坩埚表面Si_3N_4改性对定向凝固提纯多晶硅性能影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在目前,随着化石能源的枯竭,新能源的开发与利用已成为世界研究的热点。光能以其储量巨大、来源广泛、环境友好等优点被越来越多的研究与利用。硅材料作为光伏产业的重要原料,每年的消耗量非常巨大。通常在太阳电池材料中所用的硅材料分单晶硅和多晶硅两种,与单晶硅相比,多晶硅以其品质高、成本低等优点,在光伏产业中占据了大部分市场。在太阳能级多晶硅的诸多制备方法中,冶金法中的定向凝固提纯新工艺具有成本低、工艺简单、建设投资少、对环境的污染小等优点受到广泛关注,迄今为止已经取得了很大的成就与进展。但该工艺所用坩埚中含有较多的杂质,这些杂质与晶粒间的晶界和位错、缺陷等交互作用,严重影响了多晶硅材料的质量和后期太阳电池的转换效率。减少石墨坩埚中杂质对硅料的污染是获得高品质太阳能级多晶硅的关键之一。
     为了提高定向凝固提纯多晶硅材料的性能,本文采用高纯氮化硅对坩埚表面进行改性,利用金相显微镜,X射线衍射(XRD),扫描电镜(SEM),二次离子质谱仪(SIMS),四探针电阻测试仪等检测设备,研究了定向凝固过程中不同冷凝速率条件下,坩埚表面改性对小试样品中宏观生长形貌、缺陷密度、位错密度、晶界类型及数量、晶粒尺寸、电学性能的影响。同时还利用不同纯度的原料,不同种类的氮化硅涂层在最佳冷凝速率条件下对冶金法多晶硅铸锭的电学性能影响,取得了以下进展:
     坩埚表面改性可明显改善定向凝固提纯多晶硅的综合性能。宏观生长形貌体现在晶体垂直于底部生长。当冷凝速率为20gm/s时,所得多晶硅铸锭的性能最佳,其中,铸锭中部切片晶粒尺寸由633.2gm提高到921μm,晶体垂直生长的趋势也明显增强;硅片表面的点缺陷密度降低为7.8×103个/cm2;位错密度呈“V”型分布,其数量由原来的5~40×104个/cm2降低到1-30×103个/cm2;晶粒间晶界类型均为大角度晶界,并且以R和CSL中的∑3类型晶界为主。其中∑3(111)类型晶界约为67.4%,∑3(211)类型晶界约为12.2%;晶体的择优生长面为(111),(311)、(422)、(533)等非择优生长取向得到了很好的消除;少子寿命由原来的0.81μs提高到1.89μs;电阻率最高值由原来的110mΩ·cm提高到227mΩ·cm。
     除此之外,本文还对不同纯度的原料及不同类型氮化硅涂层坩埚在冷凝速率为20μm/s时所得铸锭的电学性能做了比较验证。结果表明:纯度最高的1号原料在本实验室自制的经表面改性处理的坩埚内提纯后的电学性能最高,少子寿命值最高为1.89μs、电阻率最高为227mΩ·cm,由此可以得出,杂质含量的高低为多晶硅材料电学性能最主要的影响因素;坩埚经烧结后所得多晶硅铸锭的电学性能得到了明显提高,少子寿命值最高为1.89μs、电阻率最高为227mΩ·cm。
With the depletion of fossil energy, the development and utilization of new energy has been becoming a hotspot of the whole world. The research and utilization of photoenergy is attracting more and more attention for its many advantages, such as huge reserves, easy accessibility, environmental friendliness, etc. The annual consumption of silicon is very large as the main raw material of the photovoltaic industry. Usually, the silicon used in solar cell can be classified into monocrystalline silicon and multicrystalline silicon. Compared with monocrystalline silicon, multicrystalline silicon occupy most of the photovoltaic market for its high quality and low cost. A new metallurgical method of directional solidification purification process for solar-grade multicrystalline silicon production has attracted many attentions for its low cost, simple process, less investment, and environment pollution, etc., and great achievements and progresses have been made. However, the crucibles used in this metallurgical process usually contain many different impurities, the interaction of these impurities with the grain boundaries dislocations and defects of the multicrystalline silicon would decrease quality of the material, and finally the conversion efficiency of the solar cell. So the reduction of the pollution from the impurities is one of the keys to high-quality solar-grade multicrystalline silicon.
     In order to improve the performance of the multicrystalline silicon material prepared by directional solidification purification, the surface modified graphite crubcibles by high-purity Si3N4were used in the progress. The affect of the surface modification on the many properties was investigated at different condensation rates, such as the morphology, density of defects, density of dislocation, boundary type, grain size and electronic properties, with the characterization means of optical microscopy, x-Ray diffraction, SEM, secondary ion mass spectroscopy (SIMS) and glow discharge mass spectroscopy (GDMS). And the affects of the purity of the raw materials and the types of Si3N4were also studied at the optimal condensation rate. The main results as follows:
     The surface modification can significantly improve the silicon's performance.. The grains all grew normal to the bottom plate of the crucible. When the condensation rate was 20μm/s, the best performances of multicrystalline silicon ingots were obtained. The grain size from the central part of the ingots slice grew up from633.2μm to921μm, and the trend of the growth orientation was significantly enhanced; the density of point defects on the slice surface reduced to7.8×103/cm2, and the dislocation density shown a "V" shaped distribution with the lowest value of1~30×103/cm2. The grain boundaries belonged to the large-angle type, and the main type was of∑3in the R and CSL. The∑3(111) type accounted for about67.4%, and∑3(211) type accounted for about12.2%; preferential growth surfaces of the crystal were (111),(311),(422), and(533). Other non-preferential growth orientation has been perfectly eliminated. The average minority carrier lifetime increased from the0.81μs to1.89μs; the maximum resistivity increased from110mΩ·cm to227mQ-cm.
     In addition, the affects of the purity degree of raw materials and the types of Si3N4at the condensation rate of20μm/s was studied as the control experiment. The results showed that:the electrical properties from the raw material No.1with the highest purity degree got the best, the highest average minority carrier lifetime approached1.89μs, and the resistivity approached227mΩ·cm. It thus came to a conclusion that the level of impurities in the raw material was the most important factor on the electrical properties; the electrical properties of the ingots all increased with the modification of Si3N4to graphite crucibles.
引文
[1]A. Bentzen, A. Holt. Overview of phosphorus diffusion and gettering in multicrystalline silicon[J]. Materials Science and Engineering B.2009:228-234
    [2]赵玉文.太阳能技术对我国未来减排C02的贡献[J].太阳能,2003(03):3-4.
    [3]崔荣强,沈辉,杨德仁.光伏发电在中国能源结构中战略地位的思考[C].及光伏发电研讨会论文集,2008,21-22.第四届中国太阳能
    [4]Dour G, Ehret E, Laugier A, et al. Continuous solidification of photovoltaic multicrystalline silicon from an inductive cold crucible.1998,193:230-240
    [5]罗发亮,林剑飞,赵天生.多晶硅生产现状[J].石油化工应用,2007,26(1):5.
    [6]2008年中国多晶硅行业发展研究报告[C],电子材料行业协会,2009,01.
    [7]罗发亮,林剑飞,赵天生.多晶硅生产现状[J].石油化工应用,2007,26(1):1-5.
    [8]郑春蕊,李艳,陈志耕,等.多晶硅生产与产业发展概述[J].产业与科技论坛,2008,7(2):55-56.
    [9]李群生.多晶硅生产中精馏节能减排与提高质量技术的应用[J].应用科技,2009,17(2):25-30.
    [10]屈平,白木,周洁.光伏产业多晶硅材料发展现状[J].装备机械,2008,2:61-65.
    [11]赵贤俊,朱英敏,帅虎等.多晶硅产业现状及发展趋势[J].化学工业,2007,25(9):19-22.
    [12]胡义康.谈谈我国多晶硅产业面临的主要问题[J].太阳能,2008,8:73.
    [13]Kouji Yasuda, Toshiyuki Nohira, Yasuhiko Ito. Effect of electrolysis potential on reduction of solid silicon dioxide in molten CaC12[J]. Physics and Chemistry of Solids,2005,66:443-447.
    [14]Khattak C P, Joyee D B, Sehaid F. Production of Solar Grade(SoG)Silicon by Refffiing Liquid Metallurgical Grade Silicon[J]. National Renewable Energy Laboratory,2001:8-12.
    [15]Takashi I.Masafumi M. Purification of metallurgical silicon for solar grade silicon by electron beam button melting[J]. ISIJ international,1992,32(5):635-642.
    [16]Alemany Y, Delannoy C, LiKI. Plasma refining process to provide solar grade silicon[J]. Solar Energy Materials&Solar Cells,2002,72:69-75.
    [17]Yuge N, Abe M'Hanazawa K, et al. Purification of metallurgical grade silicon up to solar grade[J]. Progress in Photovol taics,2001。9:203-209.
    [18]郑智雄.一种太阳能电池用高纯度硅及其生产方法.中国:02135841.9[P],2004.
    [19]Jorden R G. Electro-transport in solid metal system Contemp[J]. Phys,1974.15(4):375-400.
    [20]Sakagueh Y, Ishizaki M'Kawahara T, et al. Production of high purity silicon by carbothermic reduction of silica using Ac_arC furnace with heat shaft[J]. ISIJ Internat ional'1992.32(5):643-649.
    [21]Morita K, Miki T. Thermodynamics of solar-grade-silicon refining[J]. Intermetallics,2003,11: 1111-1117.
    [22]马文会,戴永年,杨斌等.加快太阳能级硅制备新技术研发,促进硅资源可持续发展[J].中国工程科学,2005,增刊:91-94.
    [23]马文会,戴永年,杨斌,等.一种制备太阳能级多晶硅的方法,发明专利号:200610010654.8.
    [24]罗学涛,郑淞生,蔡靖,等.太阳能级多晶硅的提纯装置及提纯方法.中国,专利申请号:200810071577.6.
    [25]谭毅,李国斌,姜大川,等.一种去除多晶硅中杂质磷的方法及装置.中国,专利申请号:200810011949.6;谭毅,李国斌,姜大川,等.去除多晶硅中杂质磷和金属杂质的方法及装置.中国,专利申请号:200810011631.8.
    [26]史珺.太阳能等级多晶硅的制备方法.中国,专利申请号:200710172387.9.
    [27]高文秀.P型太阳能电池等级多晶硅制备工艺.中国,专利申请号:200610017755.8.
    [28]Hunt L. P., Dosaj V. D., McCormick J. R.. Solar silicon via improved and expanded metallurgical silicon technology[Z]. Dow Corning Corp., Hemlock, MI (USA) Quarterly report,1977, No.3, Apr 01.
    [29]Amick J. A., Dismukes J. P., Francis R. W., et al. Solar cells from high-purity arc-furnace silicon [C]//. Conference on materials and new processing technologies for photovoltaics; 9 May 1983; San Francisco, CA, USA.
    [30]Peter K et al. Analysis of multicrystalline solar cells from solar grade Si feedstock[C]//.31st IEEE PVSC, Orlando, January 3-7,2005.
    [31]Geerligs L. J., Wyers G. P., Jensen R., et al. Solar-grade silicon by a direct route based on carbonthermic reduction of silica:requirements and production technology. www.ecn.nl/docs/libary/report/2002/rx02042.
    [32]Sharma I. G., Mukherjee T. K.. A study on purification of metallurgical grade silicon by molten salt electrorefining[J]. Metallurgical Transactions,1986, Vol.17 B:395-397.
    [33]Toshiyuki Nohira, Kouji Yasuda, Yasuhiko Ito. Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon [J]. Nature Materials,2003, Vol.2:397-401.
    [34]Kouji Yasuda, Toshiyuki Nohira, Rika Hagiwara, et al. Direct electrolytic reduction of solid SiO2 in molten CaC12 for the production of solar grade silicon[J]. Electrochimica Acta,2007,53:106-110.
    [35]Jinggang Lu, Magnus Wagener, George Rozgonyi. Effects of grain boundary on impurity gettering and oxygen precipitation in polycrystalline silicon[J]. Journal of applied physics.2003,94(1): 140-144
    [36]Shimura F. Oxygen in silicom Academic Press INC.1994.
    [37]邓海.铸造多晶硅中原生杂质及缺陷的研究:(硕士学位论文).浙江杭州:浙江大学,2006.
    [38]Yang Deren, Li Liben, Ma Xiangyang, et al. Solar energy materials and solar cells,2000,62: 37.
    [39]Kishore Ic, Pastol J L, Revel G. Solar Energy Materials.1989,19:221
    [40]俞征峰,席珍强,杨德仁等.铸造多晶硅中热旌主形成规律.太阳能学报,2005(4):581—583.
    [41]Shimura F. Oxygen in Silicom Academic Press INC,1994.
    [42]Sun Q, Yao K H, Iagowski J. Effect of carbon on oxygen precipitation in silicon. Jappl phys,1990,67:4313-4319.
    [43]FraundorfP, FraundorfGK, Shimura F. Clusteringof oxygenatomsaround carbonin silicon. Jappl—phys,1985,58:4049-4055.
    [44]C.P. Khattak et al. A simple process to remove boron from metallurgical grade silicon[J]. Solar Energy Materials & Solar Cells,2002,74:77-89.
    [45]N. Yuge et al. Purification of Metallurgical Grade Silicon up to Solar Grade[J]. Prog. Photovolt. Res. Appl.9(2001)203-209.
    [46]史珺.http://blog.sina.com.cn/bradley
    [47]杨德仁.太阳电池材料[M].(第一版).北京:化学工业出版社.2007
    [48]张伟娜.冶金多晶硅的电学性能研究[硕士学位论文].大连理工大学,2007.12.
    [49]胡保庆,徐延庆,张宏达.特种耐火材料实用技术手册[M].北京:冶金工业出版社,2004.
    [50]武兴君,郭喜平.Nb基超高温合金制备及定向凝固用坩埚的选择[J].材料导报,2006,50(5):63-66.
    [51]李德林,毛协民,傅恒志.太阳能级硅的电磁悬浮熔炼.太阳能学报[J],1993,14(3):222-225.
    [52]Kaddah Nagy E L,Piwonka H., et al. Induction melting of Metals without a Crucible:US, No.5014769[P].1991,5,14.
    [53]袁勇,朱俊,万志翔.99.99%高纯硅坩埚的研制[J].中国陶瓷,2007,43(6):20-22.
    [54]R. Kvande, L. Arnberg, C. Martin. Influence of crucible and coating quality on the properties of multicrystalline silicon for solar cells[J]. Journal of Crystal Growth.2009,311:765-768.
    [55]Malte Schulz-Ruhtenberg, Daniel Trusheim, Jo Das. Influence of Pulse Duration in Picosecond Laser Ablation of Silicon Nitride Layers[J]. Energy Procedia.2011,8:614-619.
    [56]B. Prasad, S. Bhattacharya, A. K. Saxena., et al. Performance enhancement of mc-Si solar cells due to synerdetic effect of plasma texturization and SiNx:AR coating[J]. Solar Energy Materials & Solar Cells.2010,94:1329-1332.
    [57]武兴君,郭喜平.Nb基超高温合金制备及定向凝固用坩埚的选择[J].材料导报.2006,50(5):63-66.
    [58]朱录涛.太阳能多晶硅铸锭用熔融石英坩埚氮化硅涂层的制备[J].襄樊学院学报.2010,31(2):79-81.
    [59]刘美.冶金法提纯多晶硅过程中氮化硅涂层的研究[硕士学位论文].大连理工大学,2009.
    [60]Morita K, Mikib T. Thermodynamics of solar-grade silicon refining[J]. Intermetallies,2003, 11(12):
    [61]阙端麟.硅材料科学与技术[M].杭州:浙江大学出版社,2001.
    [62]戴永年主编.二元合金相图集.北京:科学出版社,2009.
    [63]Buonassisi T, Istratova A A, Pickett M D, et al. Transition metals in photovoltaic-grade ingot-cast multicrystalline silicon:Assessing the role of im purities in silicon nitride crucible lining material[J]. J Cryst Growth,2006, (287):402
    [64]刘美,谭毅,许富民,等.冶金提纯多晶硅用坩埚内壁氮化硅涂层的制备[J].机械工程材料.2009,35(6):8-12.
    [65]Istratov A A, Buonassisi T, Pickett M D, et al. Control of metal impurities in "dirty" multicrystalline silicon for solar cells[J]. Material Science and Engineering B,2006,134(2-3):282-286.
    [66]蒋咏.冶金法多晶硅中的缺陷及磷吸杂实验研究[硕士学位论文].昆明理工大学,2011.5.
    [67]Zhang F Y, Kusuhiro M. Effect of boron on the surface tension of molten silicon and its temperature coefficient[J]. Journal of Colloid and Interface Science,2004,270:140-145.
    [68]Martin C, Ndzongha C, Rancoule G.Development of various crucible coating concepts for crystalline of multicrystalline silicon ingots[A].23rd European Photovoltaic Solar Energy Conference[C]. Valencia Spain,2008,9(1-5):1084-1089
    [69]Randle V. The Measurement of Grain Boundary Geometry, 1nd ed. UK:Institute of Physics Publishing,1993; 79-89,33-62.
    [70]KojiA, Eiehiroo, HitoshiS, et al. Directional solidification of polyerystalline silicon ingots by successive relaxation of supercooling method[J].Crystal Growth,2007,308(1):5-9.
    [71]Kim D, Kim Y K. Characteristics of structural defects in the 240kg silicon ingot grown by directional solidification process. Solar Energy Materials & solar cells,2006,90:1666-1672.
    [72]Nan Chen, Shen Yu Qiu, Bing Fa Liu et al. An optical microscopy study of dislocations in multicrystalline silicon grown by directional solidification method. Materials Science in Semiconductor Processing,2010, doi:10.10.1016/j.mssp.2010.12.006.
    [73]Ehret E, Marty O. Correlation between electrical activity and extend defect in EMC multicrystalline materials. Mater Sci Eng B,1998,56:24-30.
    [74]李雯霞.定向凝固技术现状与展望[J].中国铸造装备与技术,2009,2:9-13
    [75]梅向阳.真空定向凝固法去除硅中金属杂质和晶体生长控制的研究[博士学位论文].昆明理工大学,2010.10
    [76]陈朝,罗学涛.物理冶金法的技术动态和质量分析,2008年中国硅业国际论坛年会,昆明,2008.9.
    [77]钟根香.定向凝固多晶硅的结晶组织及晶体缺陷与杂质研究.材料导报,2008,12:14-31.
    [78]Moller H J, Funke C, Rinio M, et al. Multicrystalline silicon for solar cells[J]. Thin Solid Films, 2005, (487):179
    [79]Chen J, Sekiguehi T, Yang D R, et al. Eleetron-bearn-in-duced current study of grain boundaries in multicrystalline silicon[J]. J Appl Phys,2004,96:5490
    [80]徐文婷.冶金法制备多晶硅的晶体生长及其杂质缺陷研究[硕士学位论文].昆明理工大学,2008.3.
    [81]郭宽新.不同气氛下热退火及磷、铝吸杂对冶金法多晶硅片中缺陷及电学性能的影响[硕士学位论文].云南大学,2009.5.
    [82]A. L. Endros. Mono- and tri-crystalline Si for PV applicion. Solar Energy Materials & Solar Cells. 2002,72:109-124.
    [83]Fujiwara K, Pan W, Sawada K, Tokairin M, et al. Directional growth method to obtain high quality polycrystalline silicon from its melt. Journal of Crystal Growth.2006,292:282-285.
    [84]Fujiwara K, Obinata Y, Ujihara T, et al. Grain growth behaviors of polycrystalline silicon during melt growth processes. J Cryst Growth,2004,266:441-448.
    [85]王坤林.材料工程基础.北京:清华大学出版社,1997.
    [86]康伟超,王丽.硅材料检测技术.化学工业出版社:北京,2009.
    [87]Kishore R, Pastol J L, Revel G, Growth and characterization of polycrystalline silicon ingots doped with Cu, C, B or Al by directional solidification for photovoltaic application. Solar Energy Materiala,1989,19:221-236.
    [87]陈治明,王建农.半导体器件的材料物理基础[M].北京:科学出版社,1999.
    [88]张伟娜,谭毅,许富民.显微组织对冶金法制备多晶硅电阻率的影响[J].机械工程材料,2008,1:32
    [89]邓海.铸造多晶硅中原生杂质及缺陷的研究[硕士学位论文].杭州:浙江大学,2006.
    [90]Moller H.J, Funke C, Lawerenz A, et al. Oxygen and lattice distortion in multicrystalline silicon. Solar Energy Materials & Solar Cells,2002,72:403-416.
    [91]Chen J, Sekinuchi T, Nara S, et al. The characterization of high quality multicrystalline silicon by the electron beam induced current methods. J Phvs Condens Matter,2004,16:211-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700