贝叶斯学习框架下非线性制造过程建模及多目标优化关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性过程多目标优化和建模是制造领域两个重要而联系密切的研究课题。基于机器学习和计算智能的非线性过程建模方法,仅利用离散样本数据,可以建立多响应曲面,对非线性过程本身数理机理要求不高,算法适应性强,在制造过程优化中得到广泛应用。与其他方法相比,贝叶斯框架下的机器学习方法使用概率表示所有形式的不确定性,可以在模型中包含先验知识,隐含地避免过拟合,通过贝叶斯定理实现学习和推理过程,提供基于模型解释的方差信息,同时还为模型选择提供了一套完整的理论。因此贝叶斯学习框架下的非线性过程建模及其多目标优化研究具有重要理论价值和经济意义。
     本文以非线性制造过程对研究对象,利用获取的含噪数据集,以小样本和实时性场合为研究切入点,从概率测度的角度,在贝叶斯统计学习框架下对非线性过程建模及多目标优化关键技术进行了深入研究。其主要研究内容和成果如下:
     1、论文首先采用组件描述方式,给出了面向制造过程的多目标优化系统框架。该框架包括先验知识或先验模型、过程采样与数据预处理、非线性过程建模与模型验证和基于模型的多目标优化与控制以及Pareto。多解决策。该系统化视角可用于分析比较现有优化系统,也可用于选择新组件组合成新集成系统用于特定非线性过程的多目标优化。
     2、依据上述系统框架,建立了一种基于相关向量机和遗传算法的混合智能方法来解决非线性制造过程中的工艺参数优化问题。基于稀疏贝叶斯学习的建模方法能够使模型具有更好的推广性,同时该建模方法有目前最稀疏的模型结构,因而更容易实现实时系统的建模要求。应用上述优化范式,本文给出了以物料分选系统优化调控为例的个案研究,实验结果证明了该混合智能方法的有效性,并且与其他的学习算法相比,在非线性系统辨识过程中,当相关向量集具备描述问题分布的能力后,即使训练样本增加,相关向量集数目仍然能够保持很好的稀疏性和稳定性。这对于需要不断给出适应度值计算的遗传算法的快速搜索过程和实时搜索近优工艺参数非常有利。
     3、通过扩展核方法中常用的高斯核的函数形式,提出基于自适应超球形高斯核函数相关向量机回归算法以获得更稀疏回归模型。在此类核函数中,每个相关向量对应一个问题空间上独立的超球。针对引入的新高斯核,本文提出了分阶段最大化贝叶斯证据算法用于推断相关向量机超参数。该算法能够自动根据非线性系统的响应信号的变化频率调整高斯核宽度的大小。在基准数据集上的仿真和EDM过程建模实验表明该方法能够获得比传统相关向量机更稀疏的解和更高逼近精度,因而适合实时性要求更高的非线性建模的情况。
     4、针对非线性过程建模中存在的小样本、脏数据的问题,以高速电火花线切割过程为应用对象,建立了一种基于高斯过程回归模型解释的可靠多目标优化方法。基于高斯过程回归的建模方法更适合制造过程建模的特点,能够使模型在小样本上具有很好的推广性,同时该建模方法有目前最好的预测精度。在可靠优化过程中,由预测响应的概率方差作为对预测不确定性的度量与高斯过程回归模型的响应一起构成了多个目标函数,从而使多目标优化的解具有一定的基于模型解释的可靠性。获得的Pareto前沿聚类后以交互的方式选出最有利的解。实验结果表明该建模方法在小样本上的模型精度、特征标度和预测模型的不确定性概率度量上有优势。并且在多目标优化过程中,通过设定可调整参数可以控制优化过程以获得更可靠的优化预测解。
     5、针对非线性过程建模中,存在具有专业领域专家过程知识而要建立的制造过程数据量严重不足时的矛盾,着眼于融合粗糙模糊系统和非常稀少的噪声样本,本文提出了基于模糊先验模型的分段相关性迁移插值算法,融合高斯过程回归算法对非线性过程建模以提高建模精度。在两个基准数据集和电火花线切割机床上的实验研究证明了该算法的可行性和有效性。实验结果表明即使是在非常有限的训练数据集上,结合非常粗糙的模糊先验知识仍能够大大提高预测性能。对于给定具有推广意义的模糊先验模型,基于改融合算法的高斯过程回归建模对样本的需求可大大降低并同时保持精度。由于该方法独立于模糊模型,因而也适用其他智能模型融合。
     6、给出了面向制造过程的非线性系统优化软件的系统架构以及各模块的功能。系统使用Matlab程序作为模型与算法程序运算的核心组件,集成于.net框架。为进一步研究与开发先进建模和优化算法提供一个良好的研究仿真平台。
Multi-objective optimization and modeling of nonlinear process are two significant and closely relational research topics in manufacturing. Machine learning and computational intelligence based nonlinear process modeling approach, only using discrete sample data, could generate multiple responses hypersurface, where it may be hardly to establish an exact or even approximate mathematical relationship between the input and output variables. Due to its flexibility and simplicity, extensive nonlinear process optimizations are applied in manufacturing. Compared with other methods, the general Bayesian learning framework approach denotes all forms of uncertainty with probability. The predictive model can be encoded prior knowledge to avoid overfitting, and realizing the inference and learning process through the Bayesian theorem, and supporting the variance based on the model representation, and also providing theories for model selection. Therefore the nonlinear process modeling under the Bayesian learning framework and multi-objective optimization of nonlinear process research has theoretical and economic significance.
     The main contents of this dissertation are focused on nonlinear manufacturing process with few noisy samples and realtime scenario. Some key issues of nonlinear process modeling at the perspective of probability measure and under Bayesian statistical learning framework, and multi-objective optimization are studied. This dissertation makes some creative researches on the following aspects:
     1. A general multi-objective optimization framework of nonlinear manufacturing process in systemic perspective firstly is described. The framework is constituted by five components including the prior knowledge or prior model about nonlinear process, the sampling strategy and data preprocessing, data-driven based nonlinear process modeling and model verification and model-based multi-objective optimization and its control, as well as Pareto solutions decision-making method. The systemic view can be used for the systematic analysis of the existing optimization system, and also can be used to generate a tuple of components into a new integrated system for specific nonlinear process optimization.
     2. According to the framework mentioned above, a hybrid intelligent approach based on relevance vector machine (RVM) and genetic algorithm (GA) has been developed for optimal control of parameters of nonlinear manufacturing processes. Modeling method based on the sparse Bayesian learning could make the predictive model with competitive generalization, as well as it has state of the art sparseness, which could be more esaily to realize the real-time optimization system. Applied above optimization paradigm, as a case study, the optimization of control parameters of seed separator system is used for evaluating the proposed intelligent approach. The experimental results show the effectiveness of the proposed hybrid approach. Compared with other learning algorithm, in the nonlinear system identification, the number of relevance vectors of RVM keeps sparseness and stability after the relevance vectors have ability to describe the distribution of the dataset, which is very favorable to fast search process of genetic algorithm for time consuming of fitness computation and the finding of near-optimal control parameters.
     3. Through extending conventional Gaussian kernel function in kernel based machine learning, a novel adaptive spherical Gaussian kernel is utilized by RVM for more sparseness predictive model in nonlinear process regression. The new class of kernel function has indepentent kernel width of relevance vector corresponding to problem space. For this new kernel function, a stagewise optimization algorithm for maximizing Bayesian evidence in sparse Bayesian learning framework is proposed for model selection. The attractive ability of this approach is to automatically choose the right kernel widths locally fitting RVs from the training dataset, which could keep right level smoothing at each scale of signal. Extensive empirical study, on artificial and real-world benchmark datasets and EDM process modeling, shows its effectiveness and flexibility of model on representing regression problem with higher levels of sparsity and better performance than classical RVM. Therefore, it is more suitable to real-time application.
     4. For small and nosiy samples modeling of nonlinear process, reliable multi-objective optimization based on Gaussian process regression (GPR) is developed to optimize the WEDM-HS process, GPR based modeling methods make the model more suitable for modeling the characteristics of manufacturing process, and the model has competitive generalization in small samples, as well as state of the art prediction accuracy. Objective functions of predictive reliability multi-objectives optimization are built by probabilistic variance of predictive response used as empirical reliability measurement and responses of GPR models. Finally, the cluster class centers of Pareto front are the optional solutions to be chosen. Experiments on WEDM-HS are conducted to evaluate the proposed intelligent approach in terms of optimization process accuracy and reliability. The experimental result shows that GPR models have the advantage over other regressive models in terms of model accuracy and feature scaling and probabilistic variance. Given the regulable coefficient parameters, the experimental optimization and optional solutions show the effectiveness of controlling optimization process to acquire more reliable optimum predictive solutions.
     5. For solving the contradiction in nonlinear process modeling with prior knowledge from field experts and serious shortage of process samples, and focusing on the fusion between rough fuzzy system and very scarce noisy samples, a effective re-sampling algorithm based on piecewise relational transfer interpolation is presented and it is integrated with GPR to improve modeling accuracy. An empirical study on two benchmark and WEDM datasets demonstrates the feasibility and effectiveness of this approach. The experimental result shows that combining very rough fuzzy prior model with training examples still significantly improves the predictive performance of WEDM process modeling, even with very limited training dataset. That is, given the generalized prior model, the samples needed by GPR model could be reduced greatly meanwhile keeping precise. Since this method is independent of the fuzzy model, which also applies to other intelligent model of fusiion.
     6. Oriented manufacturing process, the architecture of nonlinear optimization system and the function of each module is developed to provide a good research platform for further development of advanced modeling and optimization algorithms. Matlab procedures as a model and algorithms processing the core computing components are integrated to .net framework.
引文
[1]万百五,黄正良,大工业过程计算机在线稳态优化控制,1998,北京:科学出版社
    [2]E.Mjolsness and D.DeCoste,Machine learning for science:State of the art and future prospects.Science,vol.293,pp.2051-2055,2001.
    [3]Zadeh LA(1997),What is soft computing? Soft Comput Fusion Found Methodol Appl 1(1):1.
    [4]朱喜林,武星星,李晓梅,.基于改进型模糊聚类的模糊系统建模方法[J].控制与决策,2007,(1).
    [5]于希宁,程锋章,朱丽玲,王毅佳,基于T-S模型的自适应神经模糊推理系统及其在热工过程建模中的应用[J].中国电机工程学报,2006,(15).
    [6]王宏伟,顾宏,.基于模糊模型的结构和参数的一体化辨识[J].计算机学报,2006,(11).
    [7]万峰,孙优贤.基于模糊模型的非线性离散时间系统辨识:算法与性能分析[J].自动化学报,2004,(6).
    [8]Simon Oblak,Igor Skrjanc and Saso Blazic,Fault detection for nonlinear systems with uncertain parameters based on the interval fuzzy model,Engineering Applications of Artificial Intelligence,Volume 20,Issue 4,June 2007,Pages 503-510.
    [9]Bishop,C.1995.Neural Networks for Pattern Recognition.Clarendon Press,Oxford,UK.
    [10]R.M.Neal.Bayesian Leaming for Neural Networks.Springer,New York,1996.
    [11]Hsiang SH,Lin SL,Modeling and optimization of caliber rolling process,Journal of Manufacturing Science and Engineering-Transactions of the ASME 129(1):77-83 FEB 2007.
    [12]李翔龙,殷国富,林朝镛.基于进化神经网络的电火花铣削加工电极损耗预测[J].机械工程学报,2004,(3).
    [13]Wang KC,Tseng PC,Lin KM,Thermal error modeling of a machining center using grey system theory and adaptive network-based fuzzy inference system.JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing 49(4):1179-1187 DEC 2006.
    [14]V.N.Vapnik,The Nature of Statistical Learning Theory,second ed.Springer Verlag,1999.
    [15]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,(1).pp.36-46.
    [16]Smola,A.and Scholkhopf,B.2004.A Tutorial on Support Vector Regression.Statistics and Computing,vol.14,pp.199-222.
    [17]Chih-Chung Chang and Chih-Jen Lin,LIBSVM:a library for support vector machines,2001.Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    [18]T.Joachims.Making large-scale SVM learning practical,Advances in Kernel Methods-Support Vector learning,pp.169-184,Cambridge,MA:MIT Press,1999.
    [19]R.Collobert and S.Bengio.SVMTorch:support vector machines for large-scale regression problems.Journal of Machine Learning Research,vol.1,pp.143-160,2001.
    [20]Sohyung Cho,Shihab Asfour,Arzu Onar and Nandita Kaundinya,Tool breakage detection using support vector machine learning in a milling process.International Journal of Machine Tools and Manufacture,Volume 45,Issue 3,March 2005,Pages 241-249.
    [21]朱燕飞,伍建平,李琦,毛宗源.基于时间窗的锌钡白转窑煅烧过程在线优化建模[J].机械工程学报,2005,(7).
    [22]Bishop,C.M.Pattern Recognition and Machine Learning,Springer,2006.
    [23]Tipping.M.2001.Sparse Bayesian learning and the relevance vector machine,Journal of Machine Learning Research vol.1,pp.211-244.
    [24]Carl Edward Rasmussen and Christopher K.I.Williams.Gaussian Processes for Machine Learning.The MIT press,2006.
    [25]C.Williams and C.Rasmussen.Gaussian processes for regression.In Advances in Neural Information Processing Systems,volume 8,pages 598-604,1996.
    [26]Carlos A.Coello Coello,Gary B.Lamont,David A.Van Veldhuizen,Evolutionary Algorithms for Solving Multi-Objective Problems(Second Edition).Springer,2007,ISBN:978-0-387-33254-3.
    [27]S.KirkpaWick,C.Gellatt,and M.Vecchi.Optimization by Simulated Annealing.Science,220(4598):671-680,1983.
    [28]F.Glover and M.Laguna.Tabu Search.Kluwer Academic Publishers,Boston,Massachusetts,1997.
    [29]Goldberg,D.1989.Genetic Algorithms in Search,Optimization and Machine Learning.Reading,MA:Addison-Wesley.
    [30]L.J.Fogel.Artificial Intelligence through Simulated Evolution.John Wiley,New York,1966.
    [31]H.-P.Schwefel.Evolution and Optimum Seeking.John Wiley & Sons,New York,1995.
    [32]J.R.Koza.Genetic Programming.On the Programming of Computers by Means of Natural Selection.The MIT Press,Cambridge,Massachusetts,1992.
    [33]J.Kennedy and R.C.Eberhart.Swarm Intelligence.Morgan Kaufmann Publishers,San Francisco,California,2001.
    [34]J.Kennedy and R.C.Eberhart.Particle Swarm Optimization.In Proceedings of the 1995 IEEE International Conference on Neural Networks,pages 1942-1948,Piscataway,New Jersey,1995.IEEE Service Center.
    [35]M.Dorigo and T.St"utzle.Ant Colony Optimization.The MIT Press,2004.ISBN 0-262-04219-3.
    [36]L.DeCastro and J.Timmis(2001) "Artificial Immune Systems:A New Computational Intelligence Approach" ISBN 1-85233-594-7
    [37]A.Osyczka.Multicriteria optimization for engineering design.In J.S.Gero,editor,Design Optimization,pages 193-227.Academic Press,1985.
    [38]Hsu,C.-M.(2004b).Improving the electroforming process in optical recordable media manufacturing via integrated procedure.Engineering Optimization,36(6),659-675.
    [39]Hsu,C.-M.(2004a).An integrated approach to enhance the optical performance of couplers based on neural networks,desirability functions and tabu search.International Journal of Production Economics,92,241-254.
    [40]Alonso,J.M.;Alvarruiz,F.;Desantes,J.M.;Hernndez,L.;Hernndez,V.;Molt,G.Combining Neural Networks and Genetic Algorithms to Predict and Reduce Diesel Engine Emissions,Evolutionary Computation,IEEE Transactions on,Vol.11,Iss.1,Feb.2007,Pages:46-55。
    [41]H.Mohsen,"Intelligent Fixture Design through a Hybrid System of Artificial Neural Network and Genetic Algorithm," Artificial Intelligence Review,vol.2P,no.P,pp.29R-311,2005.
    [42]Weifang Chen,Lijun Ni,Jianbin Xue,Deformation control through fixture layout design and clamping force optimization,The International Journal of Advanced Manufacturing Technology,2007,in press.
    [43]S.Gholizadeh,E.Salajegheh and P.Torkzadeh,Structural optimization with frequency constraints by genetic algorithm using wavelet radial basis function neural network,Journal of Sound and Vibration,Volume 312,Issues 1-2,22 April 2008,Pages 316-331.
    [44]I.Istadi,and N.A.S.Amin,"Modelling and optimization of catalytic-dielectric barrier discharge plasma reactor for methane and carbon dioxide conversion using hybrid artificial neural network-genetic algorithm technique," Chemical Engineering Science,vol.62,no.2P,pp.6568-6581,2007.
    [45]Douglas C.Montgomery,汪仁官等译,现代外国统计学优秀著作译丛:实验设计与分析(第三 版),中国统计出版社,1998,ISBN:750372448X.
    [46]Myers R H,Montgomery D C.Response surface methodology:a retrospective and literature survey.Journal of Quality Technology,2004,36(1):53-77.
    [47]Lee Y,Nelder,J A.Robust design via generalized linear models.Journal of Quality Technology,2003,35(1):2-12.
    [48]Tuncay Erzurumlu and Hasan Oktem,Comparison of response surface model with neural network in determining the surface quality of moulded parts,Materials & Design.Volume 28,Issue 2,2007,Pages 459-465.
    [49]Jin Cheng,Q.S.Li and Ru-cheng Xiao,A new artificial neural network-based response surface method for structural reliability analysis,Probabilistic Engineering Mechanics.Volume 23,Issue 1,January 2008,Pages 51-63.
    [50]Stella M.Clarke,Jan H.Griebsch,and Timothy W.Simpson,Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses.Journal of Mechanical Design,Vol.127,No.6,pp.1077-1087,November 2005.
    [1]Tung-Hsu Hou,Chi-Hung Su and Hung-Zhi Chang,Using neural networks and immune algorithms to find the optimal parameters for an IC wire bonding process,Expert Systems with Applications.Volume 34,Issue 1,January 2008,Pages 427-436.
    [2]R.Q.Sardinas,P.Reis and J.P.Davim,Multi-objective optimization of cutting parameters for drilling laminate composite materials by using genetic algorithms,Composites Science and Technology 66(2006),no.15,3083-3088.
    [3]P.Vijian and V.P.Arunachalam,Modelling and multi objective optimization of lm24 aluminium alloy squeeze cast process parameters using genetic algorithm,Journal of Materials Processing Technology 186(2007),no.1-3,82-86.
    [4]Wen-Chin Chen,Gong-Loung Fu,Pei-Hao Tai and Wei-Jaw Deng,Process parameter optimization for MIMO plastic injection molding via soft computing,Expert Systems with Applications.In Press,2007.
    [5]Debabrata Mandal,Surjya K.Pal,Partha Saha.Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-Ⅱ.Journal of Materials Processing Technology.Volume 186,Issues 1-3,7May 2007,Pages 154-162.
    [6]N.R.Abburi and U.S.Dixit,Multi-objective optimization of multipass turning processes,International Journal of Advanced Manufacturing Technology 32(2007),no.9-10,902-910.
    [7]A.R.Yildiz and F.Ozturk,Hybrid enhanced genetic algorithm to select optimal machining parameters in turning operation,Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture 220(2006),no.12,2041-2053.
    [8]F Shylu John,Sudipta Sikdar,P.Kumar Swamy,Sumitesh Das and Bhagabat Maity,Hybrid neural-GA model to predict and minimise flatness value of hot rolled strips,Journal of Materials Processing Technology.Volume 195,Issues 1-3,,1 January 2008,Pages 314-320.
    [9]邱建新,张士宏,李国禄,李章刚,张金利.均匀设计法、神经网络和遗传算法结合在内高压成形工艺参数优化中的应用[J].塑性工程学报,2005,(4).
    [10]李桂琴,袁庆丰,王克胜,方明伦,制造过程多目标优化的集成计算智能方法[J].计算机集成制造系统,2006,(12).
    [11]Yao,X.1999.Evolving artificial neural networks,Proceedings of the IEEE,vol.87,no.9pp.1423-1447.
    [12]Wang,G.G.,Shan,S.,"Review of Metamodeling Techniques in Support of Engineering Design Optimization,"ASME Transactions,Journal of Mechanical Design,April 2007,pp.370-380.
    [13]Indrajit Mukherjee and Pradip Kumar Ray,A review of optimization techniques in metal cutting processes,Computers & Industrial Engineering.Volume 50,Issues 1-2,,May 2006,Pages 15-34.
    [14]H.A.Taboada,F.Baheranwala,D.W.Coit and N.Wattanapongsakorn,Practical solutions for multi-objective optimization:An application to system reliability design problems,Reliability Engineering & System Safety 92(2007),no.3,314-322
    [15]abien Lauer,Gerard Bloch,Incorporating Prior Knowledge in Support Vector Regression,Machine Learning 70,1(2008) pp.89-118.
    [16]Olvi L Mangasarian,Jude W Shavlik,Edward W Wild.Knowledge-based kernel approximation.Journal of Machine Learning Research.2004(5):1127-1141.
    [17]Yuan Jin,Wang Kesheng,Yu Tao and Liu Xuemei."Incorporating Fuzzy Model into Relevance Vector Machine Regression",IEEE World Congress on Computational Intelligence(WCCI 2008),in press.
    [18]Simpson,T.,Dennis,L.,and Chen,W.,Sampling Strategies for Computer Experiments:Design and Analysis,Journal of International Journal of Reliability and Application,2(3),209-240,2002.
    [19] Park, J. S., 1994, "Optimal Latin-hypercube Designs for Computer Experiments," Journal of Statistical Planning and Inference, 39, pp. 95-111.
    [20] Kalagnanam, J. R., and Diwekar, U. M., 1997, "An Efficient Sampling Technique for Off-Line Quality Control," Technometrics, 39(3), pp. 308-319.
    [21] Douglas C. Montgomery, 汪仁官等译,现代外国统计学优秀著作译丛:实验设计与分析(第三版),中国统计出版社,1998,ISBN:750372448X
    
    [22] Fang, K. and Wang, Y. 1994. Number-theoretic Methods in Statistics. Chapman & Hall.
    [23] John Sall, Lee Creighton, and Ann Lehman, JMP Start Statistics: A Guide to Statistics and Data Analysis Using JMP, Fourth Edition, SAS Press, 2007.
    [24] Horn J. 1997 Multicriteria decision making. In Back, T., Fogel, D. B. and Michalewicz, Z., editors, Handbook of Evolutionary Computation. 97/1, F1.9, IOP Publishing Ltd.and Oxford University Press.
    [25] J. D. Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pages 93-100, Hillsdale, New Jersey, 1985. Lawrence Erlbaum.
    [26] C. M. Fonseca and P. J. Fleming. Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pages 416-423, 1993. Morgan Kaufmann Publishers.
    [27] N. Srinivas and K. Deb. Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 2(3):221-248, 1994.
    [28] J. Horn, N. Nafpliotis, and D. E. Goldberg. A Niched Pareto Genetic Algorithm for Multiobjective Optimization. In Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, volume 1, pages 82-87, 1994.
    [29] E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation, 3(4):257-271, November 1999.
    [30] Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T., 2002, A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6(2), pp. 182-197.
    [31] X. Yao and Y Xu, Recent Advances in Evolutionary Computation, Journal of Computer Science and Technology, 21(1): 1-18, January 2006.
    [32] Carlos A. Coello Coello, Gary B. Lamont, David A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems (Second Edition). Springer, 2007, ISBN: 978-0-387-33254-3.
    [33] G. E. P. Box. Robustness in the strategy of scientific model building. In R. L. Launer and G.N. Wilkinson, editors, Robustness in Statistics, pages 201-236. Academic Press, New York, 1979.
    [1]Wang,K.,Gelgele,H.,Wang,Y.,Yuan Q..and Fang.M.2003.A hybrid intelligent method for modeling the EDM process,International Journal of Machine Tools & Manufacture,vol.43,no.10.pp.995-999.
    [2]Bishop,C.1995.Neural Networks for Pattern Recognition.Clarendon Press,Oxford,UK.
    [3]Yuan,J.,Tao,Y.,Wang.K.2006.A hybrid intelligent approach for optimal control of seed cleaner.In Proc.of IFIP TC5 International Conference of Prolamat.:Springer,pp780-785.
    [4]L.A.Zadeh,Outline of a new approach to the analysis of complex systems and decision processes.IEEE Trans.Syst.,Man Cybernet.31(1973),pp.28-44.
    [5]Jang,J.1993.ANFIS:Adaptive-Network-Based Fuzzy Inference Systems,IEEE Trans.on System,Man,and Cybernetics.No.5,Vol.23,PP.665-685.
    [6]Jang,S.,Sun,C.and Mizutani,E.1997.Neuro-fuzzy and soft computing,New Jersey:Prentice Hall.
    [7]Chan,W.,Chan,C.,Cheung,K.et al.,2001.On the modeling of nonlinear dynamic systems using support vector neural networks,Engineering Application of Artificial Intelligence,vol.14,pp.105-113.
    [8]Smola,A.and Scholkhopf,B.2004.A Tutorial on Support Vector Regression.Statistics and Computing,vol.14,pp.199-222.
    [9]Muller,K.,Mika,S.,Ratsch,G.,Tsuda,K.and Sch61khopf,B.2001.An introduction to kernel-based learning algorithms,IEEE Trans.Neural Network,vol.12,no.2,pp.181-201.
    [10]Suykens,J.2001.Support vector machines:a nonlinear modeling and control perspective,Euro.J.Control,Special Issue on Fundamental Issues in Control,vol.7,no.2-3,pp.311-327.
    [11]Espinoza,M.,Suykens,J.and Moor,B.2005.Kemel based partially linear models and nonlinear identification,IEEE Transactions on Automatic Control,vol.50,no.10,pp.1602-1606.
    [12]Zhang,H.,Wang,X.,Zhang,C.et al,2006.Robust identification of non-linear dynamic systems using support vector machine,IEE Proceedings- Science,Measurement and Technology vol.153,no.3,pp.125-129.
    [13]Tipping.M.2001.Sparse Bayesian leaming and the relevance vector machine,Journal of Machine Learning Research vol.1,pp.211-244.
    [14]N Aronszajn.Theory of reproducting kernels.Transactions of the American Mathematical Society,vol.686,pp.337-404,1950.
    [15]Chen,S.,Gunn,S.and Harris.C.2001.The relevance vector machine technique for channel equalization application,IEEE Trans.Neural Networks Vol.12,no.6,pp.1529-1532.
    [16]Agarwal,A.and Triggs,B.2004.3D human pose from silhouettes by relevance vector regression.In Proc.of the IEEE International Conference on Computer vision and Pattern Recognition.
    [17]Holland,J.1989.Searching nonlinear functions for high values,Applied Mathematics and Computation,vol.32,pp.255-274.
    [18]Pierre Baldi and Soren Brunak,Bioinformatics:The Machine Leaming Approach,2nd Edition,MIT Press,2001,ISBN 0-262-02506-X.
    [19]王利民.贝叶斯学习理论中若干问题的研究[D].吉林大学:2005.
    [20]Bishop,C.M.Pattern Recognition and Machine Learning,Springer,2006.
    [21]Tipping.M.2004.Bayesian inference:An introduction to principles and practice in machine learning.Advanced Lectures on Machine Learning,vol.3176,pp.41-62.
    [22]宫秀军,贝叶斯学习理论及其应用研究[D].中国科学院研究生院(计算技术研究所):2002.
    [23]曲寒冰,贝叶斯框架下广义结合泛函网络与广义约束神经网络的研究与应用[D],中国科学院研究生院(中国科学院自动化所):2007.
    [24]MacKay,D.(1992).The evidence framework applied to classification networks.Neural Computation, 4(5), pp. 720-736.
    [25] M Evans and T B Swartz. Methods for approximating integrals in statistics with special emphasis on Bayesian integration. Statistical Science, 10(3):254-272, 1995.
    [26] Radford M Neal. Bayesian Learning for Neural Networks. Springer, 1996.
    [27] Christopher M Bishop and Michael E Tipping. Variational relevance vector machines. In CraigBoutilier and Moises Goldszmidt, editors, Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pages 46-53. Morgan Kaufmann, 2000.
    [28] Joaquin Quinonero-Candela. Learning with Uncertainty - Gaussian Processes and Relevance Vector Machines. PhD thesis, Technical University of Denmark, Lyngby, Denmark, 2004.
    [29] C. E. Rasmussen and J. Quinonero-Candela. Healing the relevance vector machine through augmentation. In Proc, of the 22nd International Conference on Machine learning (ICML 2005), pages 689-696. ACM Press, 2005.
    [30] Yao, X. 1999. Evolving artificial neural networks, Proceedings of the IEEE, vol. 87, no. 9, pp. 1423-1447.
    [31] Bo, L., Wang, L. and Jiao, L. 2007. Recursive finite Newton algorithm for support vector regression in the primal, Neural Computation, vol. 19(4), pp. 1082-1096.
    [32] Fang, K. and Wang, Y. 1994. Number-theoretic Methods in Statistics. Chapman & Hall.
    [33] Zhang, L., Liang, Y., Jiang, J. et al. 1998. Uniform design applied to nonlinear multivariate calibration by ANN, Analytica Chimica Acta vol. 370, no. 1, pp.65-77.
    [34] Wang, K. 2005. Applied Computational Intelligence to Intelligence Manufacturing Systems, Advanced Knowledge International.
    [35] Wu, C., Tzeng, G., Goo Y. and Fang, W. 2006. A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy, Expert Systems with Applications, Volume 32, Issue 2, February 2007, Pages 397-408.
    [36] Goldberg, D. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison-Wesley.
    [37] Chang, C. and Lin C., LIBSVM : a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/-cjlin/libsvm.
    [38] Liu, C. et al., 1997. Study on the design and adaptive control system of the gravity seed cleaner, Trans, the Chinese Society of Agricultural Machinery, vol. 28, no.1. pp.: p74-77.
    [1]Vapnik V.1998.Statistical Learning Theory.John Wiley and Sons,New York.
    [2]Vapnik V,Golowich S,Smola A,Support vector method for function approximation,regression estimation,and signal processing.In:Mozer M,Jordan M,Petsche T(eds).Neural Information Processing Systems,MIT Press,1997,9.
    [3]Muller K-R,Smola A J,Ratsch G et al.Predicting time series with support vector machines.In:Proc.Of ICANN'97,Springer Lecture Notes in Computer Science,1997,999-1005.
    [4]Carl Edward Rasmussen and Christopher K.I.Williams.Gaussian Processes for Machine Leaming.The MIT press,2006.
    [5]Tipping.M.2001.Sparse Bayesian learning and the relevance vector machine,Journal of Machine Learning Research vol.1,pp.211-244.
    [6]Smola,A.and Sch61khopf,B.2004.A Tutorial on Support Vector Regression.Statistics and Computing,vol.14,pp.199-222.
    [7]Williams,O.;Blake,A.;Cipolla,R.,Sparse Bayesian learning for efficient visual tracking,Pattern Analysis and Machine Intelligence,IEEE Transactions on,vol.27,no.8,pp.1292-1304,2005.
    [8]Agarwal,A.and Triggs,B.2004.3D human pose from silhouettes by relevance vector regression.In Proc.of the IEEE International Conference on Computer vision and Pattern Recognition.pp.Ⅱ-882-Ⅱ-888 Vol.882.
    [9]Yuan Jin,Wang Kesheng,Yu Tao and Fang Minglun,2007."Integrating relevance vector machines and genetic algorithms for optimization of seed-separating process",Engineering Applications of Artificial Intelligence,Vol.20,no.7,pp.970-979.
    [10]Schmolck and R.Everson,Smooth relevance vector machine:A smoothness prior extension of the RVM,Machine Learning 68(2007),no.2,107-135
    [11]Scholkhopf,B.,&Smola,A.J.(2002).Learning with kernels.Cambridge,MA:MIT Press.
    [12]Muller,K.,Mika,S.,Ratsch,G.,Tsuda,K.and Scholkhopf,B.2001.An introduction to kernel-based learning algorithms,IEEE Trans.Neural Network,vol.12,no.2,pp.181-201.
    [13] A.J. Smola, Learning with kernels. PhD thesis, Department of Computer Science, Technical University Berlin, Germany (1998).
    [14] C. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1): 131-159, 2002.
    [15] Liefeng Bo, Ling Wang, and Licheng Jiao. Feature scaling for kernel fisher discriminant analysis using leave-one-out cross validation. Neural Computation, 18(4):961-978, 2006.
    [16] G. C. Cawley and N. L. C. Talbot, Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters, Journal of Machine Learning Research, volume 8, pages 841-861, April 2007.
    
    [17] Tipping. M. 2004. Bayesian inference: An introduction to principles and practice in machine learning. Advanced Lectures on Machine Learning, vol. 3176, pp.41-62.
    [18] MacKay, D. (1992). The evidence framework applied to classification networks. Neural Computation, 4(5), pp. 720-736.
    [19] N. M. Dempster, A.P. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm, " J. R. Statist. Soc. B, vol. 39, pp. 185-197, 1977.
    [20] Quinonero-Candela, J. (2004). Learning with uncertainty-Gaussian processes and relevance vector machines. PhD thesis, Technical University of Denmark, Lyngby, Denmark.
    [21] Roweis, S. (1999). Matrix identities. Available from http://www.cs.toronto.edu/-roweis /notes/matrixid.pdf.
    [22] Tipping, M. E. and A. C. Faul (2003). Fast marginal likelihood maximization for sparse Bayesian models. In C. M. Bishop and B. J. Frey (Eds.), Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, Key West, FL, Jan 3-6.
    [23] Faul, A., & Tipping, M. (2002). Analysis of sparse Bayesian learning. In Advances in neural information processing systems (Vol. 14).
    [24] StatLib: Data, Software and News from the Statistics Community. Department of Statistics, Carnegie Melon University, 2006. http://lib.stat.cmu.edu/.
    [25] Asuncion, A. & Newman, DJ. (2007). UCI Machine Learning Repository [http://www.ics.uci.edu/-mlearn/MLRepository.html]. Irvine, CA: University of California, School of Information and Computer Science.
    [26] Debabrata Mandal, Surjya K. Pal, Partha Saha. Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II. Journal of Materials Processing Technology. Volume 186, Issues 1-3, 7 May 2007, Pages 154-162.
    [1]K.H.Ho,S.T.Newman,S.Rahimifard and R.D.Allen,State of the art in wire electrical discharge machining(WEDM),International Journal of Machine Tools and Manufacture,Volume 44,Issues 12-13,October 2004,Pages 1247-1259.
    [2]N.M.Abbas,D.G.Solomon and M.F.Bahari,A review on current research trends in electrical discharge machining(EDM),International Journal of Machine Tools and Manufacture,Volume 47,Issues 7-8,2007,Pages 1214-1228.
    [3]Deepak Kumar Panda and Rajat Kumar Bhoi.artificial neural network prediction of material removal rate in electro discharge machining.Materials and Manufacturing Processes,20:645-672,2005.
    [4]Wang K.,Gelgele H.,Wang Y.,Yuan Q.and Fang.M.2003.A hybrid intelligent method for modeling the EDM process,International Journal of Machine Tools & Manufacture,vol.43,no.10.pp.995-999.
    [5]J.C.Su,J.Y.Kao and Y.S.Tarng,Optimisation of the electrical discharge machining process using a GA-based neural network,The International Journal of Advanced Manufacturing Technology,vol.24,2004,no.1.pp.81-90.
    [6]Shajan Kuriakose and M.S.Shunmugam.Multi-objective optimization of wire-electro discharge machining process by Non-Dominated Sorting Genetic Algorithm.Journal of Materials Processing Technology 170(2005) pp.133-141.
    [7]Debabrata Mandal,Surjya K.Pal,Partha Saha.Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-Ⅱ.Journal of Materials Processing Technology.Volume 186,Issues 1-3,7May 2007,Pages 154-162.
    [8]J.L.Lin and C.L.Lin,The use of grey-fuzzy logic for the optimization of the manufacturing process,J.Mater.Process.Tech nol.160(2005) 9-14.
    [9]Yih-fong Tzeng and Fu-chen Chen,Multi-objective optimisation of high-speed electrical discharge machining process using a Taguchi fuzzy-based approach,Materials & Design,Volume 28,Issue 4,2007,Pages 1159-1168.
    [10]M.Seeger,C.K.I.Williams,and N.D.Lawrence.Fast forward selection to speed up sparse Gaussian process regression.In C.M.Bishop and B.J.Frey,editors,Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics,2003.
    [11]V.N.Vapnik,The Nature of Statistical Learning Theory,second ed.Springer Verlag,1999.
    [12]Smola,A.and Scholkhopf,B.2004.A Tutorial on Support Vector Regression.Statistics and Computing,vol.14,pp.199-222.
    [13]C.Williams and C.Rasmussen.Gaussian processes for regression.In Advances in Neural Information Processing Systems,volume 8,pages 598-604,1996.
    [14]C.E.Rasmussen and J.Quinonero-Candela.Healing the relevance vector machine through augmentation.In Proc.of the 22nd International Conference on Machine learning(ICML 2005),pages 689-696.ACM Press,2005.
    [15]Tao Chen,Julian Morris and Elaine Martin,Gaussian process regression for multivariate spectroscopic calibration,Chemometrics and Intelligent Laboratory Systems,In Press.
    [16]Bojan Likar and Jus Kocijan,Predictive control of a gas-liquid separation plant based on a Gaussian process model,Computers & Chemical Engineering,Volume 31,Issue 3,19 January 2007,Pages 142-152.
    [17]Yaochu Jin.A comprehensive survey of fitness approximation in evolutionary computation.Soft Computing,9(1),3-12,2005.
    [18]Yaochu Jin,Markus Olhofer and Bernhard Sendhoff.On evolutionary optimization with approximate fitness functions.In:Proceedings of the Genetic and Evolutionary Computation Conference GECCO,Las Vegas,Nevada,USA.pp.786-793,July 10-12,2000.
    [19]Yao,X.1999.Evolving artificial neural networks,Proceedings of the IEEE,vol.87,no.9pp.1423-1447.
    [20]Deb,K.,Agrawal,S.,Pratap,A.,and Meyarivan,T.,2002,A Fast and Elitist Multi-Objective Genetic Algorithm:NSGA-Ⅱ,IEEE Transactions on Evolutionary Computation,6(2),pp.182-197.
    [21]Carl Edward Rasmussen and Christopher K.I.Williams.Gaussian Processes for Machine Learning. The MIT press, 2006.
    [22] Joaquin Quinonero-Candela and Carl Edward Rasmussen (2005). A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research, 6:1939-1959.
    [23] Carl Edward Rasmussen Advances in Gaussian Processes, Tutorial at NIPS 2006. Available at http://www.kyb.tue.mpg.de/-carl/.
    [24] P.K. Boyle, M.R. Frean, Dependent Gaussian processes, Advances in Neural Information Processing Systems 17, MIT Press, 2005.
    
    [25] Bishop, C. M. Pattern Recognition and Machine Learning, Springer, 2006.
    [26] M.L. Stein, Interpolation of Spatial Data, Springer, New York, 1999.
    [27] R. M. Neal. Bayesian Learning for Neural Networks. Springer, New York, 1996.
    [28] Liefeng Bo, Ling Wang, and Licheng Jiao, Recursive finite Newton algorithm for support vector regression in the primal, Neural Computation, vol. 19(4), pp. 1082-1096, 2007.
    [29] Chapelle, O. Some thoughts about Gaussian Processes., Workshop at NIPS 2005.
    [30] M. Seeger. Gaussian processes for machine learning. International Journal of Neural Systems, 14(2):69-106, 2004.
    [31] X. Yao and Y. Xu, Recent Advances in Evolutionary Computation, Journal of Computer Science and Technology, 21(1):1-18, January 2006.
    [32] D. Scott, S. Boyina, K..P. Rajurkar, Analysis and optimization of parameter combination in wire electrical discharge machining, Inter. J. Prod. Res. 29 (11) (1991) 2189-2207.
    [33] Fang, K. and Wang, Y. 1994. Number-theoretic Methods in Statistics. Chapman & Hall.
    [34] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/-cjlin/libsvm.
    [35] Tipping. M. 2001. Sparse Bayesian learning and the relevance vector machine, Journal of Machine Learning Research vol. 1, pp. 211-244. Software available at http://research.microsoft. com/mlp/RVM/.
    [1]Bishop,C.1995.Neural Networks for Pattern Recognition.Clarendon Press,Oxford,UK.
    [2]V.N.Vapnik,The Nature of Statistical Learning Theory,second ed.Springer Verlag,1999.
    [3]Tipping.M.2001.Sparse Bayesian learning and the relevance vector machine,Journal of Machine Learning Research vol.1,pp.211-244.
    [4]Carl Edward Rasmussen and Christopher K.I.Williams.Gaussian Processes for Machine Learning.The MIT press,2006.
    [5]Yuan Jin,Wang Kesheng,Yu Tao and Fang Minglun,Reliable multi-objective optimization of high-speed WEDM process based on Gaussian process regression,International Journal of Machine Tools and Manufacture.Volume 48,Issue 1,January 2008,Pages 47-60.
    [6]L.A.Zadeh,Outline of a new approach to the analysis of complex systems and decision processes.IEEE Trans.Syst.,Man Cybernet.31(1973),pp.28-44.
    [7]Jang,S.,Sun,C.and Mizutani,E.1997.Neuro-fuzzy and soft computing,New Jersey:Prentice Hall.
    [8]M.Belkin,P.Niyogi,V.Sindhwani,2006,Manifold Regularization:a Geometric Framework for Learning from Labeled and Unlabeled Examples,Journal of Machine Learning Research,7(Nov),pp.2399-2434.
    [9]Vapnik V.1998.Statistical Learning Theory.John Wiley and Sons,New York
    [10]Z.-H.Zhou and M.Li.Semi-supervised regression with co-training style algorithms.IEEE Transactions on Knowledge and Data Engineering,2007,19(11):1479-1493.
    [11]Z.-H.Zhou and M.Li.Semi-supervised regression with co-training.In:Proceedings of the 19th International Joint Conference on Artificial Intelligence(IJCAI'05),Edinburgh,Scotland,2005,pp.908-913.
    [12]B.Scholkhopf,P.Simard,A.Smola,and V.Vapnik.Prior knowledge in support vector kernels.In B.Scholkopf,C.Burges,and A.Smola,editors,Advances in kernel methods-support vector learning. MIT Press,1998.
    [13]Olvi L Mangasarian,Jude W Shavlik,Edward W Wild.Knowledge-based kernel approximation.Journal of Machine Learning Research.2004(5):1127-1141.
    [14]Y.Jin and B.Sendhoff.1999."Knowledge incorporation into neural networks from fuzzy rules".Neural Processing Letters,10:pp.231-242.
    [15]McGarry,K.;MacIntyre,J.;Addison,D.,Integrating RBF networks with domain knowledge,Neural Networks,2001.Proceedings.IJCNN'01.International Joint Conference on,vol.3,pp.1902-1907.
    [16]B.Sick and S.J.Ovaska,Fusion of soft and hard computing:Multi-dimensional categorization of computationally intelligent hybrid systems,Neural Computing & Applications 16(2007),no.2,125-137.
    [17]S.J.Leary,A.Bhaskar,A.J.Keane,A knowledge-based approach to response surface modeling in multifidelity optimization,Journal of Global Optimization 26(2003) 297-319.
    [18]Hong Seok Kim,Muammer Koc and Jun Ni,A hybrid multi-fidelity approach to the optimal design of warm forming processes using a knowledge-based artificial neural network,International Journal of Machine Tools and Manufacture Volume 47,Issue 2,2007,Pages 211-222.
    [19]Niyogi,P.,Girosi,F.,Poggio,T.,1998.Incorporating prior information in machine learning by creating virtual examples,Proceedings of the IEEE,vol.86,no.11,pp.2196-2209.
    [20]Yuan Jin,Wang Kesheng,Yu Tao and Liu Xuemei."Incorporating Fuzzy Model into Relevance Vector Machine Regression",IEEE World Congress on Computational Intelligence(WCCI 2008),in press.
    [21]Marek J.Druzdzel and Francisco J.Diez,Combining Knowledge from Different Sources in Causal Probabilistic Models.Journal of Machine Learning Research 4(2003) 295-316.
    [1]Tipping.M.2001.Sparse Bayesian learning and the relevance vector machine,Journal of Machine Learning Research vol.1,pp.211-244.Software available at:http://research.microsoft.com/mlp/RVM/.
    [2]Chih-Chung Chang and Chih-Jen Lin,LIBSVM:a library for support vector machines,2001.Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    [3]Carl Edward Rasmussen Advances in Gaussian Processes,Tutorial at NIPS 2006.Available at http://www.kyb.tue.mpg.de/~carl/.
    [4]Mathieu Jacques,An extensible math expression parser with plug-ins,Software available at:http://www.codeproject.com/KB/recipes/MathieuMathParser.aspx.
    [5]Budiman Minasny,Fuzzy k-means clustering,Software available at:http://www.mathworks.com/matlabcentral/fileexchange/.
    [1]V.N.Vapnik,The Nature of Statistical Learning Theory,second ed.Springer Verlag,1999.
    [2] Bishop, C. M. Pattern Recognition and Machine Learning, Springer, 2006.
    
    [3] El Abiad, H.; Le Brusquet, L.; Roger, M.; Davoust, M.-E., "Model-Robust Sequential Design of Experiments for Identification Problems," Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on , vol.2, no., pp.II-441-II-444, 15-20.
    [4] John Sall, Lee Creighton, and Ann Lehman, JMP Start Statistics: A Guide to Statistics and Data Analysis Using JMP, Fourth Edition, SAS Press, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700