冶金多晶硅的电学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能电池中使用的硅材料,不论其在工作时处于何种晶体类型,其原材料都是高纯多晶硅,纯度在6N(99.9999%)以上。目前普遍认为采用冶金法,使用廉价的工业硅制备太阳能级多晶硅是大幅度降低太阳能电池成本的途径之一。本文中的冶金多晶硅即由冶金法制备的多晶硅材料。
     太阳能电池中使用的多晶硅除了对纯度有一定要求之外,电阻率的高低也是最重要的性能参数之~,一般情况下,其数值应在0.5-6Ω·cm之间,而且对于其均匀程度也有要求。由于杂质分布不匀,电阻率也不均匀。电阻率均匀性包括纵向电阻率均匀度、断面电阻率均匀度和微区电阻率均匀度,它直接影响器件参数的一致性和成品率。电阻率是多晶硅材料最重要的参数之一,本文利用四探针电阻率测试仪、金相显微镜、扫描电镜(SEM)、电感耦合等离子发射光谱仪(ICP)、能谱分析(EDS)、X射线衍射仪(XRD)等设备,从密度、晶粒尺寸、组织形态、化学成分、高温扩散金属杂质(铁、钴、镍、铜、锰、铝、锌)到多晶硅晶内及晶界析出物等方面对冶金法制备的多晶硅的电学性能进行了研究。
     研究结果表明:(1)不同熔炼方式导致多晶硅的密度不同,高密度的多晶硅材料禁带较窄,故电阻率较小。(2)3-4N纯度的多晶硅的电阻率对于不同的组织状态十分敏感,电阻率随晶粒度增加而减小,且沿柱状晶方向电阻率较大;2N和6N多晶硅电阻率对于组织状态并不是十分敏感。(3)金属杂质按照对多晶硅电阻率的影响可分为三类:一类以铁、钴、镍为代表,此类杂质含量超过固溶度以后形成析出相,在多晶硅高温快速冷却至室温时在表面析出,并吸附其他金属杂质在表面一起析出,杂质析出后对电阻率的影响较小;一类以铜和锰为代表,此类杂质在多晶硅中多以沉淀相存在,即使高温快速冷却也不易在多晶硅表面析出,而是留在晶体内部,对电阻率的影响较大;第三类是以铝和锌为代表,此类杂质不会形成沉淀物新相,对电阻率的影响非常复杂。
Solar energy is one of the earth's most abundant renewable resources.The demand for silicon solar cells has recently increased significantly. While the production capacity of silicon solar modules, cells and wafers has been expanded to meet this demand, that of solar silicon feedstock has not grown at the same pace. Solar energy will shortly be in great demand since it is inexhaustible and cleaner than any conventional energy resources. Using relatively inexpensive metallurgical grade silicon (MG-Si) as a starting material for making solar grade silicon (SoG-Si) is believed to be one of the ways to make solar cells less expensive. Impurities in MG-Si will shorten the lifetime of excited carriers in silicon solar cell and disturb electric generation. Hence, the removal of impurities from silicon is a significant issue in silicon solar cell fabrication. Also, the electrical resistivity is one of the most important parameters for multicrystalline silicon. Using the four point resistivity test system, metallographic microscope, scanning electron microscope (SEM), inductively-coupled plasma spectrometer (ICP), energy spectrum analysis (EDS), X-Ray diffraction instrument (XRD) etc., study the influence of density, organization and impurity for the electrical properties of the multicrystalline silicon, this prepared using the metallurgic method are studied. To discuss the pertinency of the impurity elimination process, evaluation of electrical properties of multicrystalline metallurgy silicon with different components such as the magnitude and uniformity of resistivity has been performed.
     In this paper, some aspect such as the density, grain size, microstructure, chemical constitution, precipitation in the grain boundary etc. are described. It has been found that the electrical resistivity is in direct ratio to the density. And the electrical resistivity is in direct ratio to the grain size when the microstructure is an equi-axis crystal. When it is a columnar crystal, the electrical resistivity that is parallel to the columnar crystal is higher than the electrical resistivity that is vertical to the crystal. In the low-purity multicrystalline silicon, the metal impurity takes the formation of segregation in the grain boundary, the phase of metal silicides, making the electrical resistivity of the multicrystalline silicon lower. But the resistivity of multicrystalline silicon whose purity grade is under 2N or hyper 6N is not variant with different tectologies. There are three kinds of metal impurities in multicrystalline metallurgic silicon. One of them comes into being silisides and then separate out as precipitated phase, such as Fe、Co and Ni. One of them also comes into being silicides, but will not separate out of silicon, such as Cu and Mn. And the influence of the indwelling silicides to the resistivity is larger. The third impurity can't come into being silicides, such as Al. And the influence of the third impurity to resistivity of multicrystalline silicon is very complex.
引文
[1] 张耀明.阳光经济和能源革命.江苏科技信息,2004(4):1-4.
    [2] 赵玉文.太阳能技术对我国未来减排CO_2的贡献.太阳能,2003(3):3-4.
    [3] 刘祖明,苏里曼.K.特拉奥雷,王书荣等.多孔多晶硅太阳电池研究.云南师范大学学报,2001(4):13-16.
    [4] Zh I, Andreev V M, Rumyantsev V D. Solar photovoltaics: trends and prospects. Semiconductors, 2004, 38: 899-908.
    [5] Chapin D M, Fuller C S, Pearson G. L. A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys, 1954, 25:676-677.
    [6] 沈辉,舒碧芬,闻立时.我国太阳能光伏产业的发展机遇与战略对策.中国储能电池与动力电池及其关键材料学术研讨会论文集,长沙,2005(5):292-297.
    [7] Zhao J, Wang A, Green M, et al. Novel 19.8% efficient "Honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cell. Appl. Phys. Letters, 1998, 73: 1992-1993.
    [8] Goetzberger Adolf, Hebling Christopher, Schock -Hams-Wemer. Photovoltaic materials, history, materials science and estatus and outlook Reports, 2003, 40:1-46.
    [9] Morita K, Miki T. Thermodynamics of solar-grade-silicon refining. Intermetallics, 2003, 11:1111-1117.
    [10] Flamant G, Kurtcuoglu V, MurRay J, et al. Purification of metallurgical grade silicon by a solar process. Solar Energy Materials and Solar Cells, 2006, 90:2099-2106.
    [11] 董玉峰,王万录,韩大星.美国光伏发电与百万屋顶计划.太阳能,1999(1):29.
    [12] 蒋荣华,徐远林,甘居富.备战多晶硅.新材料产业,2006(1):52-57.
    [13] 马春.世界半导体硅材料的发展现状.上海有色金属,2005(3):26.
    [14] Rohatgi A, Chen Z, Sana P. High efficiency multicrystalline silicon solar cells. Solar Fnemv Materials and Solar Cells, 1994, 34:227-236.
    [15] 敖建平,孙国忠.我国太阳电池研究和产业现状分析,太阳能,2003(2):9-11.
    [16] 郭瑾,李积和.国内外多晶硅工业现状.上海有色金属,2007(1):20-25.
    [17] 杨健.半导体硅材料生产工艺研究.第八届全国铅锌冶金生产技术及产品应用学术年会论文集,2001:318-321.
    [18] 刘凤伟.半导体材料.北京:冶金工业出版社,1981.
    [19] 严大洲.我国多晶硅生产现状与发展.有色金属,2001,1:6-9.
    [20] 于站良,马文会,戴永年等.太阳能级硅制备新工艺研究进展.轻金属,2006(3):43-47.
    [21] 阙端麟.硅材料科学与技术.杭州:浙江大学出版社,2000.
    [22] 蒋荣华,削顺珍.国内外多晶硅发展现状.半导体技术,2001,26(11):7-10.
    [23] 杨玉安.多晶硅产业化技术研究发展建议.多晶硅材料“十一五”科技发展战略研讨会论文集,北京,2005:45-55.
    [24] 张椿.太阳能用多晶硅的现状和发展.多晶硅材料“十一五”科技发展战略研讨会论文集,北京,2005:38-44.
    [25] Hamet J F, Abdelaoui R, Nouet G. Precipitation at grain boundaries in silicon. Materials Science and Engineering, 1989, 4: 143-145.
    [26] 邓志杰,郑安生.半导体材料.化学工业出版社:北京,2004.
    [27] Yuge N, Baba H, Sakaguchi Y, et al. Purification of metallurgical silicon up to solar grade Solar Energy Materials and Solar Cells, 1994, 34:243-250.
    [28] C. P. Khattak, D. B. Joyce, F. Schmid. Production of Solar Grade (SoG) Silicon by Refining Liquid Metallurgical Grade (MG) Silicon. National Renewable Energy Laboratory, 2001:8-12.
    [29] Takashi ikeda, Masafumi meada. Purifica-tion of metallurgical silicon for solargrade silicon by electron beam button melting. ISIJ international, 1992, 32(5):635-642.
    [30] Alemany Y Delannoy C, Li K I. Plasma refining process to provide solargrade silicon. Solar Energy Materials & Solar Cells, 2002, 72:69-75.
    [31] Yuge N, Abe M, Hanazawa K, et al. Purification of metallurgical grade silicon up to solar grade. Progress in Photovoltaics, 2001, 9: 203-209.
    [32] 郑智雄.一种太阳能电池用高纯度硅及其生产方法.中国,02135841.9,2004.
    [33] Jorden R G. Electro-transport in solid metal system Contemp. Phys, 1974, 15(4):375-400.
    [34] Sakaguch Y, Ishizaki M, Kawahara T, et al. Production of high purity silicon by carbothermic reduction of silica using AC-arc furnace with heat shaft. ISIJ International. 1992, 32(5): 643-649.
    [35] Yuge N, Baba H, Sakaguchi Y, et al. Purification of metallurgical silicon up to solar grade. Solar Energy Materials and Solar Cells, 1994, 34:243-250.
    [36] 刘秋娣,林安中,林喜斌.多晶硅锭的制备及其形貌组织研究.稀有金属,2002,26(6):416-418.
    [37] Koch W, Krumbe W, Schwirtlich I A. 11th European Photovltaic Solar Energy Conference. 2001: 518.
    [38] 席珍强,杨德仁,陈君.铸造多晶硅的研究进展.材料导报,2001(2):67-69.
    [39] Kan Kishore, Bhushar L Soperi. 12th European Photovoltaic Solar Energy Conference: 969.
    [40] Kyojiro Kaneko, Ritsuo Kawamura, Hideyeki Mizumoto, et al. 11th European Photovoltaic Solar Energy Conference: 1070.
    [41] Perichaud I, Dour G. Durand F, et al 13th Ewropean Photovoltaic Solar Energy Conference: 1377.
    [42] Wolf E, Klinger D, Bergmann S. Investigations for the detection of microdefectsin cast multicrystalline silicon. Solid State Phenomena, 1996: 51-52; 87-92.
    [43] Scott A McHugo, Thompson AC, Mohammed A. Nanometer-scale metal precipitates in multicrystalline silicon solar cells. J. Appl. Phys, 2001, 89: 4282-4288.
    [44] 陈君,杨德仁,席珍强.铸造多晶硅晶界复合特性的EBIC研究.第八届全国光伏会议暨中日光伏论坛论文集.中国轻工杂志社,2004.
    [45] 陈君.铸造多晶硅晶界电学特性的EBIC研究(博士学位论文).浙江杭州:浙江大学,2005.
    [46] Seamy FAT. Charge collection scanning electron microscopy. J. Appl. Phys, 1982(6):51-80.
    [47] Leamy H J. Charge collection scanning electron microscopy. J. Appl. Phys. 1982, 53:51-80.
    [48] Lander J, Schreiber H, Jr., et al. Microscopy of internal crystal imperfections in Si p-n junction diodes by use of electron beams. Appt. Phys. Lett. 1963(3):206-207.
    [49] Vittry D B, Kyser D F. Cathodolu minesccnce at p-n junction in GaAs. 1965, 36:1387-1389.
    [50] Higuchi H, Tamara H. Measurement of the lifetime of minority carriers in semiconductors with a scanning electron microscope. J. Appl. Phys, 1965(4):316-317.
    [51] Palm J. Local investigation of recombination at grain boundaries in silicon by grain boundary-electron beam induced current. J. Appl. Phys, 1973, 74:1169-1178.
    [52] Wang Z J, Tsurekawa S, Ikeda K, et al. Relationship between electrical activity and grain boundary structural configuration in polycrystalline silicon. Interface Science, 1999: 197-205.
    [53] Pichaud B, Mariani-Regina G, Yakimov E B. Interaction of gold with dislocations in silicon. Materials Science and Engineering, 2000:272-275.
    [54] Kamm J D. A method for investigation of fluctuation in doping concentration and minority-carrier diffusion length in semiconductors by scanning electron microscope. Solid-State Electronics, 1976, 19:921-925.
    [55] Kittler M, Seifert W. On the origin of electron-beam-induced-current contrast of extended defects in silicon. Scanning Microscopy, 1992, 6:979-991.
    [56] Seifert W, Kittler M, Seibt M. Contrastive recombination behaviour of metal silicide and oxygen precipitates in N-type silicon attempt at an explanation. Solid State Phenomena, 1996: 365-370.
    [57] Ono T, Sasaki T, Kirk H, et al. Electron beam induced current contrast of oxygen precipitation related defects in Czochralski silicon. Solid State Phenomena, 2001: 237-252.
    [58] Kittler M, Seifert W, Kriiger O. Electrical behaviour of crystal defects in silicon solar cells. Solid State Phenomena, 2001: 39-48.
    [59] Chan Daniel S H, Phang Jacob C H, Kolachina S. Single contact beam induced current phenomena-A review. Solid State Phenomena, 2001: 11-18.
    [60] Moller H J, Funke C, Rinio M, et al. Multicrystalline silicon for solar cells. Thin Solid Films, 2005, 487: 179-187.
    [61] Shimura F. Oxygen in silicon. Academic Press INC. 1994.
    [62] 邓海.铸造多晶硅中原生杂质及缺陷的研究:(硕士学位论文).浙江杭州:浙江大学,2006.
    [63] Yang Deren, Li Liben, Ma Xiangyang, et al. Solar energy materials and solar cells, 2000, 62: 37.
    [64] Kishore R, Pastol J L, Revel G. Solar Energy Materials. 1989, 19: 221
    [65] 俞征峰,席珍强,杨德仁等.铸造多晶硅中热施主形成规律.太阳能学报,2005(4):581-583.
    [66] Shimura F. Oxygen in Silicon. Academic Press INC, 1994.
    [67] Sun Q, Yao K H, Iagowski J. Effect of carbon on oxygen precipitation in silicon. Jappl phys, 1990, 67: 4313-4319.
    [68] Fraundorf P, Fraundorf G K, Shimura F. Clusteringof oxygen atoms around carbon in silicon. Jappl-phys, 1985, 58: 4049-4055.
    [69] 孟凡英,崔容强,孙铁囤.利用高斯分布模型研究多晶硅晶界电学特性.上海交通大学学报,2001(6):813-816.
    [70] Plink Christoph, Feick Henning, McHugo Scatt A, et al. Out-diffusion and precipitation of copper in silicon. Phys Rev Lett, 2000, 85:4900-1903.
    [71] Istratov A, A Weber E R. Electrical properties and recombinationactivity of copper, nickel and cobalt in silicon. Appl. Phys. A, 1998,66:123-136.
    [72] 席珍强,杨德仁,陈君等.晶体硅中的铁沉淀规律.半导体学报,2003(11):1166-1170.
    [73] Moller H. J, Funke C, Lawerenz A, et al. Oxygen and lattice distortion in multicrystalline silicon. Solar Energy Materials & Solar Cells, 2002, 72:403-416.
    [74] Chen J, Sekinuchi T, Nara S, et al. The characterization of high quality multicrystalline silicon by the electron beam induced current methods. J Phvs Condens Matter, 2004, 16:211-216.
    [75] Morita K Miki T. Thermodynamics of solar grade silicon refining. Intermetallics, 2003, 11: 1111-1117.
    [76] 陈治明,王建农.半导体器件的材料物理基础.科学出版社:北京,1999.
    [77] 胡赓祥,蔡珣.材料科学基础.上海交通大学出版社:上海,2000.
    [78] 杨树人,王宗昌,王兢.半导体材料.科学出版社:北京,2004.
    [79] Zhenqiang Xi, Yang Deren, Chen Jun, et al. Recombination behavior of nickel in cast multicrystalline silicon. Materials Science in Semiconductor Processing, 2006(9):304-307.
    [80] Istratov A A, Buonassisi T, Picket M D, et al. Control of metal impurities in "dirty" multicrystalline silicon for solar cells. Materials Science and engineering: 2006, 136: 282-286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700