储氢合金负极表面改性及大容量镍氢电池性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍氢电池作为一种新型化学电源,具有比能量高、无环境污染、良好的循环充放电性能等优点,拥有广泛的应用领域,尤其作为电动汽车的动力电源,进一步提高其综合性能,有着重要的实用价值和意义。本文对镍氢电池负极材料的储氢合金的表面改性和表面处理、用于电动汽车的大容量方型镍氢电池的设计和制备以及利用镍氢电池的内压特性表征电池的循环寿命的方法等方面进行了系统的研究。
     本论文提出了用电化学的方法在储氢合金电极或储氢合金粉表面包覆镍-非金属非晶态合金的工艺方法。X射线能谱(EDX)测试的结果表明,包覆到储氢合金电极表面的物质为镍-非金属合金。X-射线衍射法(XRD)的测试证明包覆的镍-非金属合金均是以非晶态的形式存在。采用电化学的方法在储氢合金电极表面包覆镍硫合金可以提高电极性能。
     电化学性能测试结果表明:处理后的电极的大电流放电性能和循环稳定性都得到了一定程度的改善,而在自放电方面,处理后电极的自放电改善情况比未处理电极更为明显。并且,用电化学阻抗法(EIS)、循环伏安法(CV)和X-射线光电子能谱(XPS)等测试手段研究了改善电化学性能的原因。
     本文采用DNY-2型电池内压测试仪实时、非破坏性地测量镍氢电池的内压。在低倍率充电时,镍氢电池的内压随充电时间的变化曲线可以用Boltzmann函数拟合,且模拟函数中的参数有确切的物理意义。利用Boltzmann模拟函数在拐点附近的变化率k来更准确地预测电池的寿命变化。实验表明,k值越大,在一定充电时间内镍氢电池的内压上升的速率就越快,电池的循环寿命越短。
     本论文设计和制备了电动车用100 Ah高容量方型镍氢电池,研究了电池使用的正负极材料和结构、电解液组成、电池零部件、高容量方型镍氢电池的化成和分选制度等方面对电池性能的影响。论文还对研制的电池进行了大电流充放电、循环寿命等性能和安全性测试,并进行了电动汽车模拟和试车运行。试验结果表明:采用泡沫镍正极和拉浆负极组成的100 Ah方型镍氢电池的重量比能量超过了75 Wh/Kg, 1/3 C电流下循环放电超过了1000次,在40 km /h的车速下,实车运行超过300 km。
Nickel-metal hydride (Ni-MH) batteries are one of the most promising future vehicular power systems because of advantages such as high specific energy, long cycle life, use of no poisonous heavy metals and great improvement of recharge / discharge performance. Extensive efforts continue to be made to develop Ni-MH batteries to meet the stringent requirements of electric vehicles. There are important values of practicality and theory for the further research of improving the comprehensive performance of Ni/MH batteries.
     The main contents of this paper includes that the surface modification and surface treatment of hydrogen-storage alloy negative electrode materials of Ni/MH batteries, the design and preparation of a kind of rectangle Ni/MH battery with a larger capacity used for vehicular power, and a new method of the cycle life estimation in terms of the internal pressure characteristic of Ni/MH batteries.
     The electrochemical techniques of encapsulating the amorphous nickel-nonmetal alloy on the surface of hydrogen-storage alloy electrode or hydrogen-storage alloy powder was used in this paper. The surface component of encapsulated nickel-hydride electrodes was measured by energy dispersive analysis of X-ray (EDX), and the analysis of X-ray diffraction (XRD) confirmed that the prepared nickel-nonmetal alloy, such as Ni-S alloy, on the electrode surface had amorphous structures. The electrochemical measurements showed that the large current discharge performance and the stability of cycle life of treated electrodes were improved, and especially, the self-discharge of treated electrodes received an obvious abatement. The related theoretical analysis was given according to the analytical results of electrochemical impedance spectroscopy (EIS), Cyclic Voltammetry (CV), and X-ray photoelectron spectrum (XPS).
     The internal pressure variations of different Nickel-metal hydride batteries were studied. A DNY-2 was specially designed to measure indirectly the pressure inside the battery shell without damage to any battery parts. The internal pressure variations were simulated by the Boltzmann function when the batteries were charged with a low current density. The parameters in the simulating function have definite physical meanings, and a special parameter k, which is the variability of internal pressure with the charge state or the charge time of the battery in the region of inflexion of this simulation function can be used to estimate the cycle life of batteries. The result shows that batteries with a smaller k value have a longer cycle life.
     The rectangle Ni/MH battery with a larger capacity of 100 Ah used for vehicular power was designed and prepared. The effects of materials and structures of positive and negative electrodes, the composition of electrolyte, parts of battery, the initial charge / discharge processes, and the select method of Ni/MH batteries on the battery performances were studied. Besides, the tests of charge or discharge with a large current, the cycle life and safety of prepared battery have been finished, and the simulation and run-in tests of electric vehicles also have been done successfully. The results showed a power density of 75 Wh/Kg, cycle numbers of 1000 at a current of 1/3C for the prepared 100Ah battery with foam nickel negative electrodes and sintered positive electrodes. The electric car with the prepared battery was able to run about 300 km at a speed of 40 km /h.
引文
[1] Veziroglu T N, Int. Hydrogen: Today, Tomorrow and Beyond. J. Hydrogen Energy,1983,8: 1
    [2] Harder E L. Theory and uses of a broad band coaxial cable information system inthe hospital environment. Fundamentals of Energy Production, John Wiley, NewYork, 1982
    [3] Buchner H. Peropectives for metal Hydride Technology. Prog. Energy CombustionSci 1980.6:331
    [4]汪根时,王相龙,MMN5吸、放氢过程的动力学研究.中国稀土学报,1987,5(2):90-94
    [5] Justi E W, Ewe.H, et al., Electrocatalysis in the nickel-titanium system. EnergyConv., 1970, 10: 183
    [6] Ewe H.H., Justi E.W. et al., Electrochemical storage and oxidation of hydrogen with the intermetallic compound LaNi/sub 5/. Energy Conv., 1973, 13: 109
    [7]张丞源.我国镍氢电池发展状况.电池.1994,24(3):134
    [8]黄振谦.MH/Ni电池失效原因.电池.1994,24(2):29-31
    [9] Paseka I, Sorption of hydrogen and kinetics of hydrogen evolution on amorphous Ni-Sx electrodes, Electrochimica Acta , 1993, 38(16):2449~2454
    [10] Willems J J G. Metal Hydride Electrodes Stability of LaNi//5-Related Compounds. Philips J. Research. 1984, 39(1): 1
    [11]大角泰章.储氢合金.日本化学日志,1977,11:1472
    [12] Adzic G D, Johnson J R, Reilly J J, et al. Effect of Ce, Co, and Sn substitution on gas phase and electrochemical hydriding/dehydriding properties of LaNis. J. Electrochem Soc, 1995, 142: 3429
    [13]靳红梅,李国勋,张昭良等.Lal-xNDx (NiCoMnAl)5贮氢合金性能研究.中国稀土学报,1998,16(1):22
    [14] Tanaka S, et al. The slow step for hydrogen absorption (desorption) by activatedLaNi5. J. Less-Common Mets., 1977, 51: 779
    [15] Sakai T, Oguro K, Migumura H, et al. The influence of small amounts of added elements on various anode performance characteristics for LaNi2.sCo2.5-basedalloys. J. Less-Commen Met, 1990, 161: 193-202
    [16] Zuttel A, Chartouni D, Gross K, et al. Relationship between composition, volumeexpansion and cyclic stability of AB5-type metalhydride electrodes. J. AlloysCompd., 1997, 253-254: 626-628
    [17] Boonstra AH, et al. Influence of oxidation upon the storage capacity of LaNiselectrodes. J. Less-Common Met., 1990, 159: 228
    [18]李国华.中国贮氢材料和镍氢电池新进展.电池,1993,23(5):219
    [19] Meli F, Zuttel A, Schlapbach L. AB2 and AB5 metal hydride electrodes: aphenomenological model for the cycle life. J. Alloys Compd., 1993, 202: 81
    [20] Meli F, Zuttel A, Schlapbach L. Electrochemical and surface properties of lowcost, cobalt-free LaNi/sub 5/-type hydrogen storage alloys. J. Alloys Compd.,1993, 190: 17
    [21] Kanda M, et al. Cyclic behaviour of metal hydride electrodes and the cellcharacteristics of nickel-metal hydride batteries. J. Less-Common Met., 1991,172: 1227
    [22]蒋洪寿,朱松然.Co(OH)2和Ni粉对氢氧化镍电极性能的影响.应用化学, 2000,6(4):123
    [23] Uchida H, Kawachi M, et al. Effects of oxidation and hydroxidation on the activations of LaNi5-xMx(M=Al,Mn,Co) alloys by hydrogen gas. Z. Phys. Chem., 1994, 183: 303
    [24]赵东江,马松艳.储氢电极温度特性的研究.高师理科学刊.2000,19(3):61
    [25] Rong Li, Jun Li, et al. Structure and electrochemical properties of LaCon.xFexNi2 compounds. J. Alloys Compd., 2003, 359: 221-4
    [26]汪继强.MH-Ni电池的发展与展望.电源技术,1997,21(1):31
    [27]范祥清,闻秀琴.金属氢化物-镍电池的研究.电池,1994,24:5
    [28]杨汉西,刘金成.金属氢化物-镍电池充电过程消气反应研究.第七届全国 电化学会议论文集,1993,长春,H84
    [29] Conway B E. Rechargeability of a chemically modified MnO2/Zn battery system at practically favorable power levels. J. Electroanal Chem., 1993, 140: 884-889
    [30] Gao L, Conway B E. Absorption and adsorption of H in the H2 evolution reaction and the effects of co-adsorbed poisons. Electrochimica Acta, 1994, 41 -42: 1681
    [31]张大为,袁华堂,张允什.储氢合金的表面处理.化学通报.1998,2:19
    [32] Yan D Y, Sandroch G, Suda S. Catalytic effects of alloy surface on the oxygen consumption reaction in a sealed Ni/TiNiH battery. J. Alloys Compd., 1994, 216:237
    [33] Yang Y, Li J, Nan J M, Lin Z G. Performance and characterization of metalhydride electrodes in nickel/metal hydride batteries. J. Power Sources. 1997, 65:15-21
    [34] Wang X L, Suda S. Surface properties of the fluorinated calcium-based AB5alloys. J. Alloys Compd., 1995, 231: 376-379
    [35] C Lwakura, I Kim, N Matsui,et al. Surface Modification of Laves Phase ZrVo.5Mno.5Ni Alloy Electrodes with an Alkline Solution Containing Potassium borohydride as a Reduing Agent .Elctrochim Acta,1993,38(5):659-662
    [36] Wang X L, Suda S. Stability and tolerance to impurities of the fluorinated surfaceof hydrogen-absorbing alloys. J. Alloys Compd., 1995, 227: 58-62
    [37] Wada M. Production of copper-alloy complex granules for nickel/metal hydrideelectrodes. J. Alloys and Compd., 1993, 192: 164
    [38] Ikeya T, Kumai K, Iwahori T. Mechanical process for enhancing metal hydride for the anode of a Ni-MH secondary battery. J. Electrochem. Soc, 1993, 140: 3082-3086
    [39] Iwakura C, Matsuoka M, et al. Electrochemical characteristics of hydrogenstorage alloys modified by electroless nickel coatings. J. Electrochem. Soc, 1994,24: 808
    [40] Matsuoko M, Kehno T, et al. Edge density profile variation during a magneticaxis shift in the CHS heliotron/torsatron. Electrochimica Acta., 1993, 38: 787
    [41] Kuriyama C. et al. Prog. Int. Symp. Met-Hydr. System, Uppdsala, Sweden, June,1992
    [42]文振环,李国勋,黄爱琴.微包覆铜储氢合金电极的研究.电源技术,1995: 19(3): 24
    [43] Zhang W, Kumar M P S, Srinivasan S, Ploeth H J. AC impedance studies on metal hydride electrodes. J. Electrochem. Soc, 1995, 142: 2395
    [44]齐国光,李建民,郏航等.电动汽车电量计量技术的研究.清华大学学报(自然科学版),1997,2003:47-50
    [45] lwakura C, Matsuoka M, kohno T. Mixing effect of metal oxides on negative electrode reaction in the nickel-hydride, Journal of electrochemical Socity, 1994, 141(9): 2306-2308
    [46]宋文顺.化学电源工艺学.北京:中国轻工业出版社,1998:148
    [47]吉缙.预充电对储氢电极活化的影响.电池,2000,30(1):32~33
    [48]吕鸣祥.化学电源.天津:天津大学出版社,1992,216~222
    [49]杨化滨,魏进平,陈东英.AA型密封MH—Ni电池的充电过程研究.电源技术, 1995,19(3):19~22
    [50] Munehisa Ikoma, Shin-ichi Yuasa, Koji Yuasa, et al. Charge characteristic of sealed-type nickel/metal-hydride battery, Journal of Alloys and Compounds, 1998, 267(1-2): 252-256
    [51] Sakai T, Yuasa A, Ishikawa H, et al. Nickel-metal hydride battery using microencapsulated alloys, Journal of Less-common Metal, 1991, 172-174: 1194-1204
    [52]周霁罡,刘昭林,苏小笛.Ni—MH电池充电效率与内压的相关行为.电池,1997,27(6):99~101
    [53] Leblanc P, Jordy C, Knosp B, et al. Mechanism of alloy corrosion and consequences on sealed nickel-metal hydride battery performance. J Electrochem Soc, 1998, 145(3): 860-863
    [54]韩佐青,洪涸,陈延禧.用气相色谱法研究MH/Ni电池气体组成.电池,1999,29(11:7~9,12
    [55]王玉国,何宗虞.镍氢电池内压及内阻的探讨,电池,1997,27(5):225~226
    [56]俞涛,韩佐青,陈延禧.MH/Ni电池内压影响因素的研究.全国第九届电化 学会议论文集[C],山东,1997
    [57]周志刚,刘雪省,电解液组成对MH-Ni电池性能的影响.电源技术,1992(1): 34~36
    [58]赖为华,余成洲.降低MH/Ni电池内压的途径.电池,2000,30(4):181~183
    [59]董清海,颜广炅,余成洲等.电解液量对MH/Ni电池性能的影响.电池, 2000,30(21:77~79
    [60] Salai T, Yuasa A, Ishikawa H, Miyamura H, et al. Nickel Metal Hydride Battery Using Microencapsulated alloys. J Less Common Met, 1991,172-174(10): 1194-1204
    [61]刘斌,邹建梅,陶维正等,AA型密封Ni/MH电池内阻特性研究.电源技术,1999(6):295~297
    [62]王殿龙,刘颖,戴长松等.影响MH/Ni电池正极放电容量的因素.电池,2004,34(1):64~66
    [63]李群杰.MH/Ni电池储存容量下降及改善措施.电池,2002,32(1):52~54
    [64]郭再萍,夏熙.提高金属氢化物电极性能的途径,电池,1998,28(1):33~38, 44
    [65]李传健,王新林,工艺对MI(NiCoMnTi)5贮氢合金性能的影响.电池,1997, 27(5):209~212
    [66] Viswanathan V V, .Sslkind A J, Kelley J J, et al. Effect of state of charge on impedance spectrum of sealed cells. J.Appl.Electrochem,1995,25(8): 716-728
    [67]姜长印,万春荣,高密度高活性球形氢氧化镍的制备与性能控制.电源技术,1997,21(6):243~247,266
    [68] Barral G, Njanjo-Eorke F, .Maximovitch S. Characterisation of the passive layer and of hydroxide deposits of nickel by impedance spectroscopy. ElectrochimicaAcdta, 1995, 40(17): 2815-2828
    [69] S.Motupally, C.C.Streinz, J.W.Weinder, Proton diffusion in nickel hydroxide films.J.Electrochem Soc, 1995,142(5): 1401-1408
    [70]吉缙.预充电对储氢电极活化的影响.电池,2000,30(1):32~33
    [71]韩伟,李来水等.蓄电池组合技术研究.电源技术,1998(1):9~11
    [72] Mansour AN, Melendres C A, Pankuch.M,et al. J Electrochem Soc, 1994,141(6): 169
    [73]李元.利用相似理论来指导建模.计算机仿真,1999,1:49
    [74]多智华.MH-Ni电池放电过程的仿真研究.信息技术,2000(6):1~3,14
    [75]沈稼丰,董艳杰.铅蓄电池的容量测试和寿命预测.哈尔滨电工学院学报, 1996,19(4):433~436
    [76]王宏亮,崔胜民.基于试验的铅酸电池充放电特性模型的建立.蓄电池, 2005,42(1):38~40,44
    [77]董明哲.充电电池容量预测的算法研究.鞍山师范学院学报,2000,2(3): 80—84
    [78]王斯成,陈子平,杨军等.蓄电池剩余容量数学模型探讨和在线测试仪的开 发,2005,26(l):6~13
    [79] GU W B, Wang C Y, Li S M, et al. Electrochimica Acta,1999, 44: 4525-4541
    [80]蒋春林.用内阻法预测阀控铅酸蓄电池故障.电力机车与城轨车辆,2004, 27(5): 51~52
    [81] Willems J J G Metal Hydride Electrodes Stability of LaNis-related Compounds. Philips J Res, 1984, 39: 1
    [82]李培良,耿朝青.圆柱形密封充电电池内压测定新法.第七届全国电化学会议论文集,长春,1993,H57
    [83]杨汉西,胡蓉晖,艾新平.电阻应变法用于密封电池内压变化的动态检测. 电化学,1998,4f3):318~322
    [84]陈延禧,韩佐青,俞涛.MH/Ni电池内压测量及研究的新方法.电源技术,1997,21(3):96~97,133
    [85]庞柳萍,张建海,郭靖洪.MH—Ni电池降低内压延长寿命的方法.电源技术, 1999,23(3):158
    [86]陈保贵,李秀华,李相哲等.降低碱性蓄电池内压的一种方法.电池工业, 2000,5(5):211
    [87]曹楚南,张鉴清,电化学阻抗谱导论,北京:科学出版社,2002:3-4
    [88]朱科,陈延禧,张继炎,TEM、XID和EIS在PEMFC基础研究中的应用。 电池,200l,3l(5):244—247
    [89]查全性,电极过程动力学导论,北京:科学出版社,2002:106,220,236
    [90] Springer T E, Zawodzinski T A, Wilson M S, et al, Characterization of polymer electrolyte fuel cells using AC impedance spectroscopy, J. Electrochem. Soc, 1996,143(2):587-599
    [91]高小霞.电分析化学导论.,北京:科学出版社.1986,183
    [92]田昭武,.电化学研究方法.北京:科学出版社.1984,268
    [93]李友遐,高-诚辉,林有希,等.非晶态镍磷镀层析氢阴极活性的控制与机理[J].材料保护,2004,37(1):27—29,32
    [94]陈军,张允什.金属氢化物/镍电池自放电研究.电池.1995,25:260-262
    [95]. Li Y, Jiang L J, Huang Z, et al. Effects of advanced alkaline treatment on theelectrochemical characteristics of hydrogen storage alloys. Journal of alloys andcompounds, 1999, 293: 687-690
    [96]. Schlapbach L. XPS/UPS study of the oxidation of La and LaNi5 and of theelectronic tructure of LaNi5, Solid State Communications, 1981, 38: 117-123
    [97] Wang L X, Suda S. Surface study of chemically treated LaNi4.7Al0.3 alloy. J.Alloys Comp. 1993, 194: 73-76
    [98] Xin-nan Yu, Schlapbach L. Surface properties of chemically prepared LaNis andits oxidation and poisoning by O2 and CO, Int. J. Hydrogen Energy,1988,13(7):429-432
    [99] Zafeiratos S, Kennon S. The interaction of oxygen with ultrathin Ni deposits on yttria-stabilized ZrO2(100), Surf. Sci, 2001, 266: 482-485

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700