对小鼠SUN蛋白(SUN1、SUN2)和KASH蛋白(Syne-1、Syne-2)在骨骼肌细胞核锚定、大脑神经细胞迁移、视网膜发育、以及DNA损伤反应中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞核在细胞中的迁移和锚定是一种广泛存在的细胞学现象,它参与多种生物学过程,对于生物体的生长发育和疾病发生至关重要。经过多年的研究,科学家们发现细胞微管和微丝骨架系统参与调控细胞核的迁移和锚定,但是并不清楚细胞骨架究竟如何连接到细胞核膜上。通过遗传学方法,科学家们在酵母、线虫、果蝇等模式生物中发现了SUN蛋白和KASH蛋白这两类细胞核膜蛋白,它们分别定位在内核膜和外核膜上,对于细胞核的迁移和锚定至关重要。哺乳动物中也存在SUN蛋白和KASH蛋白家族同源蛋白,对于这两类蛋白在哺乳动物细胞核迁移和锚定中的功能,以及它们对于哺乳动物发育的重要性还有待进一步的研究。本论文中,我们利用SUN蛋白SUN1、SUN2和KASH蛋白Syne-1/Nesprin-1、Syne-2/Nesprin-2基因敲除小鼠,研究了这四种蛋白在小鼠骨骼肌细胞核锚定、大脑神经细胞发生和迁移、光感受细胞的发生和细胞核迁移、以及DNA损伤修复过程中的功能。
     哺乳动物的骨骼肌细胞是由上百个肌原细胞融合而成的合胞体,每个细胞中有上百个细胞核按一定间距分布在细胞膜下表面,这些细胞核被称为非突触下细胞核,另有3-8个细胞核锚定在骨骼肌神经肌肉接头下,被称为突触下细胞核。我们提出的问题是SUN蛋白和KASH蛋白是否决定这些细胞核在细胞中的精确定位。我们以前的研究发现KASH蛋白Syne-1/Nesprin-1对于小鼠骨骼肌突触下细胞核和非突触下细胞核的锚定都必不可少,但还不知道SUN蛋白是否也参与这些过程。如本论文第二章所述,我和张晓昌博士合作发现仅缺失Sun1基因导致突触下细胞核的锚定被部分破坏,缺失Sun1和Sun2基因的3个甚至4个等位基因后,突触下细胞核的锚定缺陷更加严重,这说明SUN1和SUN2对于突触下细胞核的锚定有剂量效应。我进一步发现在Sun1Sun2双敲除骨骼肌细胞中,非突触下细胞核的锚定被破坏,Syne-1也不能定位在核膜上。这些结果说明在骨骼肌细胞核的锚定中,SUN1和SUN2通过定位Syne-1到核膜上,从而连接细胞核与细胞骨架,调节细胞核在骨骼肌细胞中的定位。
     哺乳动物大脑发育伴随有大量的神经细胞发生和迁移,细胞核的移动对于这两个过程都至关重要。研究发现dynein、Lis1以及其他一些胞质蛋白参与调控微管和细胞核的连接,但还没有找到参与这种连接的核膜蛋白。在本论文第三章所述,我和张晓昌博十合作发现SUN蛋白SUN1、SUN2和KASH蛋白Syne-1/Nesprin-1、Syne-2/Nesprin-2通过微管动力蛋白dynein/dynactin、kinesin和微管连接,介导中心体-细胞核偶联,对小鼠大脑神经细胞发生和迁移起至关重要的作用。
     和大脑中神经细胞迁移类似,在哺乳动物视网膜发育中,细胞核的迁移和定位对于视锥和视杆光感受细胞的发育和定位也是至关重要的。在光感受细胞前体细胞分裂周期中,前体细胞的细胞核在视网膜生发层的顶端和基端往返运动,这一过程被称为细胞间期细胞核迁移(interkinetic nuclear migration, INM),新形成的光感受细胞通过细胞核迁移形成外核层。如本论文第四章所述,我和俞珏华博士研究了KASH蛋白Syne-2/Nesprin-2和SUN蛋白SUN1、SUN2在1NM和光感受细胞核迁移中的作用。Syne-2/Nesprin-2单敲除或者Sun1Sun2双敲除造成外核层明显变薄、光感受细胞核定位异常,从而导致视网膜电生理缺陷,这种细胞核迁移是由SUN1蛋白和SUN2蛋白定位Syne-2/Nesprin-2蛋白到核膜上形成复合体,通过微管动力蛋白dynein/dynactin和kinesin连接微管和细胞核,从而调控细胞核在视网膜中的迁移。
     DNA损伤修复是生物体正常生长发育所必需的,DNA损伤修复缺陷将破坏基因组稳定性,导致免疫缺陷、肿瘤以及衰老等疾病。如本论文第五章所述,我正在研究SUN1和SUN2在DNA损伤修复中的功能。初步实验数据表明,Sun1Sun2双敲除小鼠胚胎成纤维细胞增殖能力下降,DNA损伤反应信号水平降低,对于DNA损伤的反应滞后。同时我还发现SUN1和SUN2与内质网钙调蛋白Reticulocalbin-2(Rcn2)存在相互作用,这提示SUN1和SUN2可能通过Rcn2激活ERK/MAPK信号通路,进而激活DNA损伤反应信号,修复DNA损伤。我正在进一步开展实验研究这一分子机制的具体过程,这可能对认识核纤层蛋白病(Laminopathies)这一大类由核膜蛋白突变引起的早衰或肿瘤易发病的分子机制提供新的线索。
Nuclear migration and positioning are essential for many biological processes. Prior to our studies, several studies have shown the functions of microtubule and actin cytoskeletal system in nuclear migration and positioning. However, the roles of nuclear envelope proteins in these processes were largely unknown. SUN proteins and KASH proteins are two families of nuclear envelope proteins, which locate through the inner nuclear membrane and outer nuclear membrane, respectively. Although studies in yeast, worms, flies, zebrafish and cultured mammalian cells have revealed their roles in nuclear migration and positioning, their roles in mammalian development remained to be further studied. During the research for my Ph.D. thesis, I carried out genetic analysis in mouse and uncovered that SUN1, SUN2, Syne-1/Nesprin-1 and Syne-2/Nesprin-2 play critical roles in myonuclear anchorage, neurogenesis, neuronal migration, and DNA damage response.
     How the nuclei in mammalian skeletal muscle fibers properly position themselves relative to the cell body is an interesting and important cell biology question. In the syncytial skeletal muscle cells, more than 100 nuclei, named non-synaptic nuclei, are evenly distributed at the periphery of each cell, with 3-8 nuclei, named synaptic nuclei, anchored beneath the neuromuscular junction (NMJ). Our previous studies revealed that the KASH domain-containing Syne-1/Nesprin-1 protein plays an essential role in anchoring both synaptic and nonsynaptic myonuclei in mice. SUN domain-containing proteins (SUN proteins) had been shown to interact with KASH domain-containing proteins (KASH proteins) at the nuclear envelope (NE), but their roles in nuclear positioning in mice were unknown. As described in Chapter 2, I collaborated with Xiaochang and found that the synaptic nuclear anchorage is partially perturbed in Sun1, but not in Sun2, knockout mice. Disruption of 3 or ail 4 Sun 1/2 wild-type alleles revealed a gene dosage effect on synapiic nuciear anchorage. The organization of nonsynaptic nuclei was also shown to be disrupted in Sun 1/2 doubleknockout (DKO) mice. We further showed that the localization of Syne-1 to the NE of muscle cells is disrupted in Sun1/2 DKO mice. These results clearly indicate that SUN1 and SUN2 function critically in skeletal muscle cells for Syne-1 localization at the NE, which is essential for proper myonuclear positioning.
     Nuclear movement is critical during neurogenesis and neuronal migration, which are fundamental for mammalian brain development. Although dynein, Lisl, and other cytoplasmic proteins are known for their roles in connecting microtubules to the nucleus during interkinetic nuclear migration (INM) and nucleokinesis, the factors connecting dynein/Lis1 to the nuclear envelope (NE) remain to be determined. As described in Chapter 3, I collaborated with Xiaochang Zhang to find that the SUN-domain proteins SUN1 and SUN2 and the KASH-domain proteins Syne-1/Nesprin-1 and Syne-2/Nesprin-2 play critical roles in neurogenesis and neuronal migration in mice. We also showed that SUN1 and SUN2 redundantly form complexes with Syne-2 to mediate the centrosome-nucleus coupling during both INM and radial neuronal migration in the cerebral cortex. Syne-2 is connected to the centrosome through interactions with both dynein/dynactin and kinesin complexes.
     Nuclear movement relative to cell bodies is a fundamental process during certain aspects of mammalian retinal development. During the generation of photoreceptor cells in the cell division cycle, the nuclei of progenitors oscillate between the apical and basal surface of the neuroblastic layer (NBL). This process is termed as interkinetic nuclear migration (INM). Furthermore, newly formed photoreceptor cells migrate and form the outer nuclear layer (ONL). As described in Chapter 4, I collaborated with Juehua Yu to demonstrate that a KASH domain-containing protein, Syne-2/Nesprin-2, as well as SUN domain-containing proteins, SUN1 and SUN2, play critical roles during INM and photoreceptor cell migration in the mouse retina. A deletion mutation of Syne-2/Nesprin-2 or double mutations of Sun1 and Sun2 caused severe reduction of the thickness of ONL, mislocalization of photoreceptor nuclei, and profound electrophysiological dysfunction of the retina characterized with the reduction of a-and b-wave amplitudes. We also provided evidence that Syne-2/Nesprin-2 forms complexes with either SUN1 or SUN2 at the nuclear envelope to connect the nucleus with dynein/dynactin and kinesin molecular motors during the nuclear migrations in the retina. These key retinal developmental signaling results have advanced our understanding of the mechanism of nuclear migration in mammalian retina.
     DNA damage response and repair is critical for normal development and disease pathyology. Defects in DNA damage response and repair processes may cause gene mutation and genomic instability which could lead to immunodeficiency, cancer and premature aging. Chapter 5 describes my analysis of the functions of SUN1 and SUN2 in DNA damage response (DDR). I found that the Sun1 Sun2 double knockout MEFs grows slowly, and that the DDR signals were decreased in Sun1-/-Sun2-/- MEFs. In addition, I found that SUN1 and SUN2 interact with a Calcium-binding protein, Reticulocalbin-2 (Rcn2) for this function. I propose that through binding with Rcn2, SUN1 and SUN2 activate the ERK/MAPK pathway, which then phosphorylates the DDR proteins such as ATM andγ-H2AX. I am carrying out experiments to test this hypothesis. This study will help us understand the molecular mechanism involved in a group of human diseases called Laminopathy, which are caused by the mutations in nuclear envelope proteins.
引文
1. Maddox P, Chin E, Mallavarapu A, Yeh E, Salmon ED, Bloom K: Microtubule dynamics from mating through the first zygotic division in the budding yeast Saccharomyces cerevisiae. J Cell Biol 1999, 144(5):977-987.
    2. Tran PT, Marsh L, Doye V, Inoue S, Chang F:A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J Cell Biol 2001, 153(2):397-411.
    3. Lee L, Klee SK, Evangelista M, Boone C, Pellman D:Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bnilp. J Cell Biol 1999,144(5):947-961.
    4. Miller RK, Matheos D, Rose MD:The cortical localization of the microtubule orientation protein, Kar9p, is dependent upon actin and proteins required for polarization. J Cell Biol 1999,144(5):963-975.
    5. Morris NR:Nuclear migration. From fungi to the mammalian brain. J Cell Biol 2000,148(6):1097-1101.
    6. Suelmann R, Sievers N, Fischer R:Nuclear traffic in fungal hyphae:in vivo study of nuclear migration and positioning in Aspergillus nidulans. Mol Microbiol 1997,25(4):757-769.
    7. Dobyns WB, Reiner O, Carrozzo R, Ledbetter DH:Lissencephaly. A human brain malformation associated with deletion of the LIS1 gene located at chromosome 17p13. JAMA 1993,270(23):2838-2842.
    8. Yu J, Starr DA, Wu X, Parkhurst SM, Zhuang Y, Xu T, Xu R, Han M:The KASH domain protein MSP-300 plays an essential role in nuclear anchoring during Drosophila oogenesis. Dev Biol 2006,289(2):336-345.
    9. Patterson k, Molofsky AB, Robinson C, Acosta S, Cater C, Fischer JA:The functions of Klarsicht and nuclear lamin in developmentally regulated nuclear migrations of photoreceptor cells in the Drosophila eye. Mol Biol Cell 2004,15(2):600-610.
    10. Sulston JE, Schierenberg E, White JG, Thomson JN:The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983, 100(1):64-119.
    11. Hirotsune S, Fleck MW, Gambello MJ, Bix GJ, Chen A, Clark GD, Ledbetter DH, McBain CJ, Wynshaw-Boris A:Graded reduction of Pafahlbl (Lisl) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 1998,19(4):333-339.
    12. Ayala R, Shu T, Tsai LH:Trekking across the brain:the journey of neuronal migration. Cell 2007,128(1):29-43.
    13. Sulston JE, Horvitz HR:Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans. Dev Biol 1981,82(1):41-55.
    14. Malone CJ, Fixsen WD, Horvitz HR, Han M:UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C. elegans development. Development 1999,126(14):3171-3181.
    15. Starr DA, Hermann GJ, Malone CJ, Fixsen W, Priess JR, Horvitz HR, Han M: unc-83 encodes a novel component of the nuclear envelope and is essential for proper nuclear migration. Development 2001,128(24):5039-5050.
    16. Starr DA, Han M:Role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science 2002,298(5592):406-409.
    17. Malone CJ, Misner L, Le Bot N, Tsai MC, Campbell JM, Ahringer J, White JG:The C. elegans hook protein, ZYG-12, mediates the essential attachment between the centrosome and nucleus. Cell 2003, 115(7):825-836.
    18. Fridkin A, Mills E, Margalit A, Neufeld E, Lee KK, Feinstein N, Cohen M, Wilson KL, Gruenbaum Y:Matefin, a Caenorhabditis elegans germ line-specific SUN-domain nuclear membrane protein, is essential for early embryonic and germ cell development. Proc Natl Acad Sci USA 2004, 101(18):6987-6992.
    19. Tzur YB, Wilson KL, Gruenbaum Y:SUN-domain proteins:'Velcro' that links the nucleoskeleton to the cytoskeleton. Nat Rev Mol Cell Biol 2006, 7(10):782-788.
    20. Razafsky D, Hodzic D:Bringing KASH under the SUN:the many faces of nucleo-cytoskeletal connections. J Cell Biol 2009.
    21. Starr DA:Communication between the cytoskeleton and the nuclear envelope to position the nucleus. Mol Biosyst 2007,3(9):583-589.
    22. Hodzic DM, Yeater DB, Bengtsson L, Otto H, Stahl PD:Sun2 is a novel mammalian inner nuclear membrane protein. J Biol Chem 2004, 279(24):25805-25812.
    23. Padmakumar VC, Libotte T, Lu W, Zaim H, Abraham S, Noegel AA, Gotzmann J, Foisner R, Karakesisoglou Ⅰ:The inner nuclear membrane protein Sunl mediates the anchorage of Nesprin-2 to the nuclear envelope. J Cell Sci 2005,118(Pt 15)3419-3430.
    24. Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D:Coupling of the nucleus and cytoplasm:role of the LINC complex. J Cell Biol 2006,172(1):41-53.
    25. Haque F, Lloyd DJ, Smallwood DT, Dent CL, Shanahan CM, Fry AM, Trembath RC, Shackleton S:SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol 2006,26(10):3738-3751.
    26. Hasan S, Guttinger S, Muhlhausser P, Anderegg F, Burgler S, Kutay U: Nuclear envelope localization of human UNC84A does not require nuclear lamins. FEBS Lett 2006,580(5):1263-1268.
    27. Dupre N, Gros-Louis F, Chrestian N, Verreault S, Brunet D, de Verteuil D, Brais B, Bouchard JP, Rouleau GA:Clinical and genetic study of autosomal recessive cerebellar ataxia type 1.Ann Neitrol 2007,62(1):93-98.
    28. Zhang Q, Bethmann C, Worth NF, Davies JD, Wasner C, Feuer A, Ragnauth CD, Yi Q, Mel lad J A, Warren DT et al: Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet 2007,16(23):2816-2833.
    29. Maraldi NM, Capanni C, Cenni V, Fini M, Lattanzi G:Laminopathies and lamin-associated signaling pathways. J Cell Biochem 2010.
    30. Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL:The nuclear lamina comes of age. Nat Rev Mol Cell Biol 2005,6(1):21-31.
    31. Attali R, Warwar N, Israel A, Gurt I, McNally E, Puckelwartz M, Glick B, Nevo Y, Ben-Neriah Z, Melki J:Mutation of SYNE-1, encoding an essential component of the nuclear lamina, is responsible for autosomal recessive arthrogryposis. Hum Mol Genet 2009,18(18):3462-3469.
    32. Ding X, Xu R, Yu J, Xu T, Zhuang Y, Han M:SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev Cell 2007, 12(6):863-872.
    33. Chi YH, Cheng LI, Myers T, Ward JM, Williams E, Su Q, Faucette L, Wang JY, Jeang KT:Requirement for Sunl in the expression of meiotic reproductive genes and piRNA. Development 2009,136(6):965-973.
    34. Sanes JR, Lichtman JW:Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2001,2(11):791-805.
    35. Bruusgaard JC, Liestol K, Ekmark M, Kollstad K, Gundersen K:Number and spatial distribution of nuclei in the muscle fibres of normal mice studied in vivo. JPhysiol 2003,551 (Pt 2):467-478.
    36. Starr DA, Fischer JA:KASH'n Karry:the KASH domain family of cargo-specific cytoskeletal adaptor proteins. Bioessays 2005, 27(11):1136-1146.
    37. Wilhelmsen K, Ketema M, Truong H, Sonnenberg A:KASH-domain proteins in nuclear migration, anchorage and other processes. J Cell Sci 2006,119(Pt 24):5021-5029.
    38. Starr DA:A nuclear-envelope bridge positions nuclei and moves chromosomes. J Cell Sci 2009,122(Pt 5):577-586.
    39. Grady RM, Starr DA, Ackerman GL, Sanes JR, Han M:Syne proteins anchor muscle nuclei at the neuromuscular junction. Proc Natl Acad Sci U SA 2005,102(12):4359-4364.
    40. Zhang X, Xu R, Zhu B, Yang X, Ding X, Duan S, Xu T, Zhuang Y, Han M: Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 2007,134(5):901-908.
    41. Puckelwartz MJ, Kessler E, Zhang Y, Hodzic D, Randles KN, Morris G, Earley JU, Hadhazy M, Holaska JM, Mewborn SK et al: Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice. Hum Mol Genet 2009,18(4):607-620.
    42. Worman HJ, Gundersen GG:Here come the SUNs:a nucleocytoskeletal missing link. Trends Cell Biol 2006,16(2):67-69.
    43. Kracklauer MP, Banks SM, Xie X, Wu Y, Fischer JA:Drosophila klaroid Encodes a SUN Domain Protein Required for Klarsicht Localization to the Nuclear Envelope and Nuclear Migration in the Eye. Fly (Austin) 2007, l(2):75-85.
    44. Luke Y, Zaim H, Karakesisoglou I, Jaeger VM, Sellin L, Lu W, Schneider M, Neumann S, Beijer A, Munck M et al: Nesprin-2 Giant (NUANCE) maintains nuclear envelope architecture and composition in skin. J Cell Sci 2008,121(Pt 11):1887-1898.
    45. Shao X, Tarnasky HA, Lee JP, Oko R, van der Hoorn FA:Spag4, a novel sperm protein, binds outer dense-fiber protein Odfl and localizes to microtubules of manchette and axoneme. Dev Biol 1999,211(1):109-123.
    46. Wigston DJ:Repeated in vivo visualization of neuromuscular junctions in adult mouse lateral gastrocnemius. JNeurosci 1990,10(6):1753-1761.
    47. Apel ED, Lewis RM, Grady RM, Sanes JR:Syne-1, a dystrophin-and Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction. J Biol Chem 2000,275(41):31986-31995.
    48. Forss-Petter S, Danielson PE, Catsicas S, Battenberg E, Price J, Nerenberg M, Sutcliffe JG:Transgenic mice expressing beta-galactosidase in mature neurons under neuron-specific enolase promoter control. Neuron 1990, 5(2):187-197.
    49. Mejat A, Decostre V, Li J, Renou L, Kesari A, Hantai D, Stewart CL, Xiao X, Hoffman E, Bonne G et al: Lamin A/C-mediated neuromuscular junction defects in Emery-Dreifuss muscular dystrophy. J Cell Biol 2009, 184(1):31-44.
    50. Lee KK, Starr D, Cohen M, Liu J, Han M, Wilson KL, Gruenbaum Y: Lamin-dependent localization of UNC-84, a protein required for nuclear migration in Caenorhabditis elegans. Mol Biol Cell 2002,13(3):892-901.
    51. Jaspersen SL, Martin AE, Glazko G, Giddings TH, Jr., Morgan G, Mushegian A, Winey M:The Sadl-UNC-84 homology domain in Mps3 interacts with Mps2 to connect the spindle pole body with the nuclear envelope. J Cell Biol 2006,174(5):665-675.
    52. McGee MD, Rillo R, Anderson AS, Starr DA:UNC-83 IS a KASH protein required for nuclear migration and is recruited to the outer nuclear membrane by a physical interaction with the SUN protein UNC-84. Mol Biol Cell 2006,17(4):1790-1801.
    53. Wang Q, Du X, Cai Z, Greene MI:Characterization of the structures involved in localization of the SUN proteins to the nuclear envelope and the centrosome. DNA Cell Biol 2006,25(10):554-562.
    54. Schaeffer L, de Kerchove d'Exaerde A, Changeux JP:Targeting transcription to the neuromuscular synapse. Neuron 2001,31(1):15-22.
    55. Tsai LH, Gleeson JG:Nucleokinesis in neuronal migration. Neuron 2005, 46(3):383-388.
    56. Wynshaw-Boris A:Lissencephaly and LIS1:insights into the molecular mechanisms of neuronal migration and development. Clin Genet 2007, 72(4):296-304.
    57. Tsai JW, Bremner KH, Vallee RB:Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nat Neurosci 2007, 10(8):970-979.
    58. Del Bene F, Wehman AM, Link BA, Baier H:Regulation of neurogenesis by interkinetic nuclear migration through an apical-basal notch gradient. Cell 2008,134(6):1055-1065.
    59. Lei K, Zhang X, Ding X, Guo X, Chen M, Zhu B, Xu T, Zhuang Y, Xu R, Han M:SUN1 and SUN2 play critical but partially redundant roles in anchoring nuclei in skeletal muscle cells in mice. Proc Natl Acad Sci USA 2009,106(25):10207-10212.
    60. Gros-Louis F, Dupre N, Dion P, Fox MA, Laurent S, Verreault S, Sanes JR, Bouchard JP, Rouleau GA:Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet 2007,39(1):80-85.
    61. Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD:Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 2007,8(6):427-437.
    62. Saito T, Nakatsuji N:Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 2001,240(1):237-246.
    63. Saito T:In vivo electroporation in the embryonic mouse central nervous system. Nat Protoc 2006,1(3):1552-1558.
    64. Chen G, Sima J, Jin M, Wang KY, Xue XJ, Zheng W, Ding YQ, Yuan XB: Semaphorin-3A guides radial migration of cortical neurons during development. Nat Neurosci 2008, 11(1):36-44.
    65. Hatten ME:Central nervous system neuronal migration. Annu Rev Neurosci 1999,22:511-539.
    66. Turner DL, Cepko CL:A common progenitor for neurons and glia persists in rat retina late in development. Nature 1987,328(6126):131-136.
    67. Blanks JC, Adinolfi AM, Lolley RN:Synaptogenesis in the photoreceptor terminal of the mouse retina. J Comp Neurol 1974,156(1):81-93.
    68. Hinds JW, Hinds PL:Differentiation of photoreceptors and horizontal cells in the embryonic mouse retina:an electron microscopic, serial section analysis. J Comp Neurol 1979,187(3):495-511.
    69. Young RW:Cell death during differentiation of the retina in the mouse. J Comp Neurol 1984,229(3):362-373.
    70. Young RW:Cell differentiation in the retina of the mouse. Anat Rec 1985, 212(2):199-205.
    71. Young RW:Cell proliferation during postnatal development of the retina in the mouse. Brain Res 1985,353(2):229-239.
    72. Baye LM, Link BA:Nuclear migration during retinal development. Brain Res 2008,1192:29-36.
    73. Frade JM:Interkinetic nuclear movement in the vertebrate neuroepithelium:encounters with an old acquaintance. Prog Brain Res 2002,136:67-71.
    74. Rich KA, Zhan Y, Blanks JC:Migration and synaptogenesis of cone photoreceptors in the developing mouse retina. J Comp Neurol 1997, 388(1):47-63.
    75. Carter-Dawson LD, La Vail MM:Rods and cones in the mouse retina. Ⅱ. Autoradiographic analysis of cell generation using tritiated thymidine. J Comp Neurol 1979,188(2):263-272.
    76. Szel A, Rohlich P, Caffe AR, Juliusson B, Aguirre G, Van Veen T:Unique topographic separation of two spectral classes of cones in the mouse retina. J Comp Neurol 1992,325(3):327-342.
    77. Soucy E, Wang Y, Nirenberg S, Nathans J, Meister M:A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina. Neuron 1998,21(3):481-493.
    78. Minn IL, Rolls MM, Hanna-Rose W, Malone CJ:SUN-1 and ZYG-12, mediators of centrosome-nucleus attachment, are a functional SUN/KASH pair in Caenorhabditis elegans. Mol Biol Cell 2009, 20(21):4586-4595.
    79. Zhang X, Lei K, Yuan X, Wu X, Zhuang Y, Xu T, Xu R, Han M:SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 2009,64(2):173-187.
    80. Tsujikawa M, Omori Y, Biyanwila J, Malicki J:Mechanism of positioning the cell nucleus in vertebrate photoreceptors. Proc Natl AcadSci USA 2007,104(37):14819-14824.
    81. Zhang J, Felder A, Liu Y, Guo LT, Lange S, Dalton ND, Gu Y, Peterson KL, Mizisin AP, Shelton GD et al: Nesprin 1 is critical for nuclear positioning and anchorage. Hum Mol Genet 2010,19(2):329-341.
    82. Zhu X, Li A, Brown B, Weiss ER, Osawa S, Craft CM:Mouse cone arrestin expression pattern:light induced translocation in cone photoreceptors. Mol Vis 2002,8:462-471.
    83. Sands MS, Barker JE:Percutaneous intravenous injection in neonatal mice. Lab Anim Sci 1999,49(3):328-330.
    84. Sakagami K, Gan L, Yang XJ:Distinct effects of Hedgehog signaling on neuronal fate specification and cell cycle progression in the embryonic mouse retina. JNeurosci 2009,29(21):6932-6944.
    85. Brzezinski JAt, Brown NL, Tanikawa A, Bush RA, Sieving PA, Vitaterna MH, Takahashi JS, Glaser T:Loss of circadian photoentrainment and abnormal retinal electrophysiology in Math5 mutant mice. Invest Ophthalmol Vis Sci 2005,46(7):2540-2551.
    86. Nikonov SS, Brown BM, Davis JA, Zuniga FI, Bragin A, Pugh EN, Jr., Craft CM:Mouse cones require an arrestin for normal inactivation of phototransduction. Neuron 2008,59(3):462-474.
    87. Brown BM, Ramirez T, Rife L, Craft CM:Visual Arrestin 1 contributes to cone photoreceptor survival and light adaptation. Invest Ophthalmol Vis Sci 2010,51(5):2372-2380.
    88. Kandel ER, Schwartz JH, Jessell TM:Principles of Neural Science (4th ed.). New York:McGraw-Hill 2000:507-513.
    89. Pugh ENJ, Falsini B, Lyubarsky:The origin of the major rod- and cone-driven components of the rodent electroretinogram, and the effect of age and light rearing history on the magnitudes of these components. In Photostasis and Related Topics, TP Williams and AB Thistle, eds 1998, (New York:Plenum):pp.93-128.
    90. King SJ, Schroer TA:Dynactin increases the processivity of the cytoplasmic dynein motor. Nat Cell Biol 2000,2(1):20-24.
    91. Fan SS, Ready DF:Glued participates in distinct microtubule-based activities in Drosophila eye development. Development 1997, 124(8):1497-1507.
    92. Whited JL, Cassell A, Brouillette M, Garrity PA:Dynactin is required to maintain nuclear position within postmitotic Drosophila photoreceptor neurons. Development 2004,131(19):4677-4686.
    93. Roux KJ, Crisp ML, Liu Q, Kim D, Kozlov S, Stewart CL, Burke B:Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. Proc Natl Acad Sci USA 2009,106(7):2194-2199.
    94. Fridolfsson HN, Ly N, Meyerzon M, Starr DA:UNC-83 coordinates kinesin-1 and dynein activities at the nuclear envelope during nuclear migration. Dev Biol 2010,338(2):237-250.
    95. Puckelwartz MJ, Kessler EJ, Kim G, Dewitt MM, Zhang Y, Earley JU, Depreux FF, Holaska J, Mewborn SK, Pytel P et al: Nesprin-1 mutations in human and murine cardiomyopathy. J Mol Cell Cardiol 2010, 48(4):600-608.
    96. Norden C, Young S, Link BA, Harris WA:Actomyosin is the main driver of interkinetic nuclear migration in the retina. Cell 2009,138(6):1195-1208.
    97. Schenk J, Wilsch-Brauninger M, Calegari F, Huttner WB:Myosin Ⅱ is required for interkinetic nuclear migration of neural progenitors. Proc Natl Acad Sci USA 2009,106(38):16487-16492.
    98. Vallee RB, Seale GE, Tsai JW:Emerging roles for myosin Ⅱ and cytoplasmic dynein in migrating neurons and growth cones. Trends Cell Biol 2009,19(7):347-355.
    99. Blanpain C, Mohrin M, Sotiropoulou PA, Passegue E:DNA-damage response in tissue-specific and cancer stem cells. Cell Stem Cell 2011, 8(1):16-29.
    100. Hediger F, Neumann FR, Van Houwe G, Dubrana K, Gasser SM:Live imaging of telomeres:yKu and Sir proteins define redundant telomere-anchoring pathways in yeast. Curr Biol 2002,12(24):2076-2089.
    101. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM: A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 2000,10(15):886-895.
    102. Yuan J, Adamski R, Chen J:Focus on histone variant H2AX:To be or not to be. FEBS Lett 2010.
    103. Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S et al:A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 1995,268(5218):1749-1753.
    104. Wang X, Khadpe J, Hu B, Iliakis G, Wang Y:An overactivated ATR/CHK1 pathway is responsible for the prolonged G2 accumulation in irradiated AT cells. J Biol Chem 2003,278(33):30869-30874.
    105. Stiff T, O'Driscoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA:ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 2004,64(7):2390-2396.
    106. Kumar A, Fernandez-Capetillo O, Carrera AC:Nuclear phosphoinositide 3-kinase beta controls double-strand break DNA repair. Proc Natl Acad Sci USA 2010,107(16):7491-7496.
    107. Zhivotovsky B, Kroemer G:Apoptosis and genomic instability. Nat Rev Mol Cell Biol 2004,5(9):752-762.
    108. d'Adda di Fagagna F:Living on a break:cellular senescence as a DNA-damage response. Nat Rev Cancer 2008,8(7):512-522.
    109. Liu B, Zhou Z:Lamin A/C, laminopathies and premature ageing. Histol Histopathol 2008,23(6):747-763.
    110. Gonzalez-Suarez I, Redwood AB, Perkins SM, Vermolen B, Lichtensztejin D, Grotsky DA, Morgado-Palacin L, Gapud EJ, Sleckman BP, Sullivan T et al: Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. EMBO J 2009,28(16):2414-2427.
    111. Haque F, Mazzeo D, Patel JT, Smallwood DT, Ellis JA, Shanahan CM, Shackleton S:Mammalian SUN protein interaction networks at the inner nuclear membrane and their role in laminopathy disease processes. J Biol Chem 2010,285(5):3487-3498.
    112. Li L, Sun L, Gao F, Jiang J, Yang Y, Li C, Gu J, Wei Z, Yang A, Lu R et al: Stk40 links the pluripotency factor Oct4 to the Erk/MAPK pathway and controls extraembryonic endoderm differentiation. Proc Natl Acad Sci U S A 2010,107(4):1402-1407.
    113. Wei F, Xie Y, He L, Tao L, Tang D:ERK1 and ERK2 kinases activate hydroxyurea-induced S-phase checkpoint in MCF7 cells by mediating ATR activation. Cell Signal 2011,23(1):259-268.
    114. Malhas A, Saunders NJ, Vaux DJ:The nuclear envelope can control gene expression and cell cycle progression via miRNA regulation. Cell Cycle 2010,9(3):531-539.
    115. Oza P, Jaspersen SL, Miele A, Dekker J, Peterson CL:Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev 2009,23(8):912-927.
    116. Misteli T, Soutoglou E:The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol 2009, 10(4):243-254.
    117. Khadaroo B, Teixeira MT, Luciano P, Eckert-Boulet N, Germann SM, Simon MN, Gallina I, Abdallah P, Gilson E, Geli V et al: The DNA damage response at eroded telomeres and tethering to the nuclear pore complex. Nat Cell Biol 2009, 11(8):980-987.
    118. Hetzer MW, Wente SR:Border control at the nucleus:biogenesis and organization of the nuclear membrane and pore complexes. Dev Cell 2009, 17(5):606-616.
    119. Mekhail K, Seebacher J, Gygi SP, Moazed D:Role for perinuclear chromosome tethering in maintenance of genome stability. Nature 2008, 456(7222):667-670.
    120. Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S et al: A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 2004,6(2):97-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700