高速永磁同步电动机控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速永磁电动机以其体积小﹑效率高﹑功率密度大﹑转动惯量较小﹑动态响应较快等优点,在超高精密加工和高性能机械中应用越来越广。高速永磁电动机的转速可高达每分钟几万转甚至几十万转,绕组电流频率较高,由于高频高速的特点及其驱动高速电机变频器存在的谐波,由此带来的高速电机供电系统谐波大的问题也越来越严重。为了提高高速永磁电动机控制系统的性能,需要对如何减小高速电机供电系统的谐波,实现高速电机的闭环控制等问题进行深入研究。本文针对高速永磁同步电动机的专用变频器与滤波器的设计,系统闭环控制策略以及转子位置和速度信号的检测方法等问题进行了研究,主要研究内容如下:
     (1)通过分析电流谐波对高速永磁电动机性能的影响,研究了具有特定谐波消除和可调开关模式功能逆变器的设计方法。当高速电机运行在不同的速度频段时,采用不同开关模式的逆变器,当高速电机运行在中低速域时,逆变器采用18脉冲开关模式,基于特定谐波消除技术选取开关角,使5次﹑7次等特定次数的谐波最小。建立了特定谐波消除单﹑双极性脉冲控制方式的数学模型,给出了消除5次﹑7次谐波的不同调制比与开关角的关系。高速电机高速运行时,逆变器采用6脉冲开关模式, 5次﹑7次等谐波通过特定谐波滤波器消除。对所采用的方法进行了仿真和实验研究。
     (2)研究了使用通用PWM变频器时,采用在变频器输出端加二阶RLC滤波器或三阶LCL等滤波器来抑制高速电机供电系统谐波的方法。对于高速电机运行在高速域采用6脉冲开关模式逆变器时,提出了在变频器的输出端采用可调电感的自适应滤波器的设计方法。对于不同结构滤波方法进行了仿真对比分析与实验研究,验证了所提出的滤波方法的可行性。
     (3)提出了适合于高速永磁同步电动机的多边形磁链直接转矩控制策略,即在电机运行的中低速域,采用无传感器十八边形磁链直接转矩控制,而在高速域采用无传感器六边形磁链直接转矩控制策略。研究了实现两种控制模式间切换的方法,并对所提出的控制策略进行了仿真和实验研究。
     (4)针对用普通转子位置传感器不适用高速电机转子位置检测,研究了一种光电式位置传感器,设计了其信号处理电路。并对所采用的方法进行了实验验证。
     (5)搭建了以DSP TMS320F2812为控制核心的高速永磁同步电动机控制系统实验平台,进行了10kW 12000r/min高速永磁电动机的多边形磁链直接转矩控制的实验研究,验证了所提出控制方法的可行性。
High-speed permanent magnet synchronous motor (PMSM) are more and more widely used in ultra-high precision machining and high performance machinery due to the merits of small size, high efficiency, high power density, small moment of inertia and fast dynamic response. The speed of high-speed PMSM can be up to tens of thousands revolutions per minute, or even hundreds of thousands revolutions per minute. The winding current frequency is higher. Due to the characteristics of high frequency high speed and harmonic existed in the inverter driven high-speed motor, the problem of large harmonic of high-speed PMSM power supply is getting worse. The issues of how to reduce the harmonics of power supply and how to realize the closed-loop control etc. need to be researched deeply in order to improve the performance of high-speed PMSM control system. The issues of high-speed PMSM special inverter and filter design, the system closed-loop control strategy, the rotor position and speed signal detection methods etc. have been studied in this paper. The main contents are as follows:
     (1) The design method of inverter with specific harmonic elimination (SHE) and adjustable switching mode is proposed by analyzing the influence of current harmonics on high-speed PMSM. When high-speed motor runs at different speed, the different function of switching mode inverter is used. 18-pulse inverter switching mode is used when high-speed motor runs at middle or lower speed. Switching angle is selected based on SHE to make the 5th and 7th harmonics minimum. The mathematical model of SHE single bipolar pulse control is established and the relationship between different modulation ratio and switching angles to eliminate the 5th and 7th harmonics is presented. 6-pulse inverter switching mode is used when high-speed motor runs at higher speed. The 5th and 7th harmonics at the output side of inverter can be eliminated by SHE filter. The simulation and experiment is studied for the proposed method.
     (2) The methods of adding second-order RLC or third-order LCL filter at the converter output side when use PWM converter is studied in order to effectively suppress high-speed PMSM power supply harmonics. The design method of the adaptive filter with adjustable inductor used at the inverter output side is proposed when the motor runs at higher speed with 6-pulse switching mode inverter. The simulation analysis and experiment is done between various filters proposed. The effectiveness of the proposed filtering method has been verified.
     (3) The strategy of polygon flux direct torque control (DTC) suitable for high-speed PMSM is proposed. The strategy of sensorless eighteen flux polygon DTC is used when high-speed PMSM runs at lower and middle speed region. The strategy of sensorless hexagonal flux DTC is used when the high-speed PMSM runs at high speed region. The switching method between two control modes is studied. Simulation and experimental study is done for the proposed control strategy.
     (4) An optoelectronic position sensor is studied and the signal processing circuit is desgined for ordinary sensor is not suitable for high-speed motor rotor position detection. The experiment has been done for the proposed method.
     (5) The experimental platform with DSP TMS320F2812 as the control core is built which can be used for the high-speed PMSM control system. The experimental research is done for polygon flux DTC with rated power 10kW, rated speed 12000r/min high-speed PMSM which has verified the correctness of the proposed method.
引文
[1]徐建中.分布式供电和冷热电联产的前景.节能与环保,2002(3):12-14.
    [2]刁正纲.微型燃气轮机走向商业化.燃气轮机技术,2000,13(3):13-14.
    [3]赵士杭.新概念微型燃气轮机的发展.燃气轮机技术,2001,14(2):8-16.
    [4] Wang Fengxiang, Bai Haoran, Yu Shufei. A repression method of current harmonics using phase-shifting reactor for high speed generator. Proceedings of the Eighth International Conference on Electrical Machines and Systems (ICEMS 2005), Beijing, China, 2005: 978-981.
    [5] Ochije K N, Pollock C. A controlled PWM AC/DC converter for a high-speed brushless generator for minimum kVA rating. IEEE Transactions on Industry Applications, 2004, 40(3): 861-868.
    [6]王凤翔.高速电机的设计特点及相关技术研究.沈阳工业大学学报,2006,28(3):258-264.
    [7]李永东,倚鹏.大功率高性能逆变器技术发展综述.电气传动,2000(6):3-8.
    [8] Jussi L?hteenm?ki. Design and voltage supply of high-speed induction machines. Ph. D. Dissertation. Finland, Helsinki University of Technology, 2002.
    [9]姚青梅.高频逆变系统的分析与设计:(硕士学位论文).天津:天津大学,2009.
    [10]徐煜明.高速电机变频器的设计与实现.工矿自动化,2006(3):78-80.
    [11]吴峰.一种新型高频SPWM交流调速变频器的研究.自动化技术与应用,2004,23(10):70-72.
    [12] Wagner V.E., Balda J.C., Griffith D.C., et al. Effects of harmonics on equipment.IEEE Transactions on Power Delivery, 1993,8(2):672-680.
    [13]颜斌,陈希有.变频器输出RLC正弦波滤波器的工程设计.电机控制学报,2002, 6(3):256-260.
    [14] Rendusara D A, Enjeti P N. An improved inverter output filter configuration reduces common and differential modes dv/dt at the motor terminals in PWM drive systems. IEEE Transactions on Power Electronics, 1998, 13(6):1135-1143.
    [15] Sozer Y, Torrey D A, Reva S. New inverter output filter topology for PWM motor drives. IEEE Transactions on Power Electronics, 2000,15(6):1007-1017.
    [16]陈希有,颜斌,徐殿国等.可调式逆变器输出滤波器的原理与实践.哈尔滨工业大学学报, 2003,35(5):549-552.
    [17]吴卫民.新型谐波抑制及相关技术的研究:(博士学位论文).杭州:浙江大学,2005.
    [18]梁中华,于平泳,刘春芳等.多重化逆变器及其控制方法.沈阳工业大学学报,2009,31(3): 262-265,291.
    [19] Steimer P.K., Manjrekar M.D. Practical medium voltage converter topologies for high power applications. 36th IAS (IEEE Industry Applications Society) Annual Meeting-Conference Record of the 2001 IEEE Industry Applications, Chicago IL, USA, 2001(3): 1723-1730.
    [20]陈希有,颜斌,邓辉等.变频器输出滤波器的灵敏度分析与优化设计.哈尔滨工业大学学报, 2003,35(8):966-973.
    [21]许大中.交流电机调速理论.杭州:浙江大学出版社,1991.
    [22]陈坚.交流电机数学模型及调速系统.北京:国防工业出版社,1989.
    [23]高景德,王祥熙衍,李发海.交流电机及其系统的分析.北京:清华大学出版社,1993.
    [24] Guchuan Zhu, Dessaint L A, Akhrif O, et al. Speed tracking control of a permanent-magnet synchronous motor with state and load torque observer. Industrial Electronics, 2000, 47(2): 346-355.
    [25] Mademlis C, Margaris N. Loss minimization in vector-controlled interior permanent-magnet synchronous motor drives. Industrial Electronics, 2002(6): 1344-1347.
    [26] Yamamoto K, Shinohara K. Comparison between space vector modulation and subharmonic methods for current harmonics of DSP-based permanent-magnet AC servo motor drive system.Electric Power Applications, 1996(2): 151-156.
    [27] Takeda Yoji, Hirasa Takao. Current phase control methods for permanent magnet synchronous motors considering saliency. PESC '88 Record-19th Annual IEEE Power Electronics Specialists Conference, Kyoto, Japan, 1988: 409-414.
    [28] Colby Roy S., Novotny Donald W. Efficient operation of surface mounted permanent magnet synchronous motors. Conference Record of the 1986 IEEE Industry Applications Society Annual Meeting, Denver, CO, USA, 1986: 806-813.
    [29] Shigeo Morimoto, Keita Hantanaka, Yi Tong , et al. Servo drive system and control characteristics of salient pole permanent magnet synchronous motor. IEEE Transactions on Industry Applications, 1993, 29(2): 338-342.
    [30] Shigeo Morimoto, Keita Hantanaka. Effects and compensation of magnetic saturation in flux-weakening controlled permanent magnet synchronous motor drives. IEEE Transactions on Industry Applications, 1994, 30(4): 1632-1637.
    [31] Higeo Morimoto, Masayudi Sanada, Yoji Takeda. Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator. IEEE Transactions on Industry Applications, 1994, 30(4): 920-926.
    [32] M. Depenblock. Direct self-control (DSC) of inverted fed induction machine. IEEE Transactions on Power Electronics, 1988, 3(5): 420-429.
    [33] Takahashi I., T. Noguchi. A new quick-response and high-efficiency control strategy of an induction motor. IEEE Transactions on Industry Applications, 1986, 22(5): 820-827.
    [34] Zhong L., Rahman M.F., Hu W.Y., et al. Analysis of direct torque control in permanent magnet synchronous motor drives. IEEE Transactions on Power Electronics, 1997, 12(3): 528-536.
    [35] Zolghadri M. R., Diallo D., Roye D. Start up strategies for a direct torque controlled synchronous machine. Proceedings of 7th European Conference on Power Electronics and Applications, Trondheim, Norway, 1997(3): 689-693.
    [36] Zolghadri M. R., Guiraud J., Davoine J., et al. DSP based direct torque controller for permanent magnet synchronous motor drives. 29th Annual IEEE Power Electronics Specialists Conference (PESC 98), New York, USA, 1998(2): 2055-2061.
    [37] Sun Dan, Fang Weizhong, He Yikang. Study on the direct torque control of permanent magnet synchronous motor drives. Proceedings of the Fifth International Conference on Electrical Machines and Systems (ICEMS 2001), Beijing, China, 2001(1): 571-574.
    [38] Hu Yuwen, Tian Cun, Gu Yikang, et al. In-depth research on direct torque control of permanent magnet synchronous motor. Proceedings of the 2002 28th Annual Conference of the IEEE Industrial Electronics Society (IECON 02), Sevilla, Spain, 2002(2): 1060-1065.
    [39] Rahman M.F., Zhong L., Lim K.W., et al. A direct torque controlled permanent magnet synchronous motor drive without a speed sensor. IEEE International Electric Machines and Drives Conference (IEMDC 1999), Piscataway, NJ, USA, 1999: 123-125.
    [40] Hague M.E., Zhong L., Rahman M. F. A sensorless speed estimator for application in a direct torque controller of an interior permanent magnet synchronous motor drive, incorporating compensation of offset error. 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference, Caims, Australia, 2002 (1): 276-281.
    [41] Rahman M.F., Zhong L. Problems of stator flux oriented torque controllers for the interior permanent magnet motor. Third International Power Electronics and Motion Control Conference (IPEMC 2000), Beijing, China, 2000(1): 342-345.
    [42] Haque M.E., M.F. Rahman. A PI stator resistance compensator for a direct torque controlled interior permanent magnet synchronous motor drive. Third International Power Electronics and Motion Control Conference (IPEMC 2000), Beijing, China, 2000(1): 175-179.
    [43] Krishnan R., Ghosh R. Starting algorithm and performance of a PM DC brushless motor drive system with no position sensor. 20th Annual IEEE Power Electronics Specialists Conference- PESC '89, Milwaukee, WI, USA, 1989(2): 815-821.
    [44] Nobuyuki Matsui, Masakane Shigyo. Brushless DC motor control without position and speed sensors. IEEE Transactions on Industry Applications, 1992, 28(1): 120-127.
    [45] Cardoletti L, Cassat A, Jufer M. Sensorless position and speed control of a brushless DC motor from start-up to nominal speed. European Power Electronics and Drives Journal, 1992, 2(1): 25-34.
    [46]韩英桃,周青苗,刘卫国.稀土永磁同步电动机变频调速系统最佳控制方案的探讨.微特电机,2000(2):31-33.
    [47]万文斌,徐衍亮,唐任远.永磁同步电动机的高性能电流控制器.中国电机工程学报,2000, 20(12):24-27.
    [48]马瑞卿,李声晋,周青苗等.稀土永磁同步电动机变频调速关键技术研究.中国电机工程学报,1998, 18(5):330-334.
    [49]徐衍亮.电动汽车用永磁同步电动机功率特性及弱磁扩速能力研究(一).山东大学学报,2002, 32(5):401-405.
    [50]徐衍亮.电动汽车用永磁同步电动机功率特性及弱磁扩速能力研究(二).山东大学学报,2002, 32(5):412-417.
    [51]田淳,胡育文.永磁同步电动机直接转矩控制系统理论及控制方案的研究.电工技术学报,2002, 17(1):7-11.
    [52]陶桂生,袁科登,毛明平.永磁同步电动机直接转矩控制系统仿真.同济大学学报,2002,30(8):991-995.
    [53]白强,李旭春,李鹤轩.基于DSP的磁场定向控制永磁同步电动机系统.中小型电机,2002, 29(6):17-20.
    [54]刘晏.基于DSP的交流永磁同步电动机伺服系统及其智能控制研究:(硕士学位论文).天津:天津大学,2002.
    [55]姚光中.内置式永磁同步电动机的等效电路.电机技术,2002 (1):6-12.
    [56]欧阳红林,张英杰,童调生等.永磁同步电动机的全数字控制系统.湖南大学学报,1998, 25(5):69-73.
    [57]顾光旭,邓智泉.永磁同步电动机两种矢量控制方式的仿真研究.系统仿真学报,2002, 14(12):1706-1708.
    [58] Von Jouanne A, Rendusara Dudi A, Enjeti Prasad N, et al. Filtering techniques to minimize the effect of long motor leads on PWM inverter-fed ac motor drive systems. IEEE Transaction on Industry Applications, 1996, 32(4): 919-926.
    [59]郑黎明,肖礼飞.无速度传感器永磁同步电机直接转矩控制系统.电力电子技术,2005,39(3):68-70.
    [60] Peter Vas. Sensorless vector and direct torque control. Oxford University Press, 1998.
    [61] Wu Rusong, Slemon Gordon R. A permanent magnet motor drive without a shaft sensor. 1990 IEEE Industry Applications Society Annual Meeting, Seattle, WA, USA, 1990: 553-558.
    [62] Lorenz R D. Future trends in power electronic control of drives: robust zero speed sensorless control and new standard approaches for field orientation. IEEE International Power Engineering Conference, Yokohama, 1995: 28-34.
    [63] Ertugrul N., Acarnley P. A new algorithm for sensorless operation of permanent magnet motors. IEEE Transactions on Industry Applications, 1994, 30(1): 126-133.
    [64] Nozari F., Mezs P.A., Julian A.L., et al. Sensorless synchronous motor drives for use on commercial transport airplanes. IEEE Transactions on Industry Applications, 1995, 31(4): 850-859.
    [65] Silverio Bolognani, Roberto Oboe. Sensorless full-digital PMSM drive with EKF estimation of speed and rotor position. IEEE Transactions on Industry Applications, 1999, 46(1): 184-191.
    [66] Ueda R., Takata H., Nakaqaki S., et al. On the estimation of transient state of power system by discrete nonlinear observer. IEEE Transactions on Power Apparatus and Systems, 1975, PAS-94 (6): 2135-2140.
    [67] Lmsdaine A, Lang J.H., Balas M.J. A state observer for variable reluctance motors. Proceedings of the Fifteenth Annual Symposium on Incremental Motion Control Systems and Devices, Champaign IL, USA, 1986: 267-273.
    [68] Yamashita K, Taniguchi T. On the estimation of the transient state of a synchronous machine by an optimal observer. International Journal of Control, 1985, 41(2): 417-428.
    [69] Gharban C.K., Cory B.J. None-linear dynamic power system state estimation. IEEE Transactions on Power Systems, 1985, PWRS-1(3): 276-283.
    [70] Binns K.J., Shimmin D.W., AI-Aubidy K.M. Implicit rotor-position sensing using motor windings for a self-commutating permanent-magnet drive system. IEE Proceedings B: Electric Power Applications, 1991, 138(1): 28-34.
    [71] Li Hongru, Wang Jianhui, Gu Shusheng, et al. A neural-network-based adaptive estimator of rotor position and speed for permanent magnet synchronous motor. Proceedings of the Fifth International Conference on Electrical Machines and Systems (ICEMS 2001), Shenyang, China, 2001(2): 735-738.
    [72]李鸿儒,顾树生.基于神经网络的PMSM速度和位置自适应观测器的设计.中国电机工程学报,2002, 22(12): 32-35.
    [73]刘军,刘丁,吴浦升等.基于模糊控制调节电压矢量作用时间策略的永磁同步电机直接转矩控制仿真研究.中国电机工程学报,2004, 24(10): 148-152.
    [74]秦峰.基于电力电子系统集成概念的PMSM无位置传感器控制研究:(硕士学位论文).杭州:浙江大学,2006.
    [75] Jang Ji-Hoon , Sul Seung-Ki, Ha Jung-IK, et al. Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency. IEEE Transactions on Power Electronics, 2003, 39(4): 1031-1039.
    [76]李建军.基于附加绕组位置检测高速永磁同步电机控制系统的研究:(硕士学位论文).哈尔滨:哈尔滨工业大学, 2007.
    [77]徐永向,胡建辉,邹继斌等.基于单霍尔传感器的转子位置检测电路的设计.电子器件, 2008,31(2):465-468.
    [78]徐文龙.高速永磁电机损耗计算与热分析: (硕士学位论文).沈阳:沈阳工业大学,2009.
    [79]陈志根.变频驱动控制及其对电机作用的研究: (硕士学位论文).北京:华北电力大学,2005.
    [80] Chiasson John N., Tolbert Leon M., Mckenzie Keith J., et al. A complete solution to the harmonic elimination problem. IEEE Transactions on Power Electronics, 2004, 19(2): 491-499.
    [81] Haoran Bai, Fengxiang Wang, Tianyu Wang. A SHEPWM modulation strategy of APF to reduce current harmonics for high speed PM generator. International Conference on Electrical Machines and Systems (ICEMS 2007), Seoul, Korea, 2007: 28-31.
    [82] Aglen O., Anderson A. Thermal analysis of a high-speed generator. 2003 IEEE Industry Applications Conference-38th IAS (IEEE Industry Applications Society) Annual Meeting: Crossroads To Innovation, Salt Lake City, UT, USA, 2003(1): 547-554.
    [83]王凤翔.交流电机的非正弦供电,北京:机械工业出版社,1997.
    [84] Y. Sozer, D. A. Torrey, S. Reva. New inverter output filter topology for PWM motor drives. The 15th Annual IEEE Applied Power Electronics Conference and Exposition, New Orleans, LA, USA, 2000(2): 911-917.
    [85] J. A. Von, D. A. Rendusara, P. N. Enjeti. Filtering techniques to minimize the effect of long motor leads on PWM inverter-fed ac motor drive systems. IEEE Transactions on Industry Applications, 1996, 32(4): 919-926.
    [86]王晓明,王玲.电动机的DSP控制,北京:北京航空航天大学工业出版社,2004.
    [87] Franzo G, Mazzucchelli M, Pauglisi L. Analysis of PWM techniques using uniform sampling in variable-speed electrical drives with large speed range. IEEE Transactions on Industry Applications, 1985, IA-21(4): 966-974.
    [88]皇金锋,董锋斌.变频器的输入输出滤波保护.自动化技术与应用,2006,25(9):80-82.
    [89]满永奎,胡春雨.通用变频器的交流电抗器选择的研究.电气传动,2008,38(11):68-71.
    [90] Steinke Juergen K. Use of an LC filter to achieve a motor-friendly performance of the PWM voltage source inverter. IEEE Transactions on Energy Conversion, 1999, 14(3): 649-654.
    [91]宋强,刘文华,严平贵等.大容量PWM电压源逆变器的LC滤波器设计.清华大学学报:自然科学版,2003,43(3): 345-348.
    [92]俞杨威,金天均,谢文涛等.基于PWM逆变器的LC滤波器.2007,24(5):50-52.
    [93] Dahono Pekik A., Purwadia A., Qamaruzzaman. An LC filter design method for single-phase PWM inverters. Proceedings of 1995 International Conference on Power Electronics and Drive Systems, Singapore, 1995(2): 571-576.
    [94] Wheeler P., Grant D. Optimized input filter design and low-loss switching techniques for a practical matrix converters. IEE Proceedings: Electric Power Applications, 1997, 144(1): 53-60.
    [95]钱志俊,仇志凌,陈国柱.有源电能质量控制器的LCL滤波器设计与研究.电力电子技术,2007,41(3):6-8.
    [96]钱建华,陈柏超.基于磁阀式可控电抗器的无功补偿系统.电力系统及其自动化学报, 2003,15(2):66-70.
    [97]卿向东,吴顺伟.高压电机起动的饱和电抗器设计.山东科技大学学报,2006,25(1):43-46.
    [98]刘涤尘,陈柏超,田翠华.新型可控电抗器在电网中的应用与选型分析.电网技术,1999, 23(2):51-54.
    [99]刘洪顺,王伟,邹亮等.磁饱和型故障限流器的研究与发展.山东大学学报(工学版),2008,38(1):18-23.
    [100]单铁铭,杨仁刚.磁饱和式可控电抗器在无功补偿方面的应用.电测与仪表,2004,41(10):36-39.
    [101]张兰,刘建霞.变频器谐波干扰与抑制.中国科技信息,2005(16):68,74.
    [102]王振宇,郭晓勇.用滤波技术消除变频器对电动机的影响.电气时代,2005(1):116,118.
    [103]周腊吾,徐勇,朱青等.新型可控电抗器的工作原理与选型分析.变压器,2003,40(8):1-5.
    [104] Feng Guihong, Wang Fengxiang, Wang Jin. Design principles of magnetically controlled reactor. Proceedings of the Fifth International Conference on Electrical Machines and System, Shenyang, China, 2001(1): 212-214.
    [105]陈柏超,田翠华.电磁式特高压统一潮流控制器.高电压技术,2006,32(12):96-98.
    [106]田铭兴,励庆孚.磁饱和式和变压器式可控电抗器.高电压技术,2003,29(7):26-27.
    [107] Wass T, Hornfeldt S, Valdemarsson. Magnetic circuit for a controllable reactor. IEEE Transactions on Magnetics, 2006, 42(9): 2196-2200.
    [108]陈柏超.新型可控饱和电抗器理论及应用.武汉:武汉水利电力大学出版社,1999.
    [109]田铭兴,励庆孚.磁饱和可控电抗器等效物理模型及其数学模型.电工技术学报,2002,17(4):18-21.
    [110]颜斌,陈希有.变频器输出RLC正弦波滤波器的工程设计.电机与控制学报,2002,6(3):256-260.
    [111] Ma Hongfei, Xu Dianguo, Chen Xiyou, et al. A novel common-mode sinusoidal inverter output filter with variable inductor. Proceedings of the Power Conversion Conference, Osaka, Japan, 2002: 710-715.
    [112]韩英桃,周青苗,刘卫国.稀土永磁同步电动机变频调速系统最佳控制方案的探讨.微特电机,2000( 2 ):31-33.
    [113]周扬忠,胡育文.交流电动机直接转矩控制.北京:机械工业出版社, 2009.
    [114]贾洪平,贺益康.永磁同步电机直接转矩控制中零矢量的作用研究.电气传动,2006,36(4):13-16,29.
    [115]田淳.无位置传感器同步电机直接转矩控制理论研究与实践:(博士学位论文).南京:南京航空航天大学,2001.
    [116]陈高华,冯江华,张忠等.折角控制的谐波分析及实现.大连铁道学院学报,2001,22(2):46-51.
    [117] Rasmussen H., Vadstrup P., Borsting H. Sensorless field oriented control of a PM motor including zero speed. IEEE International Electric Machines and Drives Conference (IEMDC 03), Madison, WI, USA, 2003(2): 1224-1228.
    [118]王成元,夏加宽,杨俊友等.电机现代控制技术.北京:机械工业出版社,2006.
    [119]贾洪平.PMSM DTC无传感器运行及传感器集成研究:(博士学位论文).杭州:浙江大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700