YS, Babu BV, Naidu JM. Finger ridge count correlations among four tribes of Andhra Pradesh,India. Coll Antropol,2002,26(1):319-323.
    89 张海国,沈若苣,苏宇滨,等.云南省七个少数民族的肤纹参数及聚类分析.遗传学报,1989,16(1):74-80.
    90 汪宪平,其梅,琼达,等.西藏1000例藏族肤纹参数的研究.遗传学报,1991,18(5):385-353
    91 花兆合,潘小茵.拉萨郊区藏族跖纹主线走向分析.遗传学报,1995,22(2):86-90.
    92 郭汉壁.人类皮纹学研究观察的标准项目.遗传,1991,13(1):38.
    93 骆毅,丁明,黄明龙,等·云南德宏傣、景颇、阿昌、德昂族先天性遗传性疾病及健康状况调查研究·德宏民族出版社.1990·56-103.
    94 李实喆,毛钟荣,徐玖瑾,等.中国11个少数民族的皮纹研究.人类学学报,1984,3(1):37-52.
    95 赵荣枝,马梅荪,张济,等.达斡尔族人肤纹学研究.人类学学报,1990,9(3):223-230.
    96 丁明,王亚平,焦云萍,等.高山峡谷人地复合系统的演进.昆明:云南民族出版社,1995·97-115.
    97 吴立甫,谢企云,曹贵强.贵州省少数民族皮纹学研究.遗传,1983,5(6):33-37.
    98 吴立甫.中国西南少数民族皮纹学.贵阳:贵州科技出版社,1991·136-144,237-240.
    99 张海国,王伟成,许玲娣,等.中国人肤纹研究Ⅰ.汉族10项肤纹参数正常值的测定.遗传学报,1981,8(1):27-35.
    100 张海国,王伟成,许玲娣,等.中国人肤纹研究Ⅱ 1040例总指纹嵴数和a-b纹嵴数正常值的测定.遗传学报,1982,9(3):220-27.
    101 张海国,白崇显,罗建国,等.云南哈尼族肤纹参数测定.山西医科大学学报,1998,29 (增):13-15.
    102 张继宗.赫哲族掌指纹特征研究.人类学学报,1987,6(1):28-39.
    103 张景隆.中国回民皮纹学研究.自然杂志,1985,8(9):684-685.
    104 张海国,沈若苣,陈仁彪,等.新疆三个少数民族的肤纹参数及聚类分析.上海第二医科大学学报,1988,8(3):237-243.
    105 金刚,李玉清,孟秀莲,等.新疆柯尔克孜族肤纹初步研究.人类学学报,1990,9(1):41-44.
    106 王惠孚,庄振西,李印宣,等.500例汉族青少年皮纹学调查.锦州医学院学报,1982,3:11-19.
    107 汪宪平,颜中,其梅,等.西藏珞巴族的肤纹参数和聚类分析.人类学学报,1995,14(1):40-47.
    108 谢北琪.海南岛黎族指掌纹研究及临高人与汉族壮族指掌纹特征比较.人类学学报,1982,1(2):137-146.
    109 庄振西,高秀珍,王惠孚,等.辽宁地区满族正常人皮纹学分析.锦州医学院学报,1988,9(1):3-10.
    110 李后文,廖红,陈维平,等.广西特有少数民族皮纹学研究.山西医科大学学报,1998,37-39.
    111 汪宪平,颜中,其梅,等.西藏门巴族肤纹参数研究.人类学学报,1999,18(1)40-45.
    112 张海国·中国民族肤纹学·福州:福建科学技术出版社,2002·178-256.
    113 周家美,陈祖芬.仫佬族手纹形态分析.人类学学报,1984,3(2):141-147.
    114 李忠孝,张济安,左志民.四川省五个少数民族的手纹研究.遗传,1984,6(6):36-38.
    115 王芝山,金燕军,李鸿文.青海土族、撒拉族皮纹学观察.遗传,1981,3(5):4-6.
    116 章菊明,计显光,杨焕明,等.畲族皮纹研究.遗传,1985,7(4):30-35.
    117 张致中,郭汉璧.中国乌孜别克族手皮纹研究.人类学学报,1993,12:269-272.
    118 吕承铭,郭应明,杨逢泰,等.900例佤族青少年的手纹研究.人类学学报,1987,6(2):117-124.
    119 戴玉景,杨东亚,陈晓邦.裕固族皮纹学初步研究.人类学学报,1987,6(2):109-116.
    120 陶诚,宝珠.桂西壮族手皮纹的分析.人类学学报,1990,9(2):139-146.
    121 Plato CC, Cereghino JJ, Steinberg FS. The dermatoglyphics of American Caucasians. Am J Phys Anthropol, 1975,42:195-210.
    122 Reddy GG. Finger dermatoglyphics of the Bagathas of Araku Valley (A. P.), India. Am J Phys Anthropol, 1975,42:225-228.
    123 Chattopadhyay PK, Sharma PD. Finger dermatoglyphics of the Rarhi Brahmins of Bengal. Am J Phys Anthropol, 1969,30:397-401.
    124 Acree MA. Is there a gender difference in fingerprint ridge density?. Forensic Sci Int, 1999,31,102(1): 35-44.
    125 Rosa P. Associations between dermatoglyphic variation, topography, and climate in Kenya. Am J Phys Anthropol, 1985,68(3):395-408.
    126 吴乐斌.皮纹密度的初步研究.人类学学报,1990,9(2):130-138.
    1 Jobling MA, Tyler-Smith C. Fathers and sons: the Y chromosome and human evolution. Trends Genet, 2000,11(11):449-56.
    2 张迺蘅,童坦君,彭学敏,等·医学分子生物学·北京:北京医科大学出版社,1999·61-89
    3 Giles RE, Blanc H, Cann HM, et al. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A, 2001, 77(11):6715-9
    4 Brown WM, Prager EM, Wang A, et al. Mitochondrial DNA sequences of primates: tempo and mode of evolution.J Mol Evol,2002,18(4):225-39.
    5 Anderson S, Bankier AT, Barrel BG, et al. Sequence and organization of the human mitochondrial genome. Nature,2004,290:457.
    6 Clayton DA. Replication of animal mitochondrial DNA. Cell., 2003,28(4):693-705.
    7 Wilson MR, StoneRing M, Holland MM,et al. Guidelines for use of mitochondrial DNA sequencing in forensic science. Crime Lab Digest,2003, 20: 68.
    8 Budowle B, Wilson MR, DiZinno JA, et al. Mitochondrial DNA regions HⅥ and HⅦ population data. Forensic Sci Int,1999 , 103(1):23-35.
    
    9 Yao YG, Zhang YP. Phylogeographic analysis of mtDNA variation in four ethnic populations from Yunnan Province: new data and a reappraisal. J Hum Genet,2002,47(6):311-318.
    
    10 Alves-Silva J, Guimaraes PE, Rocha J, et al. Identification in Portugal Brauil of a mtDNA lineage containing a 9bp triplication of the intergenic COII/tRNA~(Lys) region. Hum Hered, 2005. 49:56-58.
    
    11 Horai S, Marogama K, Hayaska K, et al. mtDNA polymorphism in east Asian population with special reference to the people of Japan. Am J Hum Genet, 1996, 59:579-590.
    
    12 Chen YS, Torroni A, Excoffier, et al. Analysis of mtDNA variation in Africans populations reveals the most ancient of all human confinent-specific halogroups. Am J Hum Genet,2005,57(1):133-149.
    
    13 Soodyall H, Vigilant L, Hill AV, et al. mtDNA control-region sequence variation suggests multiple independent origins of an "Asian-specific" 9-bp deletion in sub-Saharan Africans.Am J Hum Genet, 2002,58(3):595-608.
    
    14 Melton T, Clifford S, Martinson J, etal. Genetic evidence for the proto-Austronesion homeland in Asia: mtDNA and nuclear DNA variation in Taiwanese aboriginal tribes. Am J Hum Genet,1998, 63(6):1807-1823.
    
    15 Balliet G, Rothhamer F, Carnese FR, et al. Founder mitochondrial haplotypes in Amerindian population. Am J Hum Genet, 1999, 54:27-33.
    
    16 Easton RD, Merriwether DA, Crews De, et al. mt DNA variation in the Yanomami: Evidence for additional New World founding lineage. Am J Hum Genet.,2002, 59:213-225.
    
    17 Hagelberg E, Goldman N, Li P, et al. Nuclear DNA sequence from late Pleistocene megafauna.Mol Bio Evol,1999, 16:1466-1473.
    
    18 Affara NA, Lau YF, Briggs H, et al. Report and abstracts of the First International Workshop on Y Chromosome Mapping. Cytogenet Cell Genet, 2001, 67(4):359-402.
    
    19 Qian Y, Qian B, Su B, et al. Multiple origins of Tibetan Y chromosomes. Hum Genet, 2000 ,106(4):453-454.
    
    20 Kim W, Shin DJ, Harihara S,et al. Y chromosome DNA variation in east Asian population and its potential for infering the people of Korea. J Hum Genet, 2000, 45(2):76-83.
    
    21 de Knijff P. Messages through bottlenecks: on the combined use of slow and fast evolvingpolymorphic markers on the human Y chromosome. Am J Hum Genet, 2000, 67(5):1055-1061.
    
    22 Vollrath D, Foote S, Hilton A, et al. The human Y chromosome: a 43-interval map based on naturally occurring deletions. Science , 2002, 258(5079):52-59.
    
    23 Hammer MF. A recent insertion of an alu element on the Y chromosome is a useful marker for human population studies. Mol Biol Evol,2001,11(5):749-761.
    24 Hammer MF. A recent common ancestry for human Y chromosome. Nature, 2005, 378: 376-378.
    25 Hammer MF, Horai S. 1512 Y chromosomal DNA variation and the peopling of Japan. Am J Hum Genet, 2003, 56(4):951-62.
    26 Hammer MF, Spurdle AB, Karafet T, et al.The geographic distribution of human Y chromosome variation. Genetics, 2000,145(3):787-805.
    27 Kim W, Shin DJ, You SA, et al. Y-specific DNA polymorphisms of the YAP element and the locus DYS 19 in the Korean population. J Hum Genet, 1998,43(3): 195-198.
    28 Ke Y, Su B, Song X. African origin of modem humans in East Asia: a tale of 12,000 Y chromosomes. Science, 2001,292:1151-1153.
    29 张勇、张贵、孙艳阳等.中国东北汉族及三个少数民族DYS19和DYS287多态性研究.人类学学报,2002,17(3):237-240.
    30 Qian Y, Chu Z, Wei C, et al. Investigation of Y chromoaome and polymorphism of 5 Chinese ethnic groups in Yunnan province. Zhong Hua Yi Xue Yi Chuan Xue Za Zhi, 1999,16(6):381-382
    31 Jobling MA, Bouzekri N, Taylor PG Hypervariable digital DNA codes for human paternal lineages: MVR-PCR at the Y-specific minisatellite, MSY1 (DYF155S1). Hum Mol Genet 1998,7(4):643-653.
    32 Bao WD, Zhu SL, Pandya A,et al. MSY2: a slowly evolving minisatellite on the human Y chromosome which provides a useful polymorphic marker in Chinese populations.Gene,2000, 244:29-33.
    33 Bosch E, Lee AC, Calafell F, et al. High resolution Y chromosome typing: 19 STRs amplified in three multiplex reactions. Forensic Sci Int.,2002,125(1):42-51.
    34 Ayub Q, Mohyuddin A, Qamar R, et al. Identification and characterisation of novel human Y-chromosomal microsatellites from sequence database information. Nucleic Acids Res, 2000 28(2): 8-11.
    35 Bianchi NO, Catanesi CI, Bailliet G, et al. Characterization of ancestral and derived Y-chromo-some haplotypes of New World native populations. Am J Hum Genet, 1998,63(6):1862-1871.
    36 唐双柏、郭景元、刘超等.广州人群DYS19、DYS389 Ⅰ/DYS389 Ⅱ、DYS390多态性及其单倍型.遗传,2000,2(1):11-14.
    37 Deka R, Jin L, Shriver MD, et al. Dispersion of human Y chromosome haplotypes based on five microsatellites in global populations. Genet Res,2001, 6:1177-1184.
    38 Delfin LR, Santos SEB, Zogo MA. Diversity of the human of Y chromosome of south American Amerindians: a comparison with Black, Whites and Japanese from Braci. Ann Hum Genet, 2003, 61: 439-448.
    39 Vandenberg N, Van Oorschot RAH, Tyler-Smith C, et al. Y-chromosome-specific microsatellite variation in Australian Aboriginals. Hum Biology, 1999, 71 (6):915-931.
    40 Hou YP, Wu J, Li YB, et al. A preliminary Study of human Y chromosome specific short repeat loci. Chin J Med Genet,1999, 16(2):65-67.
    41 蔡善荣、李鲁、柯越海等.隔离群体3个Y-STR基因座的遗传多态性分析.中华医学遗传学杂志,2002,19(2):141-144.
    42 Amemann J, Jakubiczka S, Schmidtke J, et al. Clastered GATA repeats (Bkm sequences) on the human Y chromosome. Human Genet, 2004, 73:301-303.
    43 Santos FR, Grelsaikhan T, Munkhtuja B, et al. Geographic differences in the allele frequencies of the human Y-linked tetranucleotide polymorphism DYS 19. Hum Genet, 2003,97(3):309-313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700