铸造多晶硅材料中氧缺陷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,铸造多晶硅材料已经取代直拉单晶硅成为最主要的太阳能电池材料,但是铸造多晶硅电池的转换效率略低于直拉单晶硅太阳能电池的转换效率,这主要是由于铸造多晶硅中存在着高密度的缺陷和高浓度的杂质,如晶界、位错、氧、碳等。其中,氧是最主要的有害杂质元素之一。在材料生长过程中或电池制备过程中,过饱和的氧会在硅中形成热施主,新施主和氧沉淀等,而这些缺陷会显著降低太阳能电池的转换效率。因此,研究铸造多晶硅中氧关缺陷有着很重要的意义。本文在综述前人工作的基础上,采用四探针电阻率测试仪,光学显微镜,透射电镜和傅立叶红外光谱测试仪等较系统地研究了铸造多晶硅中热施主和氧沉淀规律。
     热施主实验发现,初始氧浓度高,位错密度高,碳含量低的样品中,所形成的热施主多。这说明碳对热施主的形成有抑制作用;位错对热施主的形成有促进作用;晶界对热施主的形成没有明显地影响,而且碳和初始氧浓度的影响最大。实验还发现,在650℃半小时退火处理可以消除一部分原生热施主。和单晶硅一样,450℃左右为铸造多晶硅的热施主的最佳形成温度。原生热施主对于随后的热施主的形成规律没有明显影响。与常规热处理工艺相比,快速热处理能有效消除铸造多晶硅中的热施主。而且RTP的温度越高,热施主的消除效果越好。
     其次,研究了铸造多晶硅中氧沉淀的形成规律。结果表明,单步热处理工艺下铸造多晶硅中氧沉淀的形成规律和单晶硅的基本相似,高初始氧浓度的铸造多晶硅中所形成氧沉淀量较大,在1050℃温度附近单步退火热处理所形成的氧沉淀量最多。但是对比初始氧浓度相当的铸造多晶硅和直拉单晶硅,多晶硅中所形成氧沉淀的量明显高于直拉单晶硅中氧沉淀的量。其次,在含高密度位错的单晶硅中所形成氧沉淀的量远高于无位错单晶硅中氧沉淀的生成量,而有晶界的多晶硅中所形成氧沉淀生成量仅稍微高于无晶界单晶硅中氧沉淀生成量。以上结果说明铸造多晶硅中位错对氧沉淀的形成有明显的促进作用,而晶界则对氧沉淀的促进作用不是很显著。在两步退火实验中,我们发现低温预退火有助于高温下氧沉淀的生成。另外,与直拉单晶硅淀中氧沉淀规律不同是铸造多晶硅中的氧沉淀一般无二次缺陷,这与晶界和位错吸收自间隙硅原子从而促进氧沉淀有关。
Currently, cast multicrystalline silicon has replaced monocrystalline silicon as the main photovoltaic materials. However, the efficiency of cast multicrystalline silicon solar cell is lower than that of monocrystalline silicon due to a high density of defects and a high concentration of impurities, such as grain boundaries, dislocations, carbon and oxygen. As one of the main and detrimental impurities, the super-saturation of oxygen may form thermal donors, new donors, precipitates during the crystal growth or the cell fabrication processes. Therefore, it is very important to investigate the behavior of thermal donors and oxygen precipitation in cast muliticrystalline silicon. On the basis of reviewing previous work, the formation behavior of thermal donors and oxygen precipitation in cast mulitcrystalline silicon was systemically studied by means of four-proble resistance measurement, Fourier transform infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Optical Microscopy (OM).
    It was found that high concentration of thermal donors formed in the specimens with high concentration of oxygen, high density of dislocation and low concentration of carbon. The result above indicates that dislocations enhance the formation of thermal donors and grain boundaries hardly influence it, while carbon noticeably restrains thermal donors' formation. It was also found that the pre-annealing at 650℃ for 30 minutes could effectively eliminate the as-grown thermal donors, but couldn't affect the subsequent thermal donors' formation. Like the formation behavior of thermal donors in monocrystalline silicon, the temperature of the maximum concentration of thermal donors is about 450℃. In comparison with classical annealing, rapid thermal annealing could eliminate thermal donors much more quickly.
    The behavior of oxygen precipitation in cast multicrystalline silicon was similar to that in Czochralski Silicon. The concentration of oxygen precipitates in both materials annealed at 1050℃ for 32 hours is highest, but the concentration in mc-Si is much higher than that in Cz-Si. It was also found that the concentration of oxygen precipitates in Cz-Si with high density of dislocation was higher than that in dislocation-free Cz-Si, which indicates that dislocation in silicon can noticeably enhance oxygen precipitation. And the role of grain boundaries of mc-Si is similar to that of dislocation for oxygen precipitation, but the enhancement of grain boundaries
    
    
    
    
    to oxygen precipitation is weaker. The experiment results of two-step annealing reveal that oxygen precipitation is enhanced after high temperature annealing following low temperature annealing. Being different from oxygen precipitates in monocrystalline silicon, the defects induced by oxygen precipitates hardly occure in cast multicrystalline silicon, which indicate that interstitial silicon atoms are absorbed by dislocations and grain boundaries.
引文
1 A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, "Photovoltaic Technology: The Case for Thin-Film Solar Cells", Science 285 (1999) 692-698.
    2 董玉峰,王万录,韩大星,“美国光伏发电与百万屋顶计划”,太阳能1(1999)29.
    3 罗运俊,“行业动态”,太阳能2(1999)21.
    4 M.A.Green, K. Emery, D.L. King, S.Igari, W.Warta, "Solar cell efficiency tables", Progress in Photovoltaics, 12(2004) 55-62
    5 J.Zhao, A. Wang, M.Green and F.Ferrazza, "Novel 19.8% Efficient "Honeycomb" Textured Multicrystalline and 24.4% Monocrystalline Silicon Solar Cell", Appl. Phys. Letters, 73(1998) 1991-1993.
    6 杨德仁,阙端麟,“太阳能用大品粒铸造多晶硅”,98全国半导体材料学术会议,上海:92-94
    7 D. Margadoa, M.F.Ferraza, R. Peruzzi, S. Pizzni, Cacerboi, Ltarchini, X. Wei, A. Delillo, "Industrial development of the directional solidification method for the production of multicrystalline photovoltaic grade silicon", 11th E. C. Photovoltaic Solar Energy Conference 750-753
    8 A. Goetzberger, C. Hebling, "Photovoltaic materials, past, present, future", Solar Energy Materials and Solar Cells 62 (2000) 1-19.
    9 A.Rohatgi,; Z.Chen,; P.Sana,; J.Crotty,; J.Salami, "High efficiency multicrystalline silicon solar cells", Solar Energy Materials and Solar Cells, 34(1994)227-236
    10 P.D. Maycock, PV News, April 2002.
    11 敖建平,孙国忠,“我国太阳电池研究和产业现状分析”,太阳能,2(2003)9-11
    12 Y. Nishimoto, K. Namba, "Investigation of texturization for crystalline silicon solar cells with sodium carbonate solutions", Solar Energy Materials and Solar Cells 61 (2000) 393-402.
    13 Y. Nishimoto, T. Ishihara, K. Namba, "Investigation of acidic texturization for multicrystalline silicon solar cells "Journal of Electrochemical Society, 146 (1999) 457-461
    14 G. Zolper, S. Narayanar, S. Wenham, M. Green,16.7% efficient, laser textured, buried contact polycrystalline silicon solar cell, Appl. Phys. Lett. 55 (1989) 2363-2365
    15 G. Nilleke, H. Messbaumer, H. Bender, E. Ducher, "A simple and effective light trapping technique for polycrystalline silicon solar cells", Solar Energy Materials and Solar Cells 26 (1992) 345-356
    16 J. Nijs, S. Sivoththaman, J. Szlufcik, K. De Clercq, F. Duerinckx, E. Van Kerschaever, R. Einhaus, J. Poorthmans, T. Vermeulen, R. Mertens,Overview of solar cell technologies and results on high efficiency multicrystalline silicon substrates, Solar Energy Materials and Solar Cells 48 (1997) 199-217
    17 B.H. Authier, German Patent No.250883 (1975)
    
    
    18 J.C. Muller, S. Martinuzzi, "Multicrystalline silicon material: effects of classical and rapid thermal processes", J.Mater.Res., 13 (1998) 2721-2731
    19 M.Kittler, W.Seifert,; M.Stemmer,; J.Palm, "Interaction of iron with a grain boundary in boron-doped multicrystalline silicon", Journal of Applied Physics 77(1995)3725-3728
    20 Xi Zhenqiang; Yang Deren; Chen Jun; et al. Iron precipitation in crystalline silicon, Chinese Journal of Semiconductors, 24(2003) 1166-70
    21 D.P. Joshi, D. P. L. Bhatt, "Grain boundary barrier heights and recombination velocities in polysilicon under optical illumination", Solar Energy Materials 22 (1991) 137-159
    22 D.Margadonna, F.Ferrazza,; R.Peruzzi, S.Pizzini, C.Acerboni, L.Tarchini, Wei XiWen, A. De Lillo, "Donor and acceptor neutralization in multicrystalline silicon", Tenth E.C. Photovoltaic Solar Energy Conference. Proceedings of the International Conference, 1991, 678-80
    23 C.Habler, H.-U. Hofs, W. Koch, G. Stollwerck, A. Muller, D. Karg, G. Pensl, "Formation and annihilation of oxygen donors in multicrystalline silicon for solar cells", Materials Science and Engeering B71 (2000) 39-46.
    24 S. Pizzini, A. Sandrinelli, M. Beghi, D. Narsucci, F. Allegretti, S. Torchio, G. Fabbri, P. Ottaviani, F. Demartin, A. Fisi, "Influence of extended defects and native impurities on the electrical properties of directionally solidified polycrystalline silicon", J. Electrochem. Soc. 135 (1988) 155-165
    25 S. A. Mchugo, H. Hieselmair, and E. R. Weber, "Gettering of metallic impurities in photovoltaic silicon", Appl. Phys. A 64, (1997) 127-137
    26 K.Mahfoud, M.Loghmarti, J.C.Muller, P.Siffert, "Classical and rapid thermal process effects on oxygen precipitation in silicon", Journal de Physique Ⅲ(Applied Physics, Materials Science, Fluids, Plasma and Instrumentation) 5(1995) 1345-51.
    27 V. Borjanovic,I. Kovacevic, B. Santic, B. Pivac, "Oxygen-related deep levels in oxygen doped EFG poly-Si", Materials Science and Engineering B, 71 (2000) 292-296
    28 S. A. McHugo, "Release of metal impurities from structural defects in polycrystalline silicon", Appl. Phys. Lett. 71 (1997) 1984-1986.
    29 J.H. Reiss, R. R. King, K. W. Mitchell, "Characterization of diffusion length degradation in Czochralski silicon solar cells", Appl. Phys. Lett., 68 (1996) 3302-3304
    30 S.Martinuzzi, I.Perichaud, "External gettering for multicrystalline silicon wafers", Solid State Phenomena, 47-48(1996) 153-64
    31 H.J.Moller, "Multicrystalline silicon for solar cells", Diffusion and Defect Data Part B (Solid State Phenomena), 47-48 (1996) 127-142,
    32 B. Hartiti, A. Slaoui, J. C. Muller, P. Siffert in Defect Engineering in Semiconductor Growth, Processing and Device Technology, edited by S. Ashok, J. Chevallier, K. Sumino, and E. Weber (Mater. Res. Soc. Syrup. Proc. 262. Pittsburgh, PA. 1992) 987.
    
    
    33 D. R. Sparks, R. G. Chapman, N. S. Alvi, "Anomalous diffusion and gettering of transition metals in silicon", Appl. Phys. Lett. 49 (1986) 525-527
    34 I. Perichaud, F. Floret, S. Martinuzzi, "Limiting factors of phosphorus external gettering effieiency in multicrystalline silicon", Conference Record of the Twenty Third IEEE Photovottaic Specialists Conference-1993, 243-247
    35 S. Pizzini, P.Cagnoni, A. Sandrinelli, M.Anderle, R.Canteri, "Grain boundary segregation of oxygen and carbon in polycrystalline silicon", Applied Physics Letters, 51(1987) 676-678.
    36 M.Werner, E.R.Weber, S.McHugo, H.Hieslmair, K.L.Chapman, "Investigation of microdefects in multicrystaltine silicon for photovoltaic applications", Diffusion and Defect Data Part B (Solid State Phenomena), 47-48 (1996)449-454,
    37 J.Knobloch, A.Eyer, "Crystalline silicon materials and solar cells", Materials Science Forum, 173-174(1995)297-310
    38 S.W.Glunz, C.Hebling,; W.Warta,, "Lifetime and material characteristics of multicrystalline silicon measured with high spatial resolution", Diffusion and Defect Data Part B (Solid State Phenomena),51-52(1996) 69-74
    39 J. Sehmidt, A. G. Aberle, R. Hezel, "Investigation of carrier lifetime instabilities in Cz-grown silicon", Proc. 26th IEEE PVSC, (1997) 13-18.
    40 S.W. Glunz, S. Rein, W. Warm, J. Knobloch, W. Wettling, "Comparison of boron-and gallium-doped p-type Czochralski silicon for photovoltaic application", Progress in Photovoltaics: Research and Applications, 7(1999), 463-469
    41 D. Yang, L. Li, X. Ma, R. Fan, D. Que, H.J. Moeller, "Oxygen-related centers in multicrystalline silicon", Solar Energy Materials & Solar Cells 62 (2000) 37-42.
    42 Y.Yatsurugi, N.Akiyama, Y.Endo, T.Nozaki, "Concentration, solubility, and equilibrium distribution coefficient of nitrogen and oxygen in semiconductor silicon", Journal of the Electrochemical Society, 120(1974)975-979
    43 T. Nozaki, Y. Yatsurugi, N. Akiyama, J. Electrochem. Soc. 117 (1970) 1956.
    44 R. C. Newman, "Light impurities and their interactions in silicon", Mater. Sci. & Eng. B, 36 (1996) 1-12.
    45 E. Wolf, W. Schroder, H. Riemann, B. Lux, "The influences of carbon, hydrogen and nitrogen on the floating zone growth of four inch silicon crystals", Mater. Sci. & Eng. B, 36 (1996)209-212.
    46 U. Gosele, "Current understanding of diffusion mechanisms in silicon", Mat. Rec. Soc. Symp. Proc., 5-9 (1986) 541-545.
    47 C. S. Fuller, J. A. Ditzenberger, N. B. Hannay, E. Buehler, Phys. Rev. 96 (1954) 833.
    48 P. Wagner, J. Hage, "Thermal double donors in silicon", Appl. Phys. A Solids Surf. 49 (1989) 123-138.
    
    
    49 W. Gotz, G. Pensl, W. Zulehner, "Observation of five additional thermal donor species TD 12 to TD16 and of regrowth of thermal donors at initial stages of the new oxygen donor formation in Czochralski-grown silicon", Phys. Rev. B 46 (1992) 4312-4315
    50 A. Borghesi, B. Pivac, A. Sassella, A. Stella, "Oxygen precipitation in silicon", J. Appl. Phys. 77 (1995) 4169-4244.
    51 S.A. McQuaid, M. J. Binns, C. A. Londos, J. H. Tucher, A. R. Brown, R. C. Newman, "Oxygen loss during thermal donor formation in Czochralski silicon: New insights into oxygen diffusion mechanisms", J. Appl. Phys. 77 (1995) 1427-1442.
    52 W. Kaiser, H. J. Hrastouski, Phys. Rev., 112 (1958) 1546.
    53 W. Kaiser, Phys. Rev.,105 (1957) 1751.
    54 Helmreich D, Sirtl E. In, Huff H R, Sertl E eds, Semiconductor Silicon 1977, Princeton, NJ, Electrochem Soc, 1977, 626.
    55 T. Y. Tan, V. Gosele, "Point defects, diffusion processes, and swirl defect formation in silicon", Appl. Phys., A37 (1985) 1-17.
    56 V.V. Emtsev Jr., C. A. J. Ammerlaan, V. V. Emtsev, G. A. Oganesyan, A. Misiuk, B. Surma, A. Bukowski, C. A. Londos, M. S. Potsidi, "Double thermal donors in Czochralski-grown silicon heat-treated under atmospheric and high hydrostatic pressures", Physica Status Solidi C, 2(2003) 75-78.
    57 D. Mathiot, "Thermal donor formation in silicon: A new kinetic model based on self-interstitial aggregation", Appl. Phys.Lett., 51 (1987) 904-906.
    58 V.V. Emtsev Jr., C. A. J. Ammerlaan, V. V. Emtsev, G. A. Oganesyan, A. Misiuk, B. Surma, A. Bukowski, C. A. Londos, M. S. Potsidi, "Oxygen agglomeration and formation of oxygen-related thermal donors in heat-treated silicon", Cryst. Res, Technol. 38 (2003) 394-398
    59 栾洪发,张果虎,李兵,陈学清,秦福,钱佩信,“直拉硅单晶中热施主的快速热退除”,半导体学报,16(1995)789—793
    60 L. Murin, Y. P. Markevch, "Effect of carbon on thermal double donor formation in silicon" Mater, Sci, Forum, 196-200 (1995) 1315.
    61 P. Capper, A. W. Toncs, "The effects of heat treatment on dislocation-flee oxygen-containing silicon crystals",J. Appl. phys.,48 (1977) 1646-1655.
    62 杨德仁,材料科学与工程,2(1990)13
    63 G.Fraundorf, P.Fraundorf, R.A.Craven, R.A.Frederick, J.W.Moody, R.W.Shaw, "The effects of thermal history during growth on O precipitation in Czochralski silicon", The Electrochem Soc., 132(1985) 1701-1704.
    64 P.E. Freeland, K. A. Jackson, C. W. Lowe, and J. R. Patel, "Precipitation of oxygen in silicon", Appl. Phys. Let., 30 (1977) 31-33.
    65 N.Lnoue(井上进久),应用物理,48(1979)1126
    
    
    66 B.N.Rygalin, A.R.Salmanov, V.P.Pelipas, V.K.Prokofeva, V.V.Batavin, E.B.Sokolov, "Influence of magnesium on the properties of silicon containing oxygen", Inorganic Materials, 17 (1981)845-847.
    67 J.G. Wilkes, "The precipitation of oxygen in silicon",J. Cryst. Growth, 65 (1983) 214-230.
    68 Semiconductor International April (1985).
    69 谭松生等,《科技通讯》中国科学院上海冶金所,2(1986)1.
    70 K.Wada, N. Lnoue, "Oxide precipitate nucleation in Czochralski silicon-an insight from thermal donor formation kinetics", Proceedings of the Fifth International Symposium on Silicon Materials Science and Technology: Semiconductor Silicon 1986, 778-789.
    71 K.V. Ravi., "The heterogeneous precipitation of silicon oxides in silicon", J. Electrochem, Soc. 121 (1974) 1090-1098.
    72 R.F.Pinizzotto, S.Marks, "Carbon and the kinetics of oxygen precipitation in silicon", Defects in Semiconductors Ⅱ, Symposium Proceedings, (1983)147-152
    73 M.J. Binns, W. P. Brown, and J. G. Wilkes, "Diffusion limited precipitation of oxygen in dislocation-free silicon", Appl. Phys. Lett., 42 (1983) 525-527.
    74 W. Patrick, E. Hearn, W. Westdorp, A. Bohg, "Oxygen precipitation in silicon", J.Appl. phys., 50 (1979) 7156-7164.
    75 A.Bourret, J.Thibault-Desseaux, D.N.Seidman, "Early stages of oxygen segregation and precipitation in silicon",J.Appl, phys., 55 (1984)825-836.
    76 A. Ohsawa, R. Takizawa, K. Honda, A. Shibatomi, and S. Ohkawa, "Influence of carbon and oxygen on donor formation at 700℃ in Czochralski-grown silicon", J.Appl. phys., 53 (1982) 5733-5737.
    77 F.Shimura, H.Tsuya, "Oxygen precipitation factors in silicon", Journal of the Electrochemical Society, 129(1982)1062-1066
    78 A. Bourret, J. Thibault-Desseaux, and D. N. Seidman, Early stages of oxygen segregation and precipitation in silicon,J.Appl. Phys., 55 (1984) 825-836.
    79 S.Kishino, Y.Matsushita, M.Kanamori, T.Iizuka, "Thermally induced microdefects in Czochralski-grown silicon: Nucleation and growth behavior", Jpn. J. Appl. Phys., 21 (1982) 1-12.
    80 J.R. Patel, K.A.Jackson, H.Reiss,, "Oxygen precipitation and stacking-fault formation in dislocation-free silicon", J.Appl. phys., 48 (1977) 5279-5288.
    81 C. Plougonven, B. Leroy, J. Arhan, and A. Lecuiller,Ring-shaped stacking faults induced by oxide precipitates in silicon, J.Appl. phys., 49 (1978) 2711-2716.
    82 D. Yang, H. J. Moeller, "Oxygen annealing behavior in multicrystalline silicon", Solid State Phenomena 82 (2001) 707-712.
    83 Q. Sun, K.H. Yao, J. Lagowski, H.C. Gatos, "Effect of carbon on oxygen precipitation in silicon",J. Appl. Phys. 67 (1990)4313-19.
    
    
    84 W. J. Taylor, U. Goesele, T. Y. Tan, "SiO_2 precipitate strain relief in Czochralski Si: Self-interstitial emission versus prismatic dislocation loop punching", J. Appl. Phys. 72 (1992) 2192-2196.
    85 D. Yang, D. Li, L. Wang, X. Ma, D. Que, "Oxygen in Czochralski silicon used for solar cells", Solar Energy Materials & Solar Cells 72 (2002) 133-138.
    86 S.M.Hu, "Infrared absorption spectra of Sit/sub 2/precipitates of various shapes in silicon: Calculated and experimental", Journal of Applied Physics,51(1980), 5945-5948.
    87 F. Shimura, H. Tsuya, and T. Kawamura, "Precipitation and redistribution of oxygen in Czochralski-grown silicon", Appl. Phys. Lett., 37 (1980) 483-486.
    88 T.Y. Tan, C.Y. Kung, "Effects of nitrogen on dislocation behavior and mechanical strength in silicon crystals", J. Appl. Phys, 54(1983) 5016-5020.
    89 F. Shimura, "Carbon enhancement effect on oxygen precipitation in Czochralski silicon", J. Appl. Phys. 59 (1986) 3251-3254.
    90 F. Shimura, J. P. Baiardo, P, Fraundorf, "Infrared absorption study on carbon and oxygen behavior in Czochralski silicon crystals", Appl. Phys. Lett., 46 (1985) 941-943.
    91 F. Shimura, R. S. Hockett, D. A. Read, C. H. Wayne, "Direct evidence for co-aggregation of carbon and oxygen in Czochralski silicon", Appl. Phys. Lett., 47 (1985) 794-796.
    92 王莉蓉,杨德仁,应啸,“太阳电池用直拉硅单晶中碳对氧沉淀的作用”,太阳能学报,23(2002)129—133.
    93 D. Yang, H. J. Moeller, "Effect of heat treatment on carbon in multicrystalline silicon", Solar Energy Materials & Solar Cells 72 (2002) 541-549.
    94 J.P. Kalejs, L.A. Ladd, U. Goesele,Self-interstitial enhanced carbon diffusion in silicon, Appl. Phys. Lett. 45 (1984)268-269.
    95 H. J. Moller, M. Ghosh, S. Riedel, M. Rinio, D. Yang, 13th European Photovoltaic Solar Energy Conference (1995) 1390.
    96 H.J. Moller, L. Long, D. Yang, M. Werner, Phys. Star. Sol. A 171 (1999) 175.
    97 G.S.Oehrlein, D.J.Challou, A.E.Jaworowski, J.W.Corhett, "The role of carbon in the precipitation of oxygen in silicon", Physics Letters A, 86(1981)117-119
    98 F. Shimura, Y. Ohnizhi, H. Tsuya, "Heterogeneous distribution of interstitial oxygen in annealed Czochralski-grown silicon crystals", Appl. Phys. Lett., 38 (1981) 867-869.
    99 S.M. Hu, "Precipitation of oxygen in silicon: Some phenomena and a nucleation model", J. Appl. Phys., 52 (1981) 3974-3984.
    100 C. Y. Kung, L. Forbes, J. D. Peng, Defects in Silicon, edited by Bullis W M, Kimerling, ECS, NJ, 1983,185.
    101 d A.J.R.e Kock, W.M.van de Wijgert, "The influence of thermal point defects on the precipitation of oxygen in dislocation-flee silicon crystals", Applied Physics Letters, 38(1981) 888-890
    102 H. J. Hrostowski, W. Kaiser, J. Chem. Phys, 33 (1960) 980.
    
    
    103 K.Graff, H.Pieper, G.Goldbach, "Carder lifetime doping of p-type silicon by annealing processes", Journal of the Electrochemical Society, 120(1973), 95C, March
    104 C.Y.Kung, L.Forbes, J.D.Peng, "The effect of carbon on oxygen precipitation in high carbon CZ silicon crystals", Materials Research Bulletin, 18(1983)1437-1441.
    105 D G.as, M.F.Varano, "Nucleation treatment for oxygen precipitation in silicon wafers", IBM Technical Disclosure Bulletin, 26(1983)238-9
    106 K.Yasutake, M.Umeno, H.Kawabe, "Oxygen precipitation and microdefects in Czochralski-grown silicon crystals", Physica Status Solidi A, 83(1984) 207-217
    107 A.Borghesi, M.Geddo, B.Pivac, "Infrared study of oxygen precipitates in Czochralski grown silicon", Journal of Applied Physics, 69(1991)7251-7255
    108 阙端麟,陈修治,“硅材料科学与技术”,浙江大学出版社,P500

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700