晶体硅电学性能评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳电池用晶体硅除了对纯度的要求之外,电学性能也十分重要。杂质和缺陷在晶体硅中会影响其电学性能的稳定性和器件参数的一致性。单晶硅没有晶界的影响,电性能相对稳定,转换效率普遍比多晶硅高,但高成本又制约其应用。多晶硅虽然成本较低,但材料中的各种缺陷,如晶界、位错、微缺陷,以及高浓度的杂质,是影响其电池转换效率的重要因素。到目前为止,电子级晶体硅材料中杂质和缺陷的研究比较深入,但4N-6N的硅材料中杂质和缺陷对电学性能的影响尚不明确。因此,研究此纯度范围单晶硅和多晶硅中缺陷、杂质的分布规律以及其对电性能的影响具有重大意义。
     本文利用四探针电阻率测试仪、WT-2000型少子寿命测试仪对纯度为4N的直拉单晶硅和定向凝固多晶硅的电学性能进行评价;通过电感耦合等离子发射光谱仪(ICP-MS)、金相显微镜、扫描电镜(SEM)、电子探针(EPMA)等实验手段,评价了单晶硅和多晶硅锭的杂质分布和缺陷形态。分析纯度为4N的晶体硅中缺陷和杂质对电学性能的影响,并通过热处理的方式探寻改善电性能的方法。主要得出以下结论:
     (1)直拉单晶硅中,硅片Ⅰ的杂质含量低,缺陷少,少子寿命较高,为0.674μs。硅片Ⅱ的杂质含量最高,缺陷也大量出现,少子寿命的平均值仅为0.386μs左右。硅片Ⅲ处于两者之间。单晶硅电阻率在0.05Ω·cm左右。
     (2)多晶硅定向凝固提纯后纯度达到4N,少子寿命平均值为1.286μs:电阻率介于0.2-0.4Ω·cm之间。少子寿命及电阻率的分布与晶界、夹杂、杂质的分布具有相关性。
     (3)为了提高晶体硅的电学性能,进行热处理实验,结论如下:
     (a)200℃和450℃低温热处理后,多晶硅少子寿命和电阻率都有所提高。
     (b)800℃热处理4小时之后,单晶硅和多晶硅的少子寿命均达到最大值。由于高密度晶界和位错的存在,多晶硅的少子寿命提高幅度比单晶硅大。单晶硅电阻率并无变化,而多晶硅电阻率在800℃4h达到1.09Ω·cm。
     (c)使用多步热处理方法处理晶体硅,选用1150℃作为氧的外扩散温度,800℃作为氧形核温度,1050℃作为氧沉淀长大的温度。研究不同的氧形核时间(2h,4h,6h,8h)对于晶体硅少子寿命的影响。其中对于单晶硅,经过8h的形核时间少子寿命提高的效果最好,处理后达到1.692μs。而多晶硅的形核时间16h最好,热处理后少子寿命达到2.614μs。多步热处理对单晶硅电阻率没有作用,而使多晶硅电阻率提高到1.61Ω·cm。
Except for the impurity demand, the electrical property is one of the most important parameters for solar cell. As well known, the impurities and defects will affect the stability of electrical properties and the parameter of device. Silicon solar cells are divided into three types: single crystalline silicon solar cells, multi-crystalline silicon solar cells and amorphous silicon solar cells. Without the influence of grain boundary, the electrical properties of single crystalline silicon solar cells are much steady and the conversion efficiency is higher than multi-crystalline silicon solar cells. But high cost limits its application. For the multi-crystalline silicon films, although the cost is lower, it has a variety of defects, such as grain boundaries (GB), dislocation, micro-defects and impurities in materials (especially the transition-metal impurities); these are all the important factors impacting on the conversion efficiency of multi-crystalline solar cell Due to the diversity types of impurities and defects, the multi-crystalline silicon is lack of systematic research.
     So far, impurities and defects in electronic grade silicon material have been clear studied, influence of impurities and defects on the electrical properties in relatively low purity (4N-6N) of the silicon material is not clear. Therefore, study on defects and impurities in crystal silicon, and their influence on the electrical properties has great significance.
     In this paper, using the four point resistivity test system and WT-2000μ-PCD lifetime test machine to character the electrical properties of the single crystal silicon and the multicrystalline silicon. On the other hand, we evaluated the distribution of impurities and morphology of defects in crystalline silicon ingot by inductively coupled plasma emission spectrometry (ICP-MS), optical microscope, scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and other experimental methods. In the fifth chapter of the paper, we discussed the influence of heat treatment on the electrical properties.
     The conclusions as followed:
     (1) In single crystalline silicon, impurities and defects have a significant influence on the distribution of minority carrier lifetime. In the top part, less impurities and defects make the lifetime higher than other parts, about 0.674μs; the lifetime of middle part is lowest, about 0.368μs.the resistivity is too low to be used, about 0.05Ω·cm
     (2) The lifetime of the multi-crystalline silicon is 1.286μs,the resistivity is between 0.2 and 0.4Ω·cm. The electrical prosperity is relevant to grain boundaries, inclusions, impurities.
     (3) Results of heat treatment: (a) After the heat treatment of 200℃and 450℃, minority carrier lifetime and resistivity increased, uniformity is observed. (b) For the 800℃heat treatment of multi-crystalline and single crystalline silicon, the lifetime reach the highest when the time is 2h, because of the existence of high density of grain boundary and dislocation, the lifetime of multi-crystalline has larger margin of increase than single crystalline silicon (c) After the heat treatment 1150℃2h+800℃8h+1050℃8h,the single crystal has the highest lifetime, indicate that the best nucleated time is 8h;for the multi-crystalline silicon, the time is 16h.
引文
[1]郭志球,沈辉,刘正义,闻立时.太阳电池研究进展[J].材料导报:2006年3月第20卷第3期
    [2]Moller H J, Funke C, Rinio Metal. Multicrystalline silicon for solar cells [J].2005, 487:179-187.
    [3]杨国鑫,郑永孝.多晶硅产业现状与发展趋势分析[J].煤,2007,16(3):44-45.
    [4]蒋荣华,肖顺珍.国内外多晶硅发展现状[J].半导体技术,2001,26(11):7-8.
    [5]铁生年,李昀珺,李星.太阳能级多晶硅材料研究进展[J].硅酸盐学报:0454-5648(2009)08-1447-06
    [6]王育军,张军,邱景平,孙晓刚.多晶硅产业国内外发展趋势[J].有色矿冶:1007-967X(2009)03-0033-04
    [7]沈辉,舒碧芬,闻立时.我国太阳能光伏产业的发展机遇与战略对策.中国储能电池与动力电池及其关键材料学术研讨会论文集,长沙,2005(5):292-297.
    [8) Zhao J, Wang A, Green M, etal. Novel19.8%effieient "Honeycomb" textured multicrystalline and 24.4% mono-crystalline silicon solar cell[J]. APPL. Phys. Letters,1998,73:1992-1993
    [9]Ono H, Ikarashi T, Kimura S, etal. Anomalous ring-shaped distribution of oxygen precipitates in a Czochralski-grown silicon crystal [J]. J Appl Phys,1995,78:4395.
    [10]王莉蓉,杨德仁,应啸,李先杭.太阳电池用直拉硅单晶中氧沉淀的研究[J].太阳能学报:0254-0096(2001)04-0398-05
    [11]T. Sinno, E. Dornbegrer, W. von Ammon, R. A. Brown, F Dupret, Defect engineering of Czochralski single-crystal silicon[J], Mater. Sci. Eng. R28(2000)149-198
    [12]钟根香,周浪,周潘兵,万跃鹏.定向凝固多晶硅的结晶组织及晶体缺陷与杂质研究[J].材料导报:2008年12月第22卷第12期
    [13]Hamada S, Kawahara K, Tsurekawa S, etal. Impact of grain boundary character on electrical properties in polycrystalline J silicon[J]. Mater Res Soc Symp Proc, 2000,586:163
    [14]A couturier M, Broniatowski A, etal. The influence of structure and impurity precipitation on the electrical properties of the grain boundaries in silicon: copper precipitation in theΣ=25 boundary[A]. Springer proceedings in physics 35, polycrystalline semiconductors[e1. Germany,1989.64
    [15]邓太平,毛文行,尹传强等.太阳能多晶硅锭中夹杂的物相与分布特征[J].材料科学与工程学报,2008,26(3):449
    [16]Daeil Kim, Young Kwan Kirn. Characteristics of structural defects in the 240kg silicon ingot grown by directional solidification process [J]. Solar Energy Mater Solar Cells,2006, (90):166
    [17]W L Bond, W P Mason, etal. The Elastic Constants of Germanium Single Crystals [J]. Phys. Rev.78,176-176 (1950)
    [18]M. Barranco Diaz, C. Hαβler, "Low cost high-efficient multi crystalline silicon of Photovoltaic [J], BAYER AG,ZF-FPI:Geb.R52RheinuferstraBe 7-9, D-47829 Kref eld.
    [19]Karg D, Pensl G, Sehulz M, et al. Oxygen-Related Defect Centers in Solar Grade, Multicrystalline Silicon. A Reservoir of Lifetime killers [J]. Phys. Stat. Sol. (b), 2000:222-379.
    [20]D. Franke, T. Rettelbach, C. Habler, W. Koch, A. Muller, Silicon ingot casting: process development by numerical simulations [J] Solar Energy Materials and Solar Cells,2002,72 (1-4):p.83-92
    [21]许振嘉.蒋四南.孙伯康等.热处理硅中的氧、碳沉淀[J].半导体学报.第3卷第6期.1982年11月
    [22]刘恩科,朱秉升,罗晋生等,《半导体物理学》[M],西安交通大学出版社,1998.
    [23]Rizk R, Ihlal A, Pot-tier X. Evolution of electrical activity and structure of nickel Precipitates with the treatment temperature of a Σ=25 silicon bicyrstal [J]. Appl. Phys.1995,77:1875-1880
    [24]Istratov A A, Buonassisi T, McDonald R J, et al. Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length [J]. Appl. phys.2003,94:6552-6559.
    [25]张伟娜.冶金多晶硅的电学性能研究[D].大连:大连理工大学材料学院,2007.
    [26]Haβer C, Hosf H U, Koch W, Formation and annihilation of oxygen donors in multicrystalline silicon for solar cells[J]. Materials Science and Engineering,2000B,71:39-46.
    [27]Mc Hugo S A, Thompson A C, Prichard I, et al. Direct correlation of transition metal impurities and minority carrier recombination in multicrystalline silicon [J]. Appl. Phys. Lett.1998,72:3482-3484.
    [28]俞征峰,席珍强等,铸造多晶硅中热施主形成规律[J],太阳能学报,2005,26,581
    [29]Daniel Macdonald, Andres Cuevas. Transition-metal profiles in a multicrystalline silicon ingot. J. Appl. Phys.97,033523 (2005);
    [30]李勇东最新硅材料配方设计、生产技术、工艺流程与质量检测及标准规范实务全书[M].当代中国音像出版社
    [31]Xi Zhenqiang, Yang Deren, Chen Jun:etal. lorn Precipitation in cyrstalline silicon[J], Chinese Journal of semiconductors,24(2003)1166-70
    [32]Wijaranakula W. Iron precipitation at oxygen related bulk defects in Czochralski silicon [J].Appl. Phys.,1996,79:4450-4452.
    [33]杨德仁,材料科学与工程[J],2(1990)13
    [34]四探针电阻率测试仪[S].JJG 508-2004
    [35]艾斌,沈辉,邓幼俊.WT-2000少子寿命测试仪的原理及性能[C].第十届中国太阳能光伏会议论文案
    [36]刘秋娣,林安中,林喜斌,多晶硅锭的制备及其形貌组织的研究[J],稀有金属,11(2002).
    [37]邓海.铸造多晶硅中原生杂质和缺陷的研究[D].杭州:浙江大学材料学院,2006.
    [38]刘美.冶金法提纯多晶硅过程中氮化硅涂层的研究[D].大连:大连理工大学材料学院,2006.
    [39]吴亚萍.太阳能级多晶硅的冶金制备研究[D].大连:大连理工大学材料学院,2006.
    [40]陈君,杨德仁,席珍强.铸造多晶硅晶界的EBSD和EBIC研究[J].太阳能学报.0254-0096(2006)04-0364-05
    [41]Shen B, Sekiguchi T, Jablonski J, et al. Gettering of copper by bulk stacking faults and Punched-out dislocations in Czochralski-grown silicon [J]. Appl. Phys.1994, 76:4540-4546.
    [42]Kittler M, eif ert W, Stemmer M, et al. Interaction of iron with a grain boundary in boron-doped multicrystalline silicon Appl [J].Phys.1995,77:3725-3728.
    [43]Palais 0, Yakimov E, Martinuzzi S, et al. Minority carrier lifetime scan maps applied to iron concentration mapping in silicon wafers [J]. Materials Science and Engineering B,2002,91-92:216-219.
    [44]石德珂.材料科学基础北京[M].机械工业出版社,2002
    [45]Gilles Dour, Erie Ehret, A. Luagier, Dominique Sarti, Marcel Garnier, Francis Durand, Continuous solidification of Photovoltaic multi-crystalline silicon from an inductive cold crucible[J], Journal of crystal Growth 193 (1998) 230-240.
    [46]Istratov A A, Buonassisi T, McDonald R J, et al. Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length [J]. Appl. phys.2003,94:6552-6559
    [47]T. F. Ciszek*, T.H. Wang. Silicon defect and impurity studies using float-zone crystal growth as a tool. [J]. Journal of Crystal Growth 237-239(2002) 1685-1691
    [48]Pires J C S, Braga A F B, Mei P R, Profile of Impurities in Polycrystalline Silicon Samples Purified in an Electron Beam Melting Furnacel Solar Energy[J] Materials & Solar Cells,2003,79:347~355
    [49]Yuge N, Sakaguchi Y, Terhshima H. Purification of silicon by directional Solidification [J]. Japan Inst Metals,1997,61(10):1094-1100.
    [50]杨树人,王宗昌,王兢.半导体材料[M].长春:吉林大学出版社,1997:71-71.
    [51]Reiss J H, King R R, Mitchell K W. Characterization of diffusion length degradation in Czochralski silicon solar cells[J].Appl. Phys. Lett.,1996,68:3302-4.
    [52]Kurobe K, Miura M, Hirano K, et al. Spatial distribution of minority-carrier lifetime and local concentration of impurities in multicrystalline silicon solar cells[J]. Solar Energy Materials & Solar Cells,2002,74:183-193.
    [53]D. Macdonald, A. Cuevas. "Trapping of minority carriers in multi crystalline silicon [J], APP1. Phys. Lett.1999,74:1710-1712.
    [54]Plink Christophe, Feick Henning, Mc Hugo Scatt A, etal. Out-diffusion and precipitation of copper in silicon [J]. Phys Rev Lett,2000,85:4900-1903
    [55]Murin L, Markeveh Y P. Effect of carbon on thermal double donor formation in silicon [J]. Mater Sci Forum,1995,196-200:1315-1320.
    [56]Toshinori Taishi, Takeshi Hoshikawa, Muneyoshi Yamatani. Influence of crystalline defects in Czochralski-grown Si multicrystal on minority carrier lifetime [J] Journal of Crystal Growth 306 (2007) 452-457
    [57]马晓东.冶金法去除工业硅中杂质的研究[D].大连:大连理工大学材料学院,2009[30]Xi Z, Ynag D, Chen J, et al. Nickel precipitation in large-diameter Czochralski silicon [J]. Physica B,2004,344:407-412.
    [58]邓海,杨德仁,唐骏,席珍强,阙端麟.铸造多晶硅中杂质对少子寿命的影响[J].太阳能学报0254-0096(2007)02-0151-04
    [59]邓太平,毛文行,尹传强等.太阳能多晶硅锭中夹杂的物相与分布特性[J].材料科学与工程学报.1673-2812(2008)03-0449-04
    [60]佘思明.半导体材料学[M]长沙:中南工业大学出版社,1992,106-199
    [61]Hidalgo P, Palais 0, Martinuzzi S. Behavior of metallic in purities at grain boundaries and dislocation clusters in multi-crystalline silicon wafers deduced from contactless lifetime scan maps [J]. J Phys Condens Matter,2004,16:S19-S24.
    [62]电子工业生产技术手册(7)-半导体与集成电路卷[M].《电子工业生产技术手册》编委会.1993,1069
    [63]陈畅生,熊传明.硅中氧的热沉淀(上)[J].稀有金属,1984.4:63-71
    [64]阙端麟.硅材料科学与技术[M].杭州:浙江大学出版社,2000:465-471.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700