光伏硅晶材料的热改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能光伏发电是解决世界能源危机和环境污染的重要途径。目前硅晶太阳电池占据了光伏市场约88%的份额。硅晶材料的热改性指通过热处理或优化硅晶太阳电池制造中的热过程参数来提高晶体硅材料的光伏应用性能。它是一条低成本地提高硅晶太阳电池转换效率的重要的潜在途径。
     本文系统地研究了热过程参数对晶体硅中杂质状态与分布、缺陷密度的影响,以其由此导致的晶体硅电学性能的变化规律。所涉及的硅晶材料包括直拉单晶硅与定向凝固铸造多晶硅。研究主要取得以下结果:
     1、发现铸造多晶硅在连续冷却过程中,间隙固溶态的杂质氧有很强的沉淀趋势,而替位固溶态的碳则不然。前者在高达10℃/s的冷却速率下仍会发生可观沉淀析出;而后者在低至0.017℃/s冷却速率下也基本不发生沉淀析出。计算分析显示,硅晶中杂质碳不易发生沉淀析出的原因在于碳在硅中的扩散激活能大,扩散速率极低。
     2、发现无论是直拉单晶硅还是铸造多晶硅,其铁杂质的脱溶沉淀与分解重溶对热过程十分敏感,需密切关注。两种原始态的硅晶材料在300~1050℃范围加热后快速冷却至室温,其间隙铁含量均显著增加;加热温度越高,快冷后硅晶中的间隙铁含量越高;而经一定温度加热后,间隙铁含量均随冷却减缓而降低。在900~1050℃范围加热,继以50℃/s的速率快冷至室温后,两种硅晶材料中90%以上的铁仍以沉淀形式存在,其余的铁以过饱和固溶间隙态存在。对铸造多晶硅,这些过饱和的间隙铁经加热随即缓慢冷却处理后,又发生沉淀而大幅度回落下降,并随加热温度的升高而逐渐降低,900℃加热时即接近原始铸造多晶硅的间隙铁含量水平。
     3、0.2mm厚的多晶硅片经过1320℃以上高温退火并缓慢冷却后,其内部位错数量会显著下降。例如在1340℃退火2小时并以0.12℃/s速率冷却后,其内部位错密度降低约一半。实验显示,高温下硅晶体中位错的消长对热应力十分敏感,从而受冷却条件和材料厚度影响很大—在1320℃以上高温退火后冷却速率稍高(大于0.13℃/s)即会使多晶硅片内部位错密度增加;而厚度为13mm的铸造多晶硅块经此高温退火后即使以0.03℃/s的速度缓慢冷却,其内部的位错密度也有一定程度的升高。实验还发现,经1100℃以下温度退火并缓慢冷却后,0.2mm多晶硅片中位错密度并不降低,反而增加。
     4、提出原始态硅晶材料少子寿命的热衰减概念并进行系统研究。实验发现,原始态的直拉单晶硅与铸造多晶硅在300-1050℃范围加热后快冷至室温,其少子寿命均显著下降,加热温度越高,下降程度越大;而经相同的温度加热后,其少子寿命随冷却速率增加而降低;热衰减后的多晶硅片经不同加热并缓慢冷却处理后,其少子寿命均能得到不同程度的恢复,在900℃达到最大值,约为原始多晶硅片的92%。实验还发现,经过加热淬冷热衰减的铸造多晶硅比原始铸造多晶硅具有更强的抗高温热衰减能力。
     5、综合硅晶材料少子寿命热衰减/恢复现象与热过程中硅晶内部氧、碳和铁杂质杂质状态与位错密度变化的关联情况,提出热衰减的主要机理是硅晶中铁等金属沉淀相的分解造成的铁等金属杂质的固溶释放,它们在冷却过程中未能充分聚集沉淀,而造成较高含量的过饱和固溶铁等金属杂质或高度分散细密的二次沉淀,成为少子复合中心,使少子寿命大幅下降;而已经热衰减硅晶的少子寿命恢复的主要机理则是过饱和固溶铁等金属杂质的聚集沉淀,或细密沉淀的溶解与再次聚集沉淀为较大尺度沉淀相。
     6、采用650℃保温40min的退火可以有效地消除直拉单晶硅中形成的热施主,并使虚高的少子寿命和电阻率恢复到实际值。在后续高温加热后的缓慢冷却过程中,硅片的热施主会再次生成,其含量随冷却速率降低而增加,快速冷却可避免热施主的再次生成。实验还发现,慢冷至550℃后再快冷同样可避免热施主的再次生成,而且还避免了少子寿命热衰减。这一发现可用以解决消除热施主处理与少子寿命热衰减的矛盾。
     以上结果对晶硅太阳电池的生产中热过程的优化利用以及对硅片附加热处理的设计将具有重要的参考价值,对于低成本地提高现有晶硅太阳电池效率意义重大。部分结果公开发表后已为多晶硅太阳电池制造企业采纳应用。
Solar photovoltaic power is an important solution to the energy and environment crisis of the world. Silicon wafer-based solar cells occupy about88%of the cells installed in solar power systems. Thermal engineering of crystalline silicon refers to enhancing photovoltaic performance of the material through thermal treatments or optimizing thermal processes in fabrication of silicon wafer-based solar cells. It is a potential route to higher energy conversion efficiency at low cost.
     In the present thesis, effects of thermal parameters on the state and distribution of impurities and defect densities in crystalline silicon, and hence on electrical properties of crystalline silicon, are investigated systematically. Both Cz type mono-crystalline silicon and directionally solidified cast multi-crystalline silicon are involved. The following major results are obtained.
     1) It has been found that, in continuous cooling of cast multi-crystalline silicon, the dissolved interstitial oxygen has very strong tendency to precipitate, while carbon does not. The former can precipitate even in cooling as fast as10℃/s, while the latter basically does not precipitate even in cooling as slow as0.017℃/s. Calculation shows that the reason for difficulty of carbon precipitation is the high activation energy for diffusion of carbon in crystalline silicon, and its extremely low diffusion rate.
     2) It has been found that, in both the mono-crystalline silicon and the multi-crystalline silicon, precipitation or dissolving of iron impurity is very sensitive to thermal processes, which worth close attentions. Concentration of dissolved interstitial iron in the two crystalline silicon materials of as-solidified state remarkably increases after heating to300~1050℃followed by a rapid cooling to ambient temperature. The higher the heating temperature, the higher the iron concentration in the rapidly cooled material. For heating to a certain temperature, slower cooling leads to lower concentration of interstitial iron. In both crystalline silicon materials,900~1050℃heated followed by50℃/s quenching to ambient temperature, over90%of iron exists in state of precipitates, with rest in dissolved interstitial state. For multi-crystalline silicon, the supersaturated interstitial silicon will precipitate again after a heating followed by slow cooling procedure, leading to remarkable decrease of its concentration. Higher heating temperature leads to lower level of interstitial iron concentration after slow cooling, down to the as-cast level when the heating temperature reaches900℃.
     3) Dislocation density in0.2mm thick multi-crystalline wafers significantly decreases after annealing at1320℃or above followed by slow cooling. For instance, in the sample annealed at1340℃for2hours followed by cooling at0.12℃/s, about50%decrease of dislocation density was found. At high temperatures, it is found that generation/disappearing of dislocations in crystalline silicon is very sensitive to thermal stress, and hence to cooling condition and thickness of materials--in the wafers cooled at slightly higher rate (greater than0.13℃/s) after annealing at1320℃/s or above, the dislocation density increased, and in13mm thick sample of multi-crystalline silicon block, increase of dislocation density appeared even when the cooling is as slow as0.03℃/s after the same kind of annealing. It is further shown that annealing at1100℃/s or lower followed by slow cooling results in increase of dislocation density, rather than decrease.
     4) The concept of thermal degradation of minor carrier lifetime is proposed and supported by experimental studies. Both mono-crystalline silicon and multi-crystalline silicon in their as-solidified state are found to have decreased minor carrier lifetime after300~1050℃heating followed by rapid quench to ambient temperature. Higher the heating temperature, shorter the lifetime after quench. With the same heating temperature, the lifetime decreases as the cooling rate increases. The thermally degraded multi-crystalline silicon can be recovered to various extent by heating followed by slow cooling, with the maximum recovery extent achieved at900℃heating,~92%of the as-solidified multi-crystalline silicon. It was also found that, the thermally degraded multi-crystalline silicon by fast heating-quenching showed better resistance to high temperature thermal degradation than the as-solidified multi-crystalline silicon.
     5) Based on the phenomena of thermal degradation/recovery, and their correlation with the evolution of the state and distribution of iron, oxygen, carbon, and dislocation density in thermal processes, it is proposed that the major mechanism for thermal degradation is dissolving of the precipitates of iron and other similar metal impurities, which releases iron and other metals, resulting in supersaturated iron and other metal impurities, or fine scattered secondary precipitates in fast cooling. They act as recombination centers of the minor carriers and cause remarkable decrease of the lifetimes. The major mechanism for the recovery of the thermally degraded silicon is then the precipitation of supersaturated iron and other similar metal impurities, or dissolving of the fine precipitates followed by secondary precipitation forming larger size precipitates.
     6) Thermal donors formed in Cz mono-crystalline silicon can be effectively eliminated by a40min annealing at650℃, which make the measured minor carrier lifetime and resistivity recovered to their real value. In the subsequent heating to high temperature followed by slow cooling, the thermal donors form again, with its concentration increasing with decrease of cooling rate. The re-formation of thermal donors can be avoided with fast cooling. It is found that if the material is slowly cooled to550℃, and then cool quickly, formation of thermal donors can also be avoided. This discovery can be utilized to solve the problem of contradiction between the thermal donor elimination and thermal degradation of minor carrier lifetimes.
     The results presented above are helpful for optimization of thermal processes in fabrication of solar cells from crystalline silicon wafers, and for designing of added heat treatment of silicon wafers, which in turn are of great value to increase of energy conversion efficiency of crystalline silicon wafer-based solar cells. Part of the results, after publication, has already been used in solar cell manufacturing industry.
引文
[1]赵玉文.太阳电池发展趋势[C].国际光伏科学技术研讨会.江西新余,2009.
    [2]光伏平价上网将提前到来[N].北极星太阳能光伏网,http:guangfu.bjx.com.cn, 2012-05-18.
    [3]Keck H, Golay M. Crystallization of Silicon from a Floating Liquid Zone[J]. Physical Review,1953,89(6):1297-1297.
    [4]Dietz W, Keller W, Muhlbauer A. Float-zone grown silicon in crystals growth[J]. Properties and Applications,1981,Vol.5:1.
    [5]Luedge A, Riemann H, Hallmann B. High-speed growth of FZ silicon for photovoltaics[J]. Proc. High Purity Silicon VII,2002.
    [6]Teal G K, Little J B. Growth of germanium single crystals[J]. Phys Rev,1950,78:647.
    [7]Teal G K, Buehler E.The growth of germanium single crystals and of single silicon pn junctions[J]. Phys Rev,1952,87:190.
    [8]Dash W C.Growth of silicon Crystals Free from Dislocations[J]. Journal of Applied Physics,1959,30(4):459-474.
    [9]Dash W C.Growth of silicon Crystals Free from Dislocations[J]. Uspekhi Fizicheskikh Nauk,1960.72(3):495-520.
    [10]Glunz S W, Rein S,Knobloch J,et al.Comparison of boron-and galliun-doped P-type Czochralski silicon for photovoltaic application [J]. Progress in Photovoltaics:Research and applications,1999,7(6):463-469.
    [11]Lane R L, Kachare A H. Multiple Czochralski growth of silicon crystals from a single crucible[J]. Journal of Crystal Growth,1980,50(2):437-444.
    [12]杨德仁.太阳电池材料[M].北京:化学工业出版社,2007.
    [13]Stoddard N,Wu B,Witting L.Casting Single Crystal silicon:Novel Defect Profiles from BP Solars Mono2 TM Wafers[J]. Solid State Phenomena 2008. Gettering and Defect Engineering in semiconductor technology Xll,2008,131-133:1-8.
    [14]Hardin C W, Qu J, Shih A J. Fixed abrasive diamond wire saw slicing of single-crystal silicon carbide wafers [J]. Materials and Manufacturing Process,2004,19:355-367.
    [15]King D L, Buck M E. Experimental optimization of an anisotropic etching process for random texturization of silicon solar cells[J]. Proc.22nd IEEE photovoltaic specialists conf.,1991:303-308.
    [16]Sarti D, Le Q N, Baatide S, et al. Thin industrial multicrystalline solar cells and improved optical absorption[C]. Proc.13th European photovoltaic solar energy conf.,1995:25-28.
    [17]Einhans R, Van Kerschaver E, Szlufcik J, et al. Isotropic texturing of multicrystalline silicon wafers with acidic texturing solutions[J]. Proc.26th IEEE photovoltaic specialists conf.,1997:167-170.
    [18]Horzel J, Szlufcik J, Nijs J. High efficiency industrial screen printed selective Emitter solar cells[J]. Proc.16th European photovoltaic solar energy conf.,2000:1112-1115.
    [19]Wenham S. Burried-contact solar cells [J]. Progress in Photovoltaics,1993,1:3-10.
    [20]Bultman J H, kinderman R, Hoornstra J, et al. Single step selective emitters using diffusion barriers [C]. Proc.16th European photovoltaic solar energy conf.,2000:1424-1426.
    [21]Ruby D S, Yang P, Zaidi S, et al. Improved performance of self-aligned selective-emitter silicon solar cells [C]. Proc.2nd world conf. on photovoltaic energy conversion,1998: 1460-1463.
    [22]Szlufcik J, Elgamel H, Ghannam M, et al. Simple integral screen printing process for selective emitter polycrystalline silicon solar cells[J]. Appl. Phys. Lett.,1991,59: 1583-1584.
    [23]Duerlnekx F, Szlufrik J. Defect passivation of industrial multicrystalline solar cells based on PECVD silicon nitride [J]. Solar energy materials and solar cells,2002,72(1-4): 231-246.
    [24]Yoo J, Dhungel S K,.Yi J. Properties of plasma enhanced chemieal vapor deposited silicon nitride for the application in multicrystalline silicon solar cells [J]. Thin solid films, 2007,515(12):5000-5003.
    [25]Kintzel W, Ball M, Auer R, et al. Efficient surface passivation by silicon nitride using a large area deposition system [C]. Proc.29th IEEE photovoltaic specialists conf., New Orleans,2002:262.
    [26]Soppe W J, Schiermeier S E A, Weeber A W, et al. A high throughput PECVD reactor for deposition of passivating SiN layers[C]. Proc.16th European photovoltaic solar energy conf.,2000:1420-1423.
    [27]Szlufcik J, De Clercq K, De Schepper P, et al. Improvement in Multicrystalline silicon solar cells after thermal treatment of PECVD silicon nitride AR coating [C]. Proc.12th European photovoltaic solar energy conf.,1994:1018-1022.
    [28]邓志杰,郑安生.半导体材料[M].北京:化学工业出版社,2007.
    [29]刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:电子工业出版社,2010.
    [30]Markvart T, Castaner L.The practical handbook photovoltaics[M].ISBN 1856173909, Elsevier,2003.
    [31]阙端麟,陈修治.硅材料科学与技术.杭州:浙江大学出版社,2001.
    [32]Fuller C S, Ditzenberger J A, Hannay N B,et al. Resistivity changes in silicon induced by heat treatment[J].Phys. Rev.,1954,96,833.
    [33]Wezep D A van, Gregorkiewicz T, Bekman H H P T, et al. In defects in semiconductors[C]. Mater. Sci. Forum, Ammersdorf, Switzerland,1986.
    [34]Mathiot D. A self-interstitial related model for the formation of thermal donors in silicon[J].Appl. Phys. Lett.1987,51,904.
    [35]Newman R C. Thermal donors in silicon:oxygen clusters or self-interstitial aggregates[J]. J. Phys. C:Solid State Phys.,1985,18, L967-L972.
    [36]Kaiser W, Firsch H L, Reiss H. Mechanism of the For&nation of Donor States in Heat-Treated Silicon[J], Phys. Rev.,1958,112(5):1546-1554.
    [37]Bean A R, Newman R C. The effect of carbon on thermal donor formation in heat treated pulled silicon crystals[J]. Journal of Physics and Chemistry of Solids,1972,33(2):255-268.
    [38]Schaake H F, Barber S C, Pinizotto R F. In Semiconductor Silicon[M]. The Electrochemical Soc, Inc., Pennington, NJ.1981.
    [39]Wruck D, Gaworzewski P. Electrical and infrared spectroscopic investigations of oxygen-related donors in silicon[J]. Phys. Status Solidi (a),1979,56(2):557-564.
    [40]Wagner P, Hage J. Thermal Double Donors in Silicon[J]. Appl. Phys. A,1989,49,123-138.
    [41]Steele A G, M. L. W. Thewalt M L W. Photoluminescence studies of defects in annealed Czochralski silicon[J]. Canadian Journal of Physics,1989,67 (4):268-274.
    [42]Gotz W, Pensl G, Zulehner W. Observation of five additional thermal donor species TD12 to TD16 and of regrowth of thermal donors at initial stages of the new oxygen donor formation in Czochralski-grown silicon[J]. Physical review B,1992,46 (7):4312-4315.
    [43]Meilwes N, Spaeth J -M, Emstev V V et al. EPR/ENDOR investigation on the nature of heat treatment centers in silicon [J]. Mater. Sci. Forum,1994,143-147:141-145.
    [44]Wagner P, Hage J. Thermal Double Donors in Silicon[J]. Appl. Phys. A,1989,49,123-138.
    [45]Kaiser W, Frisch H L, Reiss H. Mechanism of the formation of donor states in heat-treated silicon[J]. Phys. Rev.1958,112(5):1546-1554.
    [46]Muller S H, Sprenger M, Sieverts E G,er al. EPR spectra of heat-treatment centers in oxygen-rich silicon[J]. Solid State Commun,1978,25(12):987-990.
    [47]Michel J, Niklas J R, Spaeth J M. Thermal Donors in Silicon:A Study with ENDOR[J]. Solid State Communications,1978,987-990.
    [48]Michel J, Niklas J R, Spaeth J-M. Structure of thermal donors (NLS) in silicon:A study with electron-nuclear double resonance [J]. Physical Reiew b,1989,40(3):1732-1746.
    [49]Michel J, Niklas J R,. Spaeth J M, et al. Thermal donors in silicon:A study with ENDOR[J]. Phys. Rev. Lett.,1986,57(5):611-614.
    [50]Stavola M. Patel J R, Kimerling L C,et al. Diffusivity of oxygen in silicon at the donor formation temperature[J]. Applied Physics Letters,1983,42(1):73-75.
    [51]Markevich V P, Makarenko L F, Murin L I. Some new features of thermal donor formation in silicon at T< 800 K[J]. physica status solidi (a),1986,97(2):K173-K176.
    [52]Stein H J, Hahn S K, Shatas S C. Rapid thermal annealing and regrowth of thermal donorsfJ]. Journal of Applied Physics,1986,59(10):,3495-3502.
    [53]Mikkelsen J C. The diffusivity and solubility of oxygen in silicon[C].in:Mikkelsen J.C. Jr, Pearton S.J, Corbett J.W., eds. Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon. Boston, MA, USA,1986,19-30.
    [54]Benton J L, Kimerling L C, Stavola M. The oxygen related donor effect in silicon[J]. Physica B,1983,116(1-3):271-275.
    [55]Kaiser W, Frisch H L, Reiss H:Phys. Mechanism of the Formation of Donor States in Heat-Treated Silicon[J].Phys. Rev.,1985,112(5):1546-1554.
    [56]Helmreich D, Sirtl E. In, Huff H R, et al. Semiconductor Silicon [M]. Princeton, NJ, Electrochem Soc,1977,626.
    [57]Tan T Y, Gosele V.Point defects, diffusion processes, and swirl defect formation in silicon[J] Appl. Phys., A,1985,37,1-17.
    [58]Gosele U. Oxygen diffusion and thermal donor formation in silicon[J]. Appl. Phys. A,1982, 28:79-92.
    [59]DeLeo G G, Fowler W B, Watkins G D,et al. Theory of off-center impurities in silicon: Substitutional nitrogen and oxygen[J]. Phys. Rev.,1984, B29,3193-3207.
    [60]Deak P, Snyder L C, Corbett J W. Theoretical studies on the core structure of the 450 C oxygen thermal donors in silicon [J]. Physical Review, B,1992,45(20):11616-11626.
    [61]Emtsev Jr. V V, Ammerlaan C A J, Emtsev V V,et al.Double thermal donors in Czochralski-grown silicon heat-treated under atmospheric and high hydrostatic pressures[J]. Physica Status Solidi C,2003,2,75-78.
    [62]Gosele U. Oxygen diffusion and thermal donor formation in silicon[J]. Appl. Phys. A,1982, 28:79-92.
    [63]Gosele U, Ahn K Y, Marioton B P R, et al. Do oxygen molecules contribute to oxygen diffusion and Thermal donor formation in silicon[J]. Appl. Phys, A,1989,48:219-228.
    [64]Borghesi A, Pivac B, Sassella A,et al. Oxygen precipitation in silicon[J]. J. Appl. Phys. 1995,77 (9):4169-4224.
    [65]Ham F S. Theory of diffusion-limited precipitation[J]. J. Phys. Chem. Solids,1958,6(4): 335-351.
    [66]Miller L E. iu Properties of Elemental and Compound Semiconductors[M], Wiley, New York,1960,303.
    [67]Barson F, M. Hess M S, Roy M M. Diffusion Pipes in Silicon NPN Structures[J]. J. Electrochem. Soc,1969,116(2):304-307.
    [68]Parekh P C, Goldstein D R, Chan T C. The influence of the reaction kinetics of O2 and source flow rates on the uniformity of boron and arsenic diffusions[J].Solid-State Electronics,1971,14(4):281-282.
    [69]Lawrence J E. in Semiconductor Silicon[C]. The Electrochemical Society, Pennington, NJ, 1973,17.
    [70]Borghesi A, Pivac B, Sassella A,et al. Oxygen precipitation in silicon[J]. J. Appl. Phys. 1995,77 (9):4169-4224.
    [71]N. Inode, K.Wada, J. Osaka,et al. In defects and properties of semiconductors:Defect engineering[C]. edited by J. j. chikasa, K. Summo, KTK Scientic publisher, Tokyo,1987, 187.
    [72]Lin W, Oates A S.Anomalous oxygen precipitation in czochralski silicon[J]. Appl. Phys. Lett.1990,56(2):128-130.
    [73]Ham F S.Theory of diffusion-limited precipitation[J]. Journal of Physics and Chemistry of Solids,1958,6(4):335-351.
    [74]Wada K, Inoue N, Kohra K. Diffusion-limited growth of oxide precipitates in czochralski silison[J]. Journal of Crystal Growth,1980,49(4):749-752.
    [75]Binns M J, Brown W P, Wilkes J G, et al. Diffusion limited precipitation of oxygen in dislocation - free silicon [J].Appl. Phys. Lett.1983,42:525-529.
    [76]Newman R C, Binns M J, Brown W P, et al.Precipitation of oxygen in silicon kinetics, solubility, diffusivity and particle size[J].Physica B+C,1983,116(1-3):264-270.
    [77]Shimanuki Y, Furuya H, Suzuki I, et al. Effects of thermal history on microdefect formation in czochralski silicon-crystals[J]. Japanese journal of applied physics part 1-regular papers short notes & review papers,1985,24(12):1594:1599.
    [78]Fraundorf G, Fraundorf P, Craven R A,et al. The effects of thermal history during growth on O-precipitation in czochralski silicon[J].Journal of the electrochemical society,1985,132(7),1701-1704.
    [79]Shimura F, Tsuya H.Oxygen precipitation factors in silicon[J]Journal of the electrochemical society,1982,129(5),1062-1066.
    [80]Matsushita Y.Thermally induced microdefects in Czochralski-grown silicon crystals[J]. Journal of Crystal Growth,1982,56(2),516-525.
    [81]Varker C J, Whitfield J D, Fejes L.Effects of oxygen precipitation on minority carrier lifetime in silicon crystals[C].in:Gupta D.C,eds. Silicon Processing. San Jose, CA, USA: ASTM STP 804,1983.369-387.
    [82]Huff H R, Schaake H F, Robinson J T, et al.Some observations on oxygen precipitation gettering in device processed czochralski silicon[J]. Journal of the electrochemical society, 130(7),1551-1555.
    [83]Shimura F. Carbon enhancement effect on oxygen precipitation in Czochralski silicon[J]. Journal of Applied Physics,1986,59(9):3251-3254.
    [84]Osaka, J, Inoue N, Wada K. Homogeneous nucleation of oxide precipitates in Czochralski-grown silicon[J]. Applied Physics Letters,1980,36(4):288-290.
    [85]Shimura F. Redissolution of precipitated oxygen in Czochralski - grown silicon wafers[J]. Applied Physics Letters,1981,39(12),987-989.
    [86]Jastrzebski L, Zanzucchi P, Thebault D,et al. Method to Measure the Precipitated and Total Oxygen Concentration in Silicon[J].J. Electrochem. Soc.,1982,129(7):1638-1641.
    [87]Fusegawa I,Yamagishi H. Oxygen precipitation nonuniformity for thermal history around 723 K during CZ crystal growth[C]. in:Ashok S, Chevallier J, Sumino K, eds. Defect Engineering in Semiconductor Growth, Processing and Device Technology Symposium. San Francisco, CA, USA:1992.63-68.
    [88]Chiou H D. The effects of preheatings on axial oxygen precipitation uniformity in czochralski silicon-crystalsfJ], Journal of the electrochemical society,1992,139(6): 1680-1684.
    [89]Istratov A A, Buonassisi T, McDonald R J,et al. Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length[J].Journal of applied physics,2003,94(10):6552-6559.
    [90]Istratov A A, Hieslmair H, Weber E R. Iron contamination in silicon technology[J]. Appl. Phys. A,2000,70,489-534.
    [91]Buonassisi T, Istratov A A, Pickett M D, et al. Chemical Natures and Distributions of Metal Impurities in Multicrystalline Silicon Materials[J]. Prog. Photovolt:Res. Appl.2006, 14:513-531.
    [92]McHugo S A, Thompson A C, Lamble G, et al. Metal impurity precipitates in silicon: chemical state and stability[J]. Physica B,1999,273-274:371-374.
    [93]Seager CH. Grain boundaries in polycrystalline silicon[J]. Annual Review of Materials Science 1985,15:271-302.
    [94]Istratov AA, Buonassisi T, Huber W, et al. Evidence for segregation of iron at grain boundaries in polycrystalline and multicrystalline silicon[J]. Proceedings of the 14th NREL Workshop on Crystalline Silicon Solar Cell Materials and Processes, Winter Park, CO, USA,2004,230-233.
    [95]Dorward RC, Kirkaldy JS. Effect of grain-boundaries on the solubility of copper in silicon[J]. Journal of Materials Science,1968,3:502-506.
    [96]Kalejs JP, Bathey B, Dube C. Segregation and impurity effect in silicon growth from the melt in the presence of second phase formation[J]. Journal of Crystal Growth 1991,109: 174-180.
    [97]Ihlal A, Rizk R, Hardouin Duparc OBM. Correlation between the gettering efficiencies and the energies of interfaces in silicon bicrystals[J]. Journal of Applied Physics 1996,80: 2665-2670.
    [98]Chen J, Yang D, Zhenqiang X,et al. Recombination activity of Sigma 3 boundaries in boron-doped multicrystalline silicon:influence of iron recombination[J]. Journal of Applied Physics 2005,97:033701.
    [99]Chen J, Sekiguchi T, Yang D, Yin F, Kido K, Tsurekawa S. Electron-beam-induced current study of grain boundaries in multicrystalline silicon[J]. Journal of Applied Physics,2004,96: 5490-5495.
    [100]Buonassisi T, Istratov A A, Pickett M D. Metal precipitation at grain boundaries in silicon: Dependence on grain boundary character and dislocation decoration[J]. Applied physics letters,2006,89:042102:1-3.
    [101]Istratov AA, Buonassisi T, Marcus MA, et al. Ciszek TF,Weber ER. Dependence of precipitation behavior of Cu and Ni in CZ and multicrystalline silicon on cooling conditions[J]. Proceedings of the 14th NRELWorkshop on Crystalline Silicon Solar Cell Materials and Processes,2004, Winter Park, USA,165-169.
    [102]Buonassisi T, Istratov A A, Marcus MA, et al. Engineering metal-impurity nanodefects for low-cost solar cells[J]. Nature Materials 2005; 4(9):676-679.
    [103]Macdonald D, Cuevas A, Kinomura A, et al. Transition-metal profiles in a multicrystalline silicon ingot[J]. J. Appl. Phys.2005,97,033523,1-7.
    [104]Buonassisi T, Marcus MA, Istratov AA, et al.Analysis of copper-rich precipitates in silicon: chemical state, gettering, and impact on multicrystalline silicon solar cell materia[J]l. Journal of Applied Physics,2005,97:063503.
    [105]Buonassisi T, Istratov AA, Heuer M, et al. Synchrotron-based investigations of the nature and impact of iron contamination in multicrystalline silicon solar cell materials[J]. Journal of Applied Physics,2005,97:074901.
    [106]Jastrzebski L, Lagowski J, Henley W. Contamination monitoring using surface photovoltage and application to process line control[C]. in:Jacobson D C, Luzzi D E, Heinz T F,et al., eds. In Beam-Solid Interactions for Materials Synthesis and Characterization. Boston, MA, USA:1995.405-417.
    [107]Weber E R. Efficiency Improvement of Crystalline Solar Cells[J]. Subcontract Report,NREL/SR-520-42323, November 2007.
    [108]Collins C B, Carlson R O.Properties of Silicon Doped with Iron or Copper [J].Phys. Rev.1957,108(6):1409-1414.
    [109]Rijks H J, Bloem J, Giling L J. Heat treatment of silicon and the nature of thermally induced donors[J]. Journal of Applied Physics,1979,50(3):1370-1374.
    [110]loannou D E.Comments on the ev+0.45 ev quenched-in level in silicon[J]. Phys. Status Solidi A,1982,72(1), K33-K36.
    [111]Indusekhar H, Kumar V. Properties of iron related quenched-in levels in p-silicon[J]. Phys. Status Solidi(a),1986,95(1):269-278.
    [112]Sheng N H, Merz J L.Electronically active defects in cw beam-annealed Si. II. Deep-level transient spectroscopy[J]. Journal of Applied Physics,1984,55(8),3083-3091.
    [113]Gerson J D, Cheng L J, Corbett J W. A quenched-in defect in boron-doped silicon[J]. Journal of Applied Physics,1977,48(11):4821-4822.
    [114]Chen J W, Milnes A G. Energy levels in silicon[J]. Annual review of materials science, 1980,10:157-228.
    [115]Wunstel K, Froehner K H, Wagner P. Iron-related defects in silicon[J]. Physica B & C,1983,116(1-3):301-305.
    [116]Wunstel K, Wagner P. Appl. Interstitial iron and iron-acceptor pairs in silicon[J].Applied Physics A:Materials Science & Processing,1982,27(4):207-212.
    [117]Feichtinger H, Waltl J, Gschwandtner A. Localization of the Fe°-level in silicon[J]. Solid State Communications,1978,27(9):867-871.
    [118]Graff K, Pieper H. The properties of iron in silicon[J]. Journal of the electrochemical society,1981,128(3):669-674.
    [119]Schibli E, Milnes A G. Deep impurities in silicon[J]. Materials Science and Engineering,1967,2(2):173-180.
    [120]Lagowski J, Edelman P, Kontkiewicz A M,et al. Iron detection in the part per quadrillion range in silicon using surface photovoltage and photodissociation of iron-boron pairs[J].Applied Physics Letters,1993,63(22):3043-3045.
    [121]Zoth G, Bergholz W. A fast, preparation-free method to detect iron in silicon[J]. Journal of Applied Physics,1990,67(11):6764-6771.
    [122]Weber E R. Transition metals in silicon[J]. Appl. Phys. A,1982,30(1):1-22.
    [123]Feichtinger H. Influence of additional gold doping on the Fe 0-solid solution in silicon[C].in:Albany J H,eds. International Conference on Defects and Radiation Effects in Semiconductors. Nice, France.1979.528-532.
    [124]Graff K, Pieper H. The Properties of Iron in Silicon[J]. J. Electrochem. Soc.,1981,128(3): 669-674.
    [125]Gao X, Mollenkopf H, Yee S. Annealing and profile of interstitial iron in boron-doped silicon [J]. Applied physics letters,1991,59(17):2133-2135.
    [126]Brotherton S D, Bradley P, Gill A. Iron and the iron-boron complex in silicon[J]. Journal of Applied Physics,1985,57(6),1941-1943.
    [127]Feichtinger H. Electrical and kinetic properties of thermally activated iron in silicon[J]. Acta Physica Austriaca,1979.51(3-4),161-184.
    [128]Nilsson S G, Kleverman M, Emanuelsson P, et al. Identification of the iron-boron line spectrum in silicon[C].in:17th International Conference on Defects in Semiconductors, Gmunden, Austria,1994, Mater. Sci. Forum,143-147:171-175.
    [129]Ghatnekar-Nilsson S, Kleverman M, Emanuelsson P, et al. Identification of the iron-boron line spectrum in silicon[J].Semicond. Sci. Technol.1993,8(10):1857-1861.
    [130]Gehlhoff W, Irmscher K.EPR Identification of the Different Charge States of the Iron-Acceptor Pairs in Silicon[J].Solid State Phenomena,1993, (32-33):219-224.
    [131]Gehlhoff W, Rehse U. Proof of the acceptor state of the trigonal iron-boron pair in silicon by electron paramagnetic resonance measurements[C]. In:Ashok S, Chevallier J, Sumino K,eds. Defect Engineering in Semiconductor Growth, Processing and Device Technology. San Francisco, CA, USA:1992.507-512.
    [132]Lemke H. Dotierungseigenschaften von Eisen in Silizium[J]. Phys. Status Solidi (a),1981, 64(1):215-214.
    [133]Walz D, Joly JP, Kamarinos G. On the recombination behaviour of iron in moderately boron-doped p-type silicon[J]. Applied physics a-materials science & processing,1996, 62(4):345-353.
    [134]Walz D, Lecarval G, Joly JP. an in-depth analysis of the elymat technique for characterizing metallic microcontamination in silicon - experimental validation for iron contamination in p-type wafers[J]. Semiconductor science and technology,1995,10(7): 1022-1033.
    [135]Lagowski J, Edelman P, Kontkiewicz A M,et al. Iron detection in the part per quadrillion range in silicon using surface photovoltage and photodissociation of iron-boron pairs[J]. Applied Physics Letters,1993,63(22),3043-3045.
    [136]Sadamitsu S, Sasaki A, Hourai M,et al.Transmission Electron Microscopy Observation of Defects Induced by Fe Contamination on Si(100) Surface[J]. Jpn. J. Appl.Phys.,1991, 30:1591-1596.
    [137]Baldwin N R, Ivey D G.Iron slicide formation in bulk iron-silicon diffusion couples[J]. Journal of Phase Equilibria,1995,16(4),300-307.
    [138]Yun,W, Lai B, Cai Z. et al. Nanometer focusing of hard X-rays by phase zone plates[J]. Review of Scientific Instruments,1999,70(5):2238-2241.
    [139]席珍强,杨德仁,陈君,等.晶体硅中的铁沉淀规律[J].半导体学报.2003,24(11)1166-1170.
    [140]Fedotov A, Evtody B, Fionova L.Grain boundary structure and electrical activity in shaped silicon[J]. Journal of Crystal Growth,1990,104(1):186-190.
    [141]Fedotov A, Evtody B, Fionova L,et al. Electrical Activity of Grain Boundaries in Shaped Grown Silicon[J]. physica status solidi (a),1990,119(2),523-534.
    [142]Pizzini S, Sandrinelli A, Beghi M,et al. Influence of extended defects and native impurities on the electrical properties of directionally solidified polycrystalline silicon[J].J. Electrochem. Soc.135(1988) 155-165.
    [143]Capan I, Borjanoviopkc V, Pivac B. Dislocation-related deep levels in carbon rich p-type polycrystalline silicon[J]. Solar Energy Materials & Solar Cells 2007,91:931-937.
    [144]Fuller C S, Logan R A. Effect of Heat Treatment upon the Electrical Properties of Silicon Crystals[J]. Journal of Applied Physics,1957,28(12):1427-1436.
    [145]Fuller C S, Ditzenberger J A, Hannay N B,et al. Resistivity changes in silicon induced by heattreatment[J].Phys. Rev.,1954,96:833-835.
    [146]Lamp C D, Jones B D. Changes in the silicon thermal donor energy level as a function of anneal time[J]. Applied Physics Letters,1991,58(19):2114-2116.
    [147]Ulyashin A G, Khorunzhii I A, Job R, et al. Characterization of the oxygen distribution in Czochralski silicon using hydrogen-enhanced thermal donor formation[J]. Materials Science and Engineering, B,2000,73:124-129.
    [148]Brown A R, Claybl48ourn M, R. Murray R, et al. Enhanced thermal donor formation in silicon exposed to a hydrogen plasma[J]. Semiconduc. Sci. Technol.,1988,3(6):591-593.
    [149]Tsetseris L, Sanwu Wang SW, Pantelides S T. Thermal donor formation processes in silicon and the catalytic role of hydrogen[J], Applied Physics Letters,2006,88, 0519161,1-3.
    [150]Antonova I V, Gulyev M B, Safronov L N, et al.Competition between thermal donors and thermal acceptors in electron-irradiated silicon annealed at 400-700℃[J]. Microelectronic engineering,2003,66:385-391.
    [151]Neustroev E P, Antonova I V, Popov V P, et al.Enhanced formation of thermal donors in oxygen-implanted silicon annealed at different pressures[J].Physica, B,2000,293:44-48.
    [152]Xu Jin, Deren Yang, Duanlin Que, et al. Investigation of thermal donors in Czochralski silicon annealed at 450℃ under high pressure of 1GPa[J]. Physica, B,2003,339:204-207.
    [153]Emtsev V V, Andreev B A, Davydov V Yu, et al. Stress-induced changes of thermal donor formation in heat-treated Czochralski-grown silicon[J]. Physical, B,2003,340-342 769-772.
    [154]Leroueille J. Influence of carbon on oxygen behavior in silicon[J]. physica status solidi (a),1981,67(1):177-181.
    [155]Newman R C.Oxygen aggregation phenomena in silicon[J]. in:Stavola M, Pearton S J, Davies G,eds. Defects in Electronic Materials, Symposium. Boston, MA, USA:1988.25-36.
    [156]Murin L I, Markevch V P.Effect of carbon on thermal double donor formation in silicon[C].in:Suezawa M, Katayama Y,oshida H,eds. lcds-18-proceedings of the 18th international conference on defects in semiconductors, pts 1-4, Sendai, Japan:Mater. Sci. Forum,1995,196:1315-1319.
    [157]Fuller C S, Ditzenberger J A, Hannay N B,et al. Resistivity changes in silicon single crystals induced by heat treatment [J]. Acta Metallurgies 1955,3(1):97-99.
    [158]Gotz W, Pensl G, Zulehner W, et al. Thermal donor formation and annihilation at temperatures above 500℃ in Czochralski-grown Si[J]. Journal or applied physics,1998, 84(7):3561-3568.
    [159]栾洪发,张果虎,李兵.直拉硅单晶中热施主的快速热退除[J].半导体学报,1995,16(10):789-793.
    [160]Capper P, Tones A W.The effects of heat treatment on islocation-free oxygen-containing silicon crystals[J].J. Appl. phys.,1977,48,1646-1655.
    [161]Haβler C, Hofs H-U, Koch W,et al. Formation and annihilation of oxygen donors in multicrystalline silicon for solar cells[J]. Materials Science and Engineering B,2000,71, 39-46.
    [162]Yang D, Li L, Ma X,et al.Oxygen-related multicrystalline silicon[J]. Solar Energy Materials & Solar Cells,2000,62,37-42.
    [163]俞征峰,席珍强,杨德仁.铸造多晶硅中热施主形成规律[J].太阳能学报,2005,26(4):581-584.
    [164]Bergholz W, Hutchison J L, Pirouz P. Precipitation of oxygen at 485℃:Direct evidence for accelerated diffusion of oxygen in silicon?[J]. Journal of Applied Physics,1985,58(9): 3419-3424.
    [165]Bender H. Investigation of the oxygen-related lattice-defects in czochralski silicon by means of electron-microscopy techniques[J]. Physica status solidi a-applied research,1984, 86(1):245-261.
    [166]Tempelhoff K, Spiegelberg F, Gleichmann R. Precipitation of oxygen in dislocation-free silicon[C]. in:Huff H R, Sirtl E, Electrochemical Society Spring Meeting (papers in extended summary form only received), Philadelphia, PA, USA:Semiconductor Silicon 1977,533-534.
    [167]Tempelhoff K, Hahn B,Gleichmann R.Oxygen precipitation in silicon between 600-degrees-c and 800-degrees-c[J]. Journal of the electrochemical society,1981,128 (3): C94-C94.
    [168]Reiche M, Breitenstein O.The role of silicon self-interstitials in the formation of thermally induced rod-like defects in cz silicon[J]. Physica status solidi A,1997,101(2):K97.
    [169]Borghesi A,Piaggi A, Sassella A,et al.Infrared study of oxygen precipitate composition in silicon [J]. Physical review B,1992,46(7):4123-4127.
    [170]Pivac B, Borghesi A, Geddo M,et al. Stoichiometry of oxygen precipitates in silicon[J]. Applied Surface Science,1993,63(1-4):245-248.
    [171]Inoue N, Wada K, Osaka J. oxygen precipitation in czochralski silicon-mechanism and application[J]. Journal of the electrochemical society,1981,128(3):C94-C94.
    [172]Livingston F M, Messoloras S, Newman R C,et al. An infrared and neutron-scattering analysis of the precipitation of oxygen in dislocation-free silicon[J]. Journal of physics c-solid state physics,1984,17(34),6253-6276.
    [173]席珍强、楼峰、俞征峰等.铸造多晶硅中氧的热处理行为研究[Jl.材料热处理学报,2004,25(6):8-11.
    [174]Moller H J, Funke C, Lawerenz A, et al. Oxygen and lattice distortions in multicrystalline silicon[J]. Solar Energy Materials and Solar Cells,2002,72(1-4):403-416.
    [175]Kung C Y. Effect of thermal history on oxygen precipitates in Czochralski silicon annealed at 1050℃[J]. J. Appl. Phys.,1989,65:4654-4665.
    [176]Kishino S, Matsushita Y, Cothett J W. Carbon-oxygen complexes as nuclei for the Preceipitation of oxygen in Czoehralski silicon[J]. Appl. Phys. Lett.,1982,40,241-243.
    [177]Inoue N, Osake J, Wada K, Oxide micro-Precipitates in as-grown CZ silicon[J]. J. Electrochem.Soc.,1982,129,2780-2788.
    [178]Shimura F,Tsuya H, Kawamura T. Precipitation and redistribution of oxygen in Czochralski-grown silicon[J]. Applied Physics Letters,1980,37(5),483-486.
    [179]Bender H. Investigation of the oxygen-related lattice-defects in czochralski silicon by means of electron-microscopy techniques[J]. Physica status solidi a-applied research,1984, 86(1):245-261.
    [180]Isomae S, Aoki S,Watanabe K. Depth profiles of interstitial xygen concentrations in silicon subjected to three-step annealing[J]. Journal of Applied Physics,1984,55(4):817-824.
    [181]Rohatgi A, Rai-Choudhury P. Defect and Carrier lifetime in silicon[A]. D.C.Gupta. Silicon Processing[C].American Society for Testing and Materials,1983,389-404.
    [182]Hartman K, Bertoni M, Serdy J, et al. Dislocation density reduction in multicrystalline silicon solar cell material by high temperature annealing[J]. Appl Phys Lett,2008,93: 122108.
    [183]徐华毕,洪瑞江,沈辉.高温退火对物理提纯多晶硅位错密度及其电学性能的影响[J].科学通报,2010,55:2422-2426.
    [184]马文会.冶金法太阳能级多晶硅中的缺陷研究[C].2011第七届中国太阳级硅及光伏发电研讨会.杭州,2011.
    [185]Macdonald D, Cuevas A. The trade-off between phosphorus gettering and thermal degradation in multicrystalline silicon[C].in:16th European photovoltaic solar Energy Conference,2000,Glasgow.
    [186]Falster R, Voronkov V V. The engineering of intrinsic point defects in silicon wafer and crystals[J]. Materials Science and Engineering B,2000,73(1-3):87-94.
    [187]Shimura F. Oxygen in silicon[M]. Academic Press, INC,1994.
    [188]Yang Deren, Moeller H J. Effect of heat treatment on carbon in multicrystalline silicon[J]. Solar Energy Materials & Solar Cells,2002,72(1):541-549.
    [189]勾宪芳.多晶硅太阳电池中氧碳行为和氮化硅的钝化及减反射的研究[D].石家庄:河北工业大学,2006.
    [190]Mikkelsen J C, Pearton S J, Corbett J W,et al. Oxygen, carbon, hydrogen and nitrogen in crystalline silicon[M]. Materials Research Society,Pittsburgh, PA,1986.
    [191]Semilab WT2000PV User Manual [Z].2008:8.
    [192]Palais O, Martinuzzi S, Simon J J. Minority carrier lifetime and metallic-impurity mapping in silicon wafers [J]. Materials Science in Semiconductor Processing 4,2001:27-29.
    [193]Palais O, Yakimov E, Martinuzzi S Minority carrier lifetime scan maps applied to iron concentration mapping in silicon wafers Materials [J].Science and Engineering B91-92, 2002:216-219.
    [194]邓海,杨德仁,唐骏,等.铸造多晶硅中杂质对少子寿命的影响[J].太阳能学报.2007,28(2):151-154.
    [195]Weber E, Riotte H G. The solution or iron in silicon[J]. J. Appl. Phys. 1980,51(3):1484-1488.
    [196]Hartman K, Bertoni M, Serdy J, et al. Dislocation density reduction in multicrystalline silicon solar cell material by high temperature annealing[J]. Appl Phys Lett,2008,93: 122108.
    [197]Binetti S, Libal J, Acciarri M, et al. Study of defects and impurities in multicrystalline silicon grown from metallurgical silicon feedstock[J]. Mater Sci Eng B,2009,159-160: 274-277.
    [198]Sopori B, Chen W, Tan T, et al. Overcoming the efficiency-limiting mechanisms in commercial Si solar cells[J]. NCPV Photovolt Program Rev,1999:341-347.
    [199]Kuhlmann D. On the Theory of plastic deformation[J]. Proc. Phys. Soc,1951, A64,140
    [200]Nes E. Recovery revisited[J]. Acta Metall. Mater,1995,43:2189-2190.
    [201]冯端等著.金属物理学(第一卷结构与缺陷)[M].北京:科学出版社,1998:264,313-318.
    [202]周浪Thermal engineering of crystalline silicon and solar cell processes[R]道达尔中国论坛-先进太阳电池技术,苏州,2010.
    [203]Rohatgi A, Rai-Choudhury P. Defect and carrier lifetime in silicon[A]. Gupta D C. Silicon processing[C]//American Society for Testing and Materials,1983:389-404.
    [204]Wunstel K, Wagner P. Interstitial iron and iron-acceptor pairs in silicon[J]. Applied Physics A,1882,27:207-212.
    [205]Istratov A A, Hieslmair H, Weber E R. Iron and its complexes in silicon[J]. Applied Physics A:Materials Science & Processing,1999,69(1):13-44.
    [206]Akhter P, Zakir M N, Baig A, et al. Effect of oxygen and carbon impurities on the performance of silicon single crystal solar cells[J]. Semiconductor Science and Technology, 1991,6(2):135-136.
    [207]Barson F M, Hess M S, Roy M M. Diffusion Pipes in Silicon N PN Structures[J]. Journal of The Electrochemical Society,1969,116(2):304-307.
    [208]T. Gregorkiewicz, H.H.P.Th.Bekman.Thermal donors and oxygen-related complexes in silicon[J].Materials Science and Engineering B. Vol.4,1989,291-297.
    [209]W. Gotz, G. Pensl, W. Zulehner, R. C. Newman, S. A. McQuaid. Thermal donor formation and annihilation at temperatures above 500℃ in Czochralski-grown Si[J]. Journal of Applied Physics Vol.84, No.7 1998,3561-3568 [5] U. Gosele. Oxygen Diffusion and Thermal Donor Formation in Silicon[J]. Appl. Phys. A 28,1982:79-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700