复杂产品装配序列规划方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
装配序列规划方法是数字化工厂技术的重要组成部分,装配序列规划的结果在较大程度上决定了装配工艺的制定和产品的装配质量。本文针对目前复杂产品装配序列规划的特点及其存在的问题,开展基于装配序列规划方法与关键技术的研究工作,形成了一套以装配信息模型、装配矩阵、评价指标及优化方法为基础的较为完整的装配序列规划方法。
     在分析装配序列规划的技术特点和研究必要性的基础上,对装配序列规划在数字化工厂中的应用进行了研究与分析,确定了装配序列规划方法与数字化工厂技术的关系,分析了面向复杂产品的装配序列规划技术的功能模块。以技术支持层、基础数据层、应用层和交互层为基础,建立面向装配序列规划的体系结构,并确定了与装配序列规划相关的方法与关键技术。
     建立了基于模型定义的装配信息建模方法,对复杂产品装配序列规划所需的装配信息进行了分析,将装配信息建模技术划分为数据结构、信息模型和数据管理三部分。为实现对设计、加工、装配环节的各类信息准确与可靠的描述,将数据结构信息划分为零件坐标系、实体模型、基准、标注集和工艺属性等五类信息。建立了以装配产品信息、装配工艺信息和装配资源信息为基础的装配信息模型。提出了以设计层、工艺层与制造层三层结构为基础的数据管理模型,以完善基于模型定义的装配信息建模。基于模型定义的装配信息建模方法,不仅可实现单一产品源的数据表达,更可实现复杂产品在并行装配中的数据表达与传输。
     提出了以包围盒技术与连续式拉伸动态干涉检验算法为基础的干涉矩阵生成方法,实现了基于标准正交轴干涉矩阵和扩展干涉矩阵的干涉矩阵生成算法。构建了静态干涉检验与对性矩阵性质相结合联接矩阵生成算法,以实现对联接矩阵的快速生成。采用静态干涉检验与步进式干涉检验相结合的方法,实现了装配序列支撑矩阵的快速生成。最终实现了面向复杂产品装配序列规划的相关矩阵生成。
     分析了影响装配序列规划的各类因素,将影响因素分类为零件级影响因素与产品级影响因素两类。而后以单因素模糊评判矩阵、模糊综合评判法、层次分析法等方法为理论基础,建立零件级模糊综合评价指标与评价方法。构建了以装配序列的几何可行性、装配体的稳定性、装配操作的聚合性及装配重定向次数为评价目标的产品级评价指标及指标计算方法。通过将零件级综合评价指标与产品级评价指标相结合,建立了面向产品装配序列规划的评价指标和评价指标函数。
     通过将连续空间的粒子群算法离散化的方法,建立了以子装配体为面向对象的离散粒子群算法优化算法。为解决算法易于陷于局部收敛的缺陷,提出一种改进粒子群算法,使种群在进化的初期阶段,以较大的概率向种群中的其他粒子的历史最优解学习,在后期以较大的概率向种群中的全局最优解学习。为提高算法运算效率,提出一种将改进进化方法算子与改进粒子群算法混合的方法,以减少算法迭代步数,高效生成最优装配序列。
     本文针对装配序列规划过程中存在的问题,提出了面向复杂产品的装配序列规划方法。以基于模型定义的建模方法为基础,建立了包括数据结构、装配信息、管理信息为目标的装配信息模型。应用包围盒技术与干涉检验方法,建立了标准正交轴干涉矩阵、扩展干涉矩阵、联接矩阵和支撑矩阵快速生成方法,以实现面向复杂产品序列规划的装配矩阵快速生成。应用单因素模糊评判矩阵、模糊综合评判法、层次分析法等理论方法,建立了面向复杂产品装配序列规划的综合评价指标及评价指标函数。基于混合粒子群算法的装配序列优化方法,则实现了最优或近似最优装配序列的高效生成与输出。
The method of assembly sequence planning (ASP) has been playing the most importantrole in the digital factory technology, and the optimization level of ASP technology has a largeextent determined the quality of the final design of the assembly process and product assembly.Based on the characteristics and problems of ASP in complex product, the method and keytechnologies of ASP has been researched. An assembly sequence planning method was buildedbased on assembly information model, assembly matrix, evaluation system and optimizationmethod in this thesis.
     Based on analyzing the characteristics and necessity of ASP method, the ASP methodapplied in the digital factory technology and the relationship between ASP and digital factorytheory are introduced in this thesis. The function module of complex product assemblysequence planning method were been established. Then, the structure system of ASP has beenbuild, which has technical support hierarchy, basic data hierarchy, application hierarchy andinteractive hierarchy, and the method and key technologies of ASP are also realized.
     Establishing the information modeling of ASP in complex product based on model baseddefinition (MBD) method, information modeling technology is divided into three parts of datastructures, information model and data management. To accurately describe the variousinformation types including design, process, assembly and product, the information of datastructures is divided into coordinate system information, physical model information, baselineinformation, annotated corpora information and process attribute information. The assemblyproduct information, assembly process information and assembly resource information areestablished in an assembly information model. In order to improve the information modelingtechnology of MBD, the data management model is divided into design hierarchy, processhierarchy and manufacturing hierarchy. The MBD method can not only realize single productsource data expression, but also realize complex products data expression in the parallelassembly.
     The method of interference matrix generation technology with bounding box technologyand continuous drawing dynamic interference testing algorithm is proposed. Based on thesetechnologies, the standard orthogonal axes interference matrix and extended interferencematrix are built. Then, the static interference testing and symmetric matrix have been proposed,and the generation technique of connection matrix is realized in this thesis. Combined withstatic interference test and step-by-step interference testing technology, the generationtechnique of support matrix is built. Four matrix generation technology of assembly sequence planning in complex product is realized.
     The effects of all kind of factors in ASP are analyzed, and the factors are classified aspart-level impact factors and product-level impact factors. And then, the part-level fuzzycomprehensive evaluation is established with the single factor fuzzy evaluation matrix, weightfuzzy comprehensive evaluation and analytic hierarchy process (AHP) method. To establishthe product-level comprehensive evaluation index and calculation method, the objective ofassembly geometry feasibility, assembly body stability, assembly operation convergent andassembly redirection are built. Finally, part-level evaluation index and product-level evaluationindex are combined, and evaluation index and evaluation function are established for solvingASP problems in complex product.
     In view of the local convergence problem with basic discrete particle swarm optimization(DPSO) in ASP, a hybrid algorithm to solve ASP problem is presented in subassembly. First, achosen strategy of global optimal particle in DPSO is introduced, and then an improved discreteparticle swarm optimization (IDPSO) is proposed for solving ASP problems. Subsequently, amodified evolutionary direction operator (MEDO) is used to accelerate the convergence rate ofIDPSO. The results show that the new hybrid algorithm MEDO-IDPSO is more efficient forsolving ASP problems, with excellent global convergence properties and fast convergence rate.
     To deal with the problems in assembly sequence planning process, the key technologiesand solving methods are proposed. The information modeling using model based definition(MBD) method of ASP in complex product is established, which is divided into data structures,information model and data management. The generation method of interference matrix,connection matrix and support matrix are established, with the method of bounding boxtechnology and interference testing technology. And the matrix generation method of assemblysequence planning of complex product is realized. Based on the methods of single factor fuzzyevaluation matrix, weight fuzzy comprehensive evaluation and analytic hierarchy process(AHP), evaluation index and evaluation function are established for solving ASP problems incomplex product. The optimization method of hybrid algorithm MEDO-IDPSO is proposed toobtain the optimal assembly sequence with the excellent global convergence properties and fastconvergence rate.
引文
[1] Hansen K L, Rush H. Hotspots in Complex Product Systems: Emerging Issues inInnovation Management [J]. Technovation,1998,18(8):555-561.
    [2] Hobday M. Product Complexity, Innovation and Industrial Organization [J]. ResearchPolicy,1998,26(6):689-710.
    [3] Davies A, Brady T. Organisational Capabilities and Learning in Complex Product Systems:Towards Repeatable Solutions [J]. Research Policy,2000,29(7-8):931-953.
    [4]王峻峰,李世其,刘继红等.计算机辅助装配规划研究综述[J].工程图形学报,2005,2:1-7.
    [5]刘继红,王峻峰等.复杂产品协同装配设计与规划[M].武汉:华中科技大学出版社,2011.
    [6] Tan J R, Liu Z Y, Zhang S Y. Intelligent Assembly Modeling Based on SemanticsKnowledge in Virtual Environment[C]. Proceedings of the International Conference onComputer Supported Cooperative Work in Design, London, July,2001:568-571.
    [7] Umeda Y, Ishii M, Yoshioka M. Supporting Conceptual Design Based on TheFunction-Behavior-State Modeler [J]. Artificial Intelligence for Engineering Design,Analysis and Manufacturing,1996,10(4):275-288.
    [8] Kolodner J L, Riesbeck C K. Experience, Memory and Reasoning [M]. Hillsdale:Lawrence Erlbaum Associates,1986.
    [9] Roy R. Industrial Knowledge Management: A Micro Level Approach [M]. London:Springer,2001.
    [10] Deng Y M, Tor S B, Britton G A. Abstracting and Exploring Functional DesignInformation for Conceptual Product Design [J]. Engineering with Computers,2000,16:36-52.
    [11] Zhang W Y, Tor S B, Britton G A. A Graph and Matrix Representation Scheme forFunctional Design of Mechanical Products [J]. International Journal of AdvancedManufacturing Technology,2004,25(3):221-232.
    [12] Qian L, Gero J. Function-Behavior-Structure Paths and Their Role in Analogy-BasedDesign. Artificial Intelligence for Engineering Design [J]. Analysis and Manufacturing,1996,10:289-312.
    [13] Chandrasekaran B. Understanding Control at The Knowledge Level [C]. Processing of theworking Notes AAAI Fall Symposium on Control of the Physical World by IntelligentAgents, New Orleans, LA,1994,19-26.
    [14] Kitamura Y, Ikeda M, Mizoguchi R. Functional Ontology for Functional Understanding[C]. Processing of the Twelfth International Workshop on Qualitative Reasoning, CapeCod, USA,1998,77-87.
    [15] Kitamura Y, Mizoguchi R. Redesign Based on Ontologies of Functional Concepts andRedesign Strategies [C]. Processing of the2nd International Workshop on StrategicKnowledge and Concept Formation, Iwate, Japan,1999,181-192.
    [16] Mizoguchi R. Ontology-Based Systematization of Functiona1Know1edge [C].Proceeding of TMCE2002: Tools and methods of competitive engineering, Wuhan,P.R.China,2002,45-64.
    [17] Kitamura Y, Mizoguchi R. An Ontological Schema for Sharing Conceptual EngineeringKnowledge [C]. Proceeding of the International Workshop on Semantic Web Foundationsand Application Technologies, Nara, Jpana,2003,25-28.
    [18] Anthony L, John J, Lombeyda S. An Approach to Capturing Structure, Behavior, andFunction of Artifacts in Computer-Aided Design [J]. Journal of Computing andInformation Science in Engineering,2001,1(2):186-192.
    [19] Kopena J B, Regli W C. Functional Modeling of Engineering Designs for the SemanticWeb [J]. IEEE Data Engineering Bulletin,2003,26(4):55-61.
    [20] Allen J F. Maintaining Knowledge about Temporal Intervals [J]. Communications of theACM,1984,26(11):832-843.
    [21] Liu J H, Shu H L. Deficient Information Modeling of Mechanical Products for ConceptualShape Design [J]. Chinese Journal of Mechanical Engineering,2002,15(l):1-5.
    [22] Chen X, Gao S M, Yang Y D, Zhang S T. Multi-level Assembly Model for Top-downDesign of Mechanical Products [J]. Computer-Aided Design,2012,44(10):1033-1048.
    [23] Anderl A, Mendgen R. Modeling with Constraints: Theoretical Foundation andApplication [J]. Computer-Aided Design,1996,28(3):155-168.
    [24] Borut I, Nikola G. Constraint-Based Object Modeling [J]. Journal of Engineering Design,1996,7(2):209-232.
    [25] Li M, Zhang Y F, Fuh J Y H, Qiu Z M. Toward Effective Mechanical Design Reuse: CADModel Retrieval Based on General and Partial Shapes [J]. Journal of Mechanical Design,2009,131:8-12.
    [26] Hu K M, Wang B, Yong J H, Paul J C. Relaxed Lightweight Assembly Retrieval UsingVector Space Model [J]. Computer-Aided Design,2012.
    [27]曹德君,田锡天,耿俊浩,李洲洋.基于轻量化三维产品模型的装配建模技术研究[J].机床与液压,2009,37(11):173-176.
    [28]张刚,李火生,邓克文.基于特征的装配模型及装配序列规划研究[J].机械设计,2010,27(1):18-21.
    [29]吕美玉,侯文君,李翔基.智能装配工艺规划中的层次化装配语义模型[J].东湖大学学报,2010,36(4):371-375,401.
    [30] Zhou W, Zheng J R, Wang J F. Nested Partitions Method for Assembly SequencesMerging [J]. Expert Systems with Applications,2011,38(8):9918-9923.
    [31] Su Q. A Hierarchical Approach on Assembly Sequence Planning And Optimal SequencesAnalyzing [J]. Robotics and Computer-Integrated Manufacturing,2009,25(1):224-234.
    [32] Teng H E, Chang C C, Li J D. Modular Design to Support Green Life-cycle Engineering[J]. Expert Systems with Applications,2008,34(4):2524-2537.
    [33] Peter O G, Liang W Y. An Object Oriented Approach to Design with Modules [J].Computer Integrated Manufacturing Systems,1998,11(4):267-283.
    [34] Gorti S R, Gupta A, Kim G J, Sriram R D, Wong A. An Object-Oriented Representation forProduct and Design Processes [J]. Computer-Aided Design,1998,30(7):489-501.
    [35]孙正兴,张福炎,蔡士杰.一种面向方案设计的装配建模表示方法[J].计算机辅助设计与图形学学报,2000,12(l):28-33.
    [36] Hubka V, Ernst E W. Theory of Technical Systems [M]. New York: Springer-Verlag,1988.
    [37]刘振宇.面向过程与历史的虚拟环境中产品装配建模理论、方法及应用研究[D].杭州:浙江大学,2001.
    [38]夏平均,陈鹏,姚英学.基于约束结构的虚拟装配建模技术[J].哈尔滨工业大学学报,2009,14(7):40-45.
    [39]张国军,邵新宇,蔡力钢,李培根.工艺信息建模及其在装配工艺设计中的应用[J].机械与电子,2000,1:5-8
    [40]韩峰,乔立红,胡佩伟.基于工艺元信息的装配工艺过程设计[J].计算机集成制造系统.2010,16(12):2545-2551.
    [41]邢帅,刘伟强,熊涛.典型装配工艺模块化的应用研究[J].航天器环境工程.2011,28(6):615-619
    [42]武殿梁,杨润党,马登哲.虚拟环境中的装配模型表达技术研究[J].计算机集成制造系统.2004,10(11):1364-1369.
    [43]张开富,李原,邵毅.一种集成装配过程信息的装配建模方法[J].西北工业大学学报.2005,23(2):222-226.
    [44]侯伟伟,刘检华,宁汝新.基于层次链的产品装配过程建模方法[J].计算机集成制造系统.2009,15(8):1522-1527.
    [45]杨冰,张林鍹.面向装配工艺规划的集成式装配模型研究[J].系统仿真学报,2008,18(2):533-536.
    [46] Alemanni M, Destefanis F, Vezzetti E. Model-Based Definition Design in The ProductLifecycle Management Scenario [J]. The International Journal of AdvancedManufacturing Technology,2011,52:1-14.
    [47]卢鹄,范玉青.航空产品数字化定义中工程图作用的探讨[J].工程图学学报,2008,2:29-34.
    [48] Quintana V, Rivest L, Pellerin R, Venne F, Kheddouci F. Will Model-based DefinitionReplace Engineering Drawings Throughout The Product Lifecycle? A Global Perspectivefrom Aerospace Industry [J]. Computers in Industry,2010,61:497-508.
    [49]安鲁陵,金霞.基于三维模型定义技术应用的思考[J].航空制造技术,2011,12:45-47.
    [50] Quintana V, Rivest L, Pellerin R, Kheddouci F. Re-Engineering The Engineering ChangeManagement Process for A Drawing-less Environment [J]. Computers in Industry,2012,63(1):79-90.
    [51] Kheddouci F, Rivest L, Fortin C. Towards Long Term Archiving of3D Annotated Models:A Sneak Peek to A Potential Solution [C]. Proceedings of Integrated Design andManufacturing in Mechanical Engineering-Virtual Concept, Bordeaux, France,2010:1-6.
    [52]冯潼能. MBD推动传统研制模式“翻新”[J].中国制造业信息化,2011,14:16-17.
    [53]郝博,姜北北.基于模型定义的弹箭三维计算机辅助工艺设计技术[J].四川兵工学报,2011,12:6-9.
    [54]潘新.并行产品数字化定义的实施与应用[J].机械工程与自动化,2010,5:203-205.
    [55]巫鹏伟,卢鹄,于勇,周秋忠,范玉青.工程师的新语言—基于模型的定义[J].航空制造技术,2010,21:68-71.
    [56]陈兴玉,张红旗,陈帝江,张冲,肖承翔.复杂机电产品全三维工艺设计方法[J].雷达科学与技术,2010,5:474-479.
    [57]杜福洲,梁海澄.基于MBD的航空产品首件检验关键技术研究[J].航空制造技术,2010,23:56-59.
    [58]冯延延,金霞,王珉等.基于MBD的飞机装配工艺模型设计[J].飞机装配技术,2010,24:95-98.
    [59] Bourjault A. Contribution A Une Approche Methodologique De L'assemblage Automatise:Elaboration Automatique Des Sequences Operatoires [D]. Besancon, Universite deFranche-Comte,1984.
    [60] De Fazio T, Whitney D. Simplified Generation of All Mechanical Assembly Sequences [J].IEEE Journal of Robotics and Automatic,1987,3(6):640-658.
    [61] Homem de Mello L S, Sanderson A C. AND/OR Graph Representation of Assembly Plans[J]. IEEE Transactions on Robotics and Automation,1990,6(2):188-199.
    [62] Homem de Mello L S, Sanderson A C. Representation of Mechanical Assembly Sequence[J]. IEEE Transactions on Robotics and Automation,1991,7(2):211-227.
    [63] Ko H, Lee K, Automatic Assembling procedure Generation from Mating Conditions [J].Computer-Aided Design,1987,19(1):3-10.
    [64] Gottipolu R B, Ghosh K, Integrated Approach to The Generation of Assembly Sequences[J]. International Journal of Computer Application in Technology,1995,8(3/4):125-138.
    [65] Swaminathan A, Barber K S. An Experience-Based Assembly Sequence Planner forMechanical Assemblies [J]. IEEE Transactions on Robotics and Automation,1996,12(2):252-267.
    [66] Wang L, Keshavarzmanesh S, Feng H Y, Buchal R O. Assembly Process Planning And ItsFuture in Collaborative Manufacturing: A Review [J]. International Journal of AdvancedManufacturing Technology,2009,41:132-144.
    [67] Gu T, Xu Z, Yang Z. Symbolic OBDD Representations for Mechanical AssemblySequences [J]. Computer-Aided Design,2008,40:411-421.
    [68] Zha X F, Du H J. A PDES/STEP-Based Model and System for Concurrent IntegratedDesign and Assembly Planning [J]. Computer-Aided Design,2002,34:1087-1110.
    [69] Demoly F, Yan X T, Eynard B, Gomes S. An Assembly Oriented Design Framework forProduct Engineering And Assembly Sequence Planning [J]. Robotics andComputer-Integrated Manufacturing,2011,27(1):33-46.
    [70] Kim K Y, Yang H, Kim D W. Mereotopological Assembly Joint InformationRepresentation for Collaborative Product Design [J]. Robotics and Computer-IntegratedManufacturing,2008,24:744-754.
    [71]康友树,周济,向文.计算机辅助装配轨迹规划.机械科学与技术,1996,15(4):651-655.
    [72]胡小梅,朱文华,俞涛.基于有向约束图的装配序列并行化方法研究.机械设计与制造,2010,4:163-165.
    [73] Hubbard P M. Collision Detection for Interactive Graphics Application [J]. IEEETransactions on Visualization and Computer Graphics,1995,1(3):218-230.
    [74] Gottschalk S, Lin M C, Manocha D. OBB-Tree: A Hierarchical Structure for RapidInterference Detection [C]. Proceedings of ACM SIGGRAPH`96, New York,1996:171-180.
    [75]彭高亮,刘文剑,金天国.支持组合夹具虚拟组装的快速碰撞检测方法[J].系统仿真学报,2007,19(13):2779-2783.
    [76]谢健,闫静,焦光明.面向虚拟装配的碰撞检测技术研究[J].中国制造业信息化,2008,37(21):29-32.
    [77]王天柱.变形物体碰撞检测技术研究[D].吉林:吉林大学,2006.
    [78] Dini G, Santochi M. Automated Sequencing and Subassembly Detection in AssemblyPlanning [J]. CIRP Annals-Manufacturing Technology,1992,41(1):1-4.
    [79] Huang Y M, Liao Y C. Disassembly Processes with Disassembly Matrices and Effects ofOperations [J]. Assembly Automation,2009,29(4):348-357.
    [80]王陈春,陈晓南,杨培林.基于产品计算机辅助设计模型的装配序列自动规划[J].西安交通大学学报,2003,37(7):715-718.
    [81]王峻峰,付艳,彭涛.装配/拆卸干涉矩阵的自动生成技术[J].机械科学与技术,2008,27(7):955-962.
    [82]于嘉鹏,王成恩,张闻雷.复杂产品装配关系矩阵自动生成方法[J].计算机集成制造系统,2010,16(2):249-255.
    [83]于嘉鹏,王成恩,张闻雷.基于优先规则筛选的装配序列规划方法[J].东北大学学报,2009,30(11):1636-1640.
    [84]于嘉鹏,王成恩,张闻雷.基于装配序列规划的爆炸图自动生成方法[J].机械工程学报,2010,46(21):149-157.
    [85] Yu J P, Wang C E, Yu H. Generation of Optimized Assembly Sequences Based on PriorityRules Screening [J]. Applied Mechanics and Materials,2009(16-19):130-134.
    [86]蒋琴仙,易红.产品可装配性设计方法和使能技术研究[J].成组技术和生产现代化,2000,3:30-32.
    [87]梁勇强.串行装配环境下最优装配序列的求解[J].玉林师范学院学报,2010,31(5):12-17.
    [88]马雪芬,戴旭东,张宏星.并行装配环境下的装配序列评价研究[J].机械设计与研究.2006,22(6):72-76.
    [89] Yamagiwa Y. An Assembly Ease Evaluation Method for Product Designers: DAC [J].Techno Japan,1988,21(12):26-29.
    [90] De Faziod T L. A Prototype of Feature-Based Design for Assembly [J]. Journal ofMechanical Design,1993,115:723-734.
    [91] Warnecke H J, Bassler R. Design for Assembly-Part of The Design Process [J]. CIRPAnnals-Manufacturing Technology,1988,37(1)1-4.
    [92] Hsu W, Lee C S G, Su S F. Feedback Approach to Design for Assembly by Evaluation ofAssembly Plan [J]. Computer-Aided Design,1993,25(7):395-410.
    [93] Laperriere L, Elmaraghy H A. GAPP: Generative Assembly Process Planner [J]. Journal ofManufacturing Systems,1996,15(4):282-2933.
    [94] Gottipolu P B, Ghosh K. An Integrated Approach to the Generation of AssemblySequences [J]. International Journal of Computer Application in Technology,1995,8(3/4):125-138.
    [95] Homem de Mello L S, Sanderson A C. A Correct and Complete Algorithm for TheGeneration of Mechanical Assembly Sequences [J]. IEEE Transaction on Robotics andAutomation,1991,7(2):228-240.
    [96] Niu X W, Ding H, Xiong Y L. A Hierarchical Approach to Generating Precedence Graphsfor Assembly Planning [J]. International Journal of Machine Tools&Manufacture,2003,43(14):1473-1486.
    [97] Coma O, Mascle C, Balazinski M. Application of A Fuzzy Decision Support System in ADesign for Assembly Methodology [J]. International Journal of Computer IntegratedManufacturing,2004,17(1):83-94.
    [98] Lee B, Saitou K. Integrated Synthesis of Assembly and Fixture Scheme for ProperlyConstrained Assembly [J]. IEEE Transactions on Automation Science and Engineering,2005,2(3):250-261.
    [99] Pan C X, Smith S. Case Study: The Impact of Assembly Reorientations on Assembly Time[J]. International Journal of Production Research,2006,44(14):4569-4585.
    [100] Su Q. Computer Aided Geometric Feasible Assembly Sequence Planning andOptimizing [J]. International Journal of Advanced Manufacturing Technology,2007,33(1-2):48–57.
    [101] Ong S K, Pang Y, Nee A Y C. Augmented Reality Aided Assembly Design and Planning[J]. CRIP Annals-Manufacturing Technology,2007,56(1):49-52.
    [102] Su Q, Lai S J, Liu J. Geometric Computation Based Assembly Sequencing andEvaluating in Terms of Assembly Angle, Direction, Reorientation, and Stability[J].Computer-Aided Design,2009,41(7):479-489.
    [103]张嘉易,王成恩,马明旭,张闻雷.产品装配序列评价方法建模[J].机械工程学报,2009,45(11):218-224.
    [104]郭冬雪,毕晓天,汪骥,刘玉君,刘勤华.船舶首部结构装配序列的模糊评价研究[J].中国造船,2011,52(1):180-185.
    [105]张刚,温海.复杂结构产品可装配性评价方法研究[J].机械设计与制造,2008,4:203-205.
    [106]刘英,杨雷,赵元新.机械产品装配序列评价方法的研究[J].工艺与装备,2006,11:85-87.
    [107]谢海涛,仲梁维.基于层次分析法的装配序列评价技术[J].计算机系统应用,2012,21(2):72-76.
    [108]朱晓林,黄敏纯,章嘉琼,黄录官.基于灰色关联理论的装配序列评价研究[J].盐城工学院学报,2011,24(1):44-47.
    [109]王孝义,张友良,张帆.装配序列评价研究[J].中国机械工程,2005,16(13):1165-1169.
    [110] Uma R N, Wein J, Williamson D P. On The Relationship between Combinatorial andLP-Based Lower Bounds for NP-hard Scheduling Problems [J]. Theoretical ComputerScience,2006,361:241-256.
    [111] Rashid M F F, Hutabarat W, Tiwari A. A Review on Assembly Sequence Planning andAssembly Line Balancing Optimization Using Soft Computing Approaches [J].International Journal of Advanced Manufacturing Technology,2012,59(1-4):335-349.
    [112] Topaloglu S, Salum L, Supciller A A. Rule-Based Modeling and ConstraintProgramming Based Solution of The Assembly Line Balancing Problem [J]. ExpertSystems with Applications,2012,39:3484-3493.
    [113] Murayama T, Eguchi T, Oba F. Assembly Sequence Planning Using K-Nearest-NieghborRule [M]. Proceedings of the Mechatronics for Safety, Security and Dependability in aNew Era, London: Elsevier,2006:129-132.
    [114]张志英,江志斌.基于规则推理的自动船体装配工艺生成方法[J].上海交通大学学报,2007,41(l):31-35.
    [115]李灿林,蔡铭,童若锋,董天阳,董金祥.基于规则和爆炸图的装配序列规划[J].计算机辅助设计与图形学学报,2004,16(8):1106-1113.
    [116] Bonneville F, Perrard C, Henrioud J M. A Genetic Algorithm to Generate and EvaluateAssembly Plans [C]. Proceedings of the IEEE Symposium on Emerging Technology andFactory Automation. New Jersey, USA.1995,231-239.
    [117] Chen S F, LiuY J. A Multi-Level Genetic Assembly Planner [C]. Proceedings of the2000ASME Design Engineering Technical Conference. Baltimore, USA.2000,10-13.
    [118] Marian R M, Luong L H S, Abhary Kazem. A Genetic Algorithm for The Optimisation ofAssembly Sequences [J]. Computer and Industrial Engineering,2006,50:503-527.
    [119] Tseng Y J, Chen J Y, Huang F Y. A Multi-plant Assembly Sequence Planning Modelwith Integrated Assembly Sequence Planning and Plant Assignment Using GA [J]. TheInternational Journal of Advanced Manufacturing Technology,2009,48(1-4):333-345.
    [120] Chung S H, Lau H C W, Choy K L. Application of Genetic Approach for AdvancedPlanning in Multi-Factory Environment [J]. International Journal of ProductionEconomics,2010,127(2):300-308.
    [121] Altiparmak F, Gen M, Lin L, Paksoy T. A Genetic Algorithm Approach forMulti-Objective Optimization of Supply Chain Networks [J]. Computer IndustrialEngineering,2006,51(1):196-215.
    [122] Xing Y F. Wang Y S. Assembly Sequence Planning Based on A Hybrid Particle SwarmOptimisation and Genetic Algorithm [J]. International Journal of Production Research,2012,50(24):7303-7312.
    [123] Zhou W, Z J R, Yan J J. A Novel Hybrid Algorithm for Assembly Sequence PlanningCombining Bacterial Chemotaxis with Genetic Algorithm [J]. The International Journal ofAdvanced Manufacturing Technology,2011,52(5-8):715-724.
    [124] Tseng Y J, Kao H T, Huang F Y. Integrated Assembly and Disassembly SequencePlanning Using A GA Approach [J]. International Journal of Production Research,2010,48(20):5991-6013.
    [125] Choi Y K, Lee D M, Cho, Yeong B. An Approach to Multi-Criteria Assembly SequencePlanning Using Genetic Algorithms [J]. The International Journal of AdvancedManufacturing Technology,2009,42(1-2):180-188.
    [126] Tseng H E, Wang W P, Shih H Y. Using Memetic Algorithms with Guided Local Searchto Solve Assembly Sequence Planning [J]. Expert Systems with Applications,2007,33(2):451-467.
    [127] Gao L, Qian W R, Li X Y, Wang J F. Application of Memetic Algorithm in AssemblySequence Planning [J]. International Journal of Advanced Manufacturing Technology,2010,49(9-12):1175-1184.
    [128] Massim Y, Yalaoui F, Chatelet E, Yalaoui A, Zeblah A. Efficient Immune Algorithm forOptimal Allocations in Series-Parallel Continuous Manufacturing Systems [J]. Journal ofIntelligent Manufacturing,2012,23(5):1603-1619.
    [129] Tiwari M K, Prakash, Kumar A, Mileham A R. Determination of AnOptimal Assembly Sequence Using the Psychoclonal Algorithm [J]. The Institution ofMechanical Engineers Part B-Journal of Engineering Manufacture,2005,219(1):137-149.
    [130] Chung C, Peng Q. Evolutionary Sequence Planning for Selective Disassembly inDe-Manufacturing [J]. International Journal of Computer Integrated Manufacturing,2006,19(3):278-286.
    [131] Liu R, Lou PH, Tang D B. A Hybrid Immune Algorithm for Sequencing theMixed-Model Assembly Line with Variable Launching Intervals [C]. Proceedings of theInternational Conference on Information Computing and Applications, Tangshan, Oct,2010,105:399-406.
    [132] Cao P B, Xiao R B. Assembly Planning Using A Novel Immune approach [J].International Journal of Advanced Manufacturing Technology,2007,31(7-8):770-782.
    [133] Chang C C, Tseng H E, Meng L P. Artificial Immune Systems for Assembly SequencePlanning Exploration [J]. Engineering Applications of Artificial Intelligence,2009,22(8):1218-1232.
    [134] Wang J F, Liu J H, Zhong Y F. A Novel Ant Colony Algorithm to Assembly SequencePlanning [J]. International Journal of Advanced Manufacturing Technology,2005,25(11-12):1137-1143.
    [135] Sabuncuoglu I, Erel E, Alp A. Ant Colony optimization for The Single Model U-TypeAssembly Line Balancing Problem [J]. International Journal of Production Economies,2009,120(2):287-300.
    [136]程晖,李原,余剑峰,姚定,张开富.基于遗传蚁群算法的复杂产品装配顺序规划方法[J].西北工业大学学报,2009,27(1):30-35.
    [137] Wang Y, Tian D, Liu J H. Assembly Sequence Planning Utilizing ChaoticAdaptive Ant Colony Optimization Algorithm [J]. Advanced Mechanical Engineering,2010,26-28:391-396.
    [138] Shan H B, Zhou S H, Sun Z H. Research on Assembly Sequence Planning Based onGenetic Simulated Annealing Algorithm and Ant Colony Optimization Algorithm [J].Assembly Automation,2009,29(3):249-256.
    [139] Shuang B, Chen J P, Li Z B. Microrobot Based Micro-assembly Sequence Planningwith Hybrid Ant Colony Algorithm [J]. International Journal of Advanced ManufacturingTechnology,2008,38(11-12):1227-1235.
    [140] Milner J M, Grave S C, Whitney D E. Using Simulated Annealing to Select Least-CostAssembly Sequences [C]. Proceedings of the IEEE International Conference on Roboticsand Automation, San Diego, California, May,1994,2058-2063.
    [141] Hong D S, Cho H S. Generation of Robotic Assembly Sequences Using A SimulatedAnnealing [C]. Proceedings of the IEEE/RSJ International Conference on IntelligentRobotic and Systems, Piscatway, New Jersey, Oct,1999,1247-1252.
    [142] Kim H G, Cho H S. Sequencing in A Mixed-model Final Assembly Line with ThreeGoals: Simulated Annealing Approach [C]. Proceedings of7th Annual InternationalConference on Industrial Engineering, Pusan, Oct,2002,607-613.
    [143] Shan H B, Li S X. The Comparison Between Genetic Simulated Annealing Algorithmand Ant Colony Optimization Algorithm for ASP [C]. Proceedings of4th InternationalConference on Wireless Communications, Networking and Mobile Computing, Dalian,Oct,2008,12668-12673.
    [144] Jiang Y, Li XF, Zuo D W, Jiao G M, Xue S L. Simulated Annealing Genetic Algorithmand Its Application in Mixed-Model Assembly Line Design [C]. Proceedings of2ndInternational Conference on Functional Manufacturing Technologies, Harbin, Aug,2010,64-68.
    [145] Jing Z, Yang Y S, Feng S W. An Approach to Assembly Sequence PlanningUsing Simulated Annealing [C]. Proceedings of International Conference on AdvancedMaterials and Engineering Materials, Shenyang, Nov,2011,628-634.
    [146] Hong D S, Cho H S. A Neural Network Based Computational Seheme for GeneratingOptimized Robotic Assembly Sequenees [J]. Engineering Application ArtificialIntelligence,1995,8(2):129-145.
    [147] Chen W C, Tai P H, Deng W J, Hsieh L F. A Three-stage Integrated Approach forAssembly Sequence Planning Using Neural Networks [J]. Expert System with
    [148] Jang K Y, Yang K. Improving Principal Component Analysis (PCA) in Automotive BodyAssembly Using Artificial Neural Networks [J]. Journal of Manufacturing Systems.2001,20(3):188-197.
    [149] Kennedy J, Eberhart R C. A Discrete Binary Version of The Particle Swarm Algorithm
    [C]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics,1997,5(12-15):4104-4108.
    [150] Hu X, Eberhart R C. Swarm Intelligence for Permutation Optimization: A Case Study ofN-Queens Problem [C]. Proceedings of the IEEE Swarm Intelligence Symposium,2003:243-246.
    [151] Clerc M. Discrete Particle Swarm Optimization, Illustrated by The Traveling SalesmanProblem [M]. New Optimization Techniques in Engineering, Springer, Berlin2004:219-239.
    [152] Salman A, Ahmad I, Al-Madani S. Particle Swarm Optimization for Task AssignmentProblem [J]. Microprocessors and Microsystems,2002,26(8):363-371.
    [153] Wang Y, Liu J H. Chaotic Particle Swarm Optimization for Assembly Sequence Planning[J]. Robotics and Computer-Integrated Manufacturing,2010,26(2):212-222.
    [154] Lv H G, Lu C. An Assembly Sequence Planning Approach with A Discrete ParticleSwarm Optimization Algorithm [J]. The International Journal of AdvancedManufacturing Technology,2010,50(5-8):761-770.
    [155] Lv H G, Lu C. A Hybrid DPSO-SA Approach to Assembly Sequence Planning [C].Proceedings of the IEEE International Conference on Mechatronics and Automation,Xi'an, China,2010,1998–2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700