基于CNC的轮胎翻新成型加工系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的进步,经济的发展,汽车已经成为人们普遍的代步工具,随之而来就是废旧轮胎带来的“黑色污染”问题。轮胎翻新是目前极为常用也是行之有效的处理旧轮胎的方法,是一个解决废旧轮胎污染问题和节约资源的绿色环保产业,也是轮胎工业中不可或缺的重要一环。如何使翻新轮胎能够达到与新胎基本相等的里程数和安全性,是轮胎翻新的关键所在。基于此,本文的任务是研究和设计新型全自动轮胎打磨机。主要研究内容如下:
     首先,本文从轮胎翻新行业的意义,发展历史和废旧轮胎翻新原理着手,指出轮胎翻新可以带来巨大的社会效益和经济效益。通过分析比较国内外轮胎翻新的技术差距,指出本文研究的另一个意义在于提高国内轮胎翻新水平。目前国内的轮胎打磨系统多是半自动或者仍是人工打磨,精度差、效率低,新型的打磨机采用高精度交流伺服传动构成2轴数控进给系统,人机界面与PLC结合做控制器,实现了参数的在线柔性化快速调整,全自动打磨轮胎,打磨精度和生产效率成倍提高。
     其次,本文对伺服运动系统进行研究,建立了机床伺服运动系统的数学模型,分析系统的特性和影响系统动静态特性的主要因素,在此基础上对伺服系统中的曲线插补进行重点研究。在前人研究的基础上,应用了一种新型的插补算法,给出了插补算法的推导和最终插补算法。根据插补原理,进行了基于PLC的直线插补与圆弧插补运动程序的开发,并对其进行分析,使运动控制系统具有了平面点位运动控制和轨迹运动控制功能。文章对系统的软硬件都进行了设计,硬件设计包括系统各部分选型、端子的I/O分配、接线图等;软件设计包括控制主程序以及位控程序设计。通过编写一个GOT监控系统,设计了加工参数设定、报警显示、机床状态监控和点动操作画面,可实现各种监控和设定功能,方便操作和维修。
     最后,经实际运行证明,所开发的两轴数控轮胎打磨系统达到设计要求,能够适应轮胎翻新工艺,显著提高生产效率和产品加工质量。如果进一步完善,可以在该行业推广应用,创造可观的经济和社会效益。
Thanks to the development of economy and improvement of technology, vehicles have become the most popular traffic tool for human, which also bring about the "black pollution" problem-the increased scrap tyres. Tyre retreading, nowadays the most efficient and commonly used way dealing with used tyres, is an environmental-friendly industry, orienting in solving tyre-pollution and saving resources. It is also a necessity to the whole tyre industry. So here is vital problem- how to make sure the retreaded tyres are as well as new tyres in security and mileage. So, to solve the problems, the full-automatic tyre grinding machine is developed. Following are the main ideas of every chapters.
     Firstly, this dissertation begins with the value and development of the retreading tyre industry, as well as the theory of retreading tyre. It shows tremendous social benefit and economic benefit of industry. And then, the dissertation analyzes the technology gap between domestic and foreign refurbishing tires industry, claiming another aims of the article-improving the domestic tyre retreading technological level. At present, the domestic retreading tyre system is almost semi-automatic or totally artificial, so the precision and efficiency is low. However, the new grinding system adapts the machine tool servo feeding, forming a two axis CNC and makes a controller combined with man-machine system and PLC. The new controller and two axis CNC together realize the flexible parameter adjustment, automatic grinding, and then efficiency and precision can be improved twice.
     Then, the paper researches the servo motion system and builds the machine tool servo feeding systematic mathematic model, which drives delivery function, analyzing the characteristic property of feeding system and the major factor of the static characteristic of system. On the basis of the studied curve of the servo system and previous studies, it proposes a new interpolation algorithm and interpolation algorithm eventually. Based on the principle of interpolation, developing linear interpolation and arc interpolation programs according to point to point compare interpolation theory, in this way making the system have point to point and track control functions.The paper also designs the hardware and software of the system. The hardware includes parts selection, terminal I/O distribution and wiring diagram. The software program includes control software design and procedures. The author programmed a GOT monitor system, designing a machining parameter setting, an alarm display, a machining state monitor and a jog operation screen. Under this program, the system can achieve monitoring and setting functions by switching between different screens, which is convenient for repairing and maintenance.
     Finally, through the actual motion, the invented two axis CNC grinding machine system works well and meets the normal operation.After further improvement, it can be promoted widely to develop the retreading tyre industry.
引文
1.刘桂生.我国钢丝子午线轮胎翻新现状与发展[J].中国轮胎资源综合利用,2008(4):20-22.
    2. Bhalla G, Kumar Arvind, Bansal Ajay. Performance of Scrap Tire Shreds as a Potential Leachate Collection Medium[J]. Geotechnical and Geological Engineering,2010,28(5): 661-669.
    3.于清溪.翻胎生产与设备现状及发展(上)[J].橡塑技术与装备,2009,35(1):8-9.
    4.刘东.“米其林翻新轮胎核心流程实施”案例研究[D]:[硕士学位论文].辽宁:大连理工大学,2008.
    5. Wu Xudong, Zuo Shuguang, Lei Lei, etal. A Three Degree-of-Freedom Dynamic Modeling of Twist Beam Suspension-Tire System[C]. IEEE Intelligent Vehicles Symposium. NJ USA:Piscataway,2009.730-735.
    6.黄建业,钟志平.论国内轮胎翻新行业发展现状[J].橡塑技术与装备,2010,36(4):24-25.
    7. Deur J, Asgari J, Hrovat D. A 3D Brush-type Dynamic Tire Friction Model[J]. Vehicle System Dynamics,2004,42(3):133-173.
    8.陆允洁.我国轮胎翻新行业发展中的若干问题研究[D]:[硕士学位论文].上海:上海交通大学,2003.
    9.高孝恒.我国轮胎翻新装备现状与发展要求[J].橡塑技术与装备,2007,33(2):7-9.
    10.于清溪.翻胎生产与设备现状及发展(下)[J].橡塑技术与装备,2009,35(2):5-7.
    11.林礼贵.轮胎生产工艺[M].北京:化学工业出版社,2008.15-45.
    12.田志平,吴建荣,于树华.轮胎新型修补方法研究[J].轮胎工艺,2004,24(1):52-53.
    13.文鸣,王振江.自动打磨机简介[J].橡塑技术与设备,2004,30(2):34-35.
    14.王丽,俞志刚,庄建等.白胎侧轮胎打磨质量问题原因分析及解决措施[J].轮胎工业,2007,27(5):313-314.
    15.于清溪.世界翻胎行业生产现状与发展前景[J].轮胎工艺,2006,26(9):527-529.
    16.谷海东.我国轮胎翻新企业环境分析及营销策略研究[D]:[硕士学位论文].北京:北京交通大学,2007.
    17. Yi J, Alvarez L, Claeys X. etal. Emergency Braking Control with an Observer-based Dynamic Tire/Road Friction Model and Wheel Angular Velocity Measurement [J]. Vehicle System Dynamics,2003,39(2):81-97.
    18.刘庆伦.任意母线砂轮修形机控制系统研究[D]:[硕士学位论文].武汉:武汉理工大学,2008.
    19.王玉峰.曲线磨床数控系统的研究[D]:[硕士学位论文].天津:天津大学,2007.
    20.许建国.电机与拖动基础[M].北京:高等教育出版社,2004.59-178.
    21. Bimal K Bose. Power Electronics and AC Drives[M]. Prentice Hall PTR,2002.120-125.
    22.富士公司编.富士伺服系统用户手册.
    23.陈汉富.基于PLC的内圆磨床伺服运动系统的开发与研究[D]:[硕士学位论文].上海:上海交通大学,2009.
    24.王英晨,惠晶.基于伺服传动的新型冲齿机柔性控制系统[J].电气传动,2007,37(8):56-59.
    25.徐志明,王宇晗.五轴联动NURBS曲线插补方法的研究[J].上海电机学院学报,2008,11(1):76-80.
    26.刘凯,赵东标.参数曲线插补自适应加减速控制方法研究[J].小型微型计算机系统,2008,29(4):769-772.
    27.滕二,桂贵生.NURBS曲线插补在高速加工中的应用[J].组合机床与自动化加工技术,2009(8):26-28.
    28.张春伟.自适应进给速度参数曲线插补算法研究[D]:[硕士学位论文].合肥:合肥工业大学,2009.
    29. Syh-Shiuh Yeh. Hsin-Chuan Su. Implementation of Online NURBS Curve Fitting Process on CNC Machines[J]. International Journal of Advanced Manufacturing Technology,2009, 40(5):531-540.
    30. Erkan Ulker, Mehmet Emin Turanalp H, Selcuk Halkaci. An Artificial Immune System Approach to CNC Tool Path Generation[J]. Journal of Intelligent Manufacturing,2009, 20(1):67-77.
    31.Elguedj T, Simon P, Coret M. On the Use of NURBS Functions for Displacement Derivatives Measurement by Digital Image Correlation[J]. Experimental Mechanics,2010, 50(7):1099-1116.
    32.任志英,陈剑雄.基于离线粗插补的数据采样插补法[J].机床与液压,2009,37(3):47-49.
    33.张海涛,蔡安江.NURBS曲线插补的运动规划与自适应速度插补[J].组合机床与自动化加工技术,2009(10):66-70.
    34. Yang Xujing, Sun Guangyong, Li Qing. A New NURBS Tool Path Generation Algorithm for Precise Sculptured Surface Machining[C]. International Conference on Manufacturing Science and Engineering. Germany:Trans Tech Publications,2010.2477-2480.
    35.陈剑雄,林述温,倪霞林.基于多项式表示法的NURBS曲线插补算法[J].工具技术,2008,42(8):110-112.
    36. Echter Ralph, Bischoff Manfred. Numerical Efficiency Locking and Unlocking of NURBS Finite Elements[J]. Computer Methods in Applied Mechanics and Engineering, 2010,199(5):374-382.
    37.刘宇,戴丽,刘杰等.泰勒展开NURBS曲线插补算法[J].东北大学学报,2009,30(1):117-120.
    38. Lei W T, Wang S.B. Robust Real-time NURBS Path Interpolators[J]. International Journal of Machine Tools and Manufacture,2009,49(7):625-633.
    39. Shaw Amit, Roy D. NURBS-based Parametric Mesh-Free Methods[J]. Computer Methods in Applied Mechanics and Engineering,2008,197(17):1541-1550.
    40. Emami Mohammad Mahdi, Arezoo Behrooz. A Look-ahead Command Generator with Control Over Trajectory and Chord Error for NURBS Curve with Unknown Arc Length[J]. CAD Computer Aided Design,2010,42(7):625-632.
    41.廖常初.FX系列PLC编程及应用[M].北京:机械工业出版社,2005.
    42.陈建明,朱晓东.电气控制与PLC应用[M].北京:电子工业出版社,2006.221-224.
    43.朱贺,惠晶.两轴独立的高精度齿形加工数字控制系统[J].电工技术,2010,30(6):38-39.
    44.陈先锋,舒志兵,赵英凯.基于PMSM伺服系统的数学模型及其性能分析[J].机械与电子,2005(1):41-43.
    45. Masaki Sazawa. Robust High Speed Position Servo System Considering Current and Voltage Limitation and Load Inertia Variation[C]. The 33rd Annual Conference of the IEEE Industrial Electronics Society. NJ USA:Piscataway,2007.322-327.
    46.张新华.四电机分部传动粗纱机的计算机控制系统研究[D]:[硕士学位论文].浙江:浙江大学,2003.
    47.陈兴武,蒋新华,徐均攀.应用软PLC开发数控机床的功能控制[J].厦门大学学报,2005,44(5):654-657.
    48.田娟娟.超高速磨削试验台控制系统开发[D]:[硕士学位论文].东北:东北大学,2006.
    49.张维久,胡汉春,李冲.上位机与PLC的通信与监控设计[J].机电产品开发与创新,2008,21(1):135-136.
    50. Ralph M. Kennel. Encoders for Simultaneous Sensing of Position and Speed in Electrical Drives with Digital Control [J]. IEEE Transactions on Industry Applycations,2007,43(6): 1572-1577.
    51.闫晓芬,郭银章.基于P/S模式的分布对象中间件异步通信接口[J].计算机工程,2009,35(6):125-126.
    52.王文斌.PLC及位控单元在机床设计中的开发及研究[D]:[硕士学位论文].哈尔滨:哈尔滨工程大学,2006.
    53.赵亮.基于PLC控制的数控齿条插齿机控制系统的研制[D]:[硕士学位论文].武汉:华中科技大学,2006.
    54.FX2N-10GM和FX2N-20GM硬件/编程手册,三菱电机自动化(上海)有限公司,2000.
    55.张丽秀,李颖,吴玉厚等.PLC位控单元在精密磨削控制中的应用[J].沈阳建筑工程学院学报,2000,16(4):286-287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700