移动机器人导航中的轨迹跟踪与群集运动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,移动机器人研究受到控制和人工智能等领域学者的广泛关注。目前,现代移动机器人进入了一个崭新的研究阶段,在工业、农业、国防、服务和科学研究等方面得到了广泛应用,以代替人类完成很多繁重或恶劣条件下无法胜任的工作。本文的研究工作紧密围绕轮式移动机器人导航中的轨迹跟踪和群集运动控制两大关键技术展开。在第一部分研究内容中,重点研究约束非理想情况下轮式移动机器人的数学模型和轨迹跟踪控制,分别针对运动学和动力学模型提出了新的轨迹跟踪控制算法,以提高移动机器人的轨迹跟踪精度。在第二部分研究工作中,为解决未知环境下移动机器人的自主导航和群集运动控制问题,将虚拟子目标和禁忌搜索算法引入到机器人路径规划技术中,提出相应的自主导航和群集运动控制算法,对改善导航效率和推动机器人由半自主式向智能型发展有十分重要的意义。论文的主要研究工作和成果如下:
     1、建立了约束非理想情况下双轮差分驱动轮式移动机器人的运动学模型、动力学模型和驱动模型,为移动机器人轨迹跟踪控制、未知环境下自主导航和群集运动控制研究奠定了基础。
     2、通过对约束非理想情况下轮式移动机器人轨迹跟踪问题的研究,得到了以两独立驱动轮角速度为控制输入的机器人运动学模型。针对模型中存在的未知参数,采用反演设计和滑模控制的方法给出了自适应滑模轨迹跟踪控制律,并利用Lyapunov稳定性理论证明了轨迹跟踪误差的全局一致渐近稳定性。
     3、针对动力学模型描述的约束非理想轮式移动机器人系统,提出了一种全局渐近稳定的自适应积分滑模控制律。该方法首先借助运动学模型设计了中间辅助控制变量,然后利用反演技术和积分滑模控制的思想设计了自适应积分滑模控制律,可实现移动机器人轨迹跟踪的要求。最后通过仿真算例验证了控制律的有效性和正确性。
     4、为提高轨迹跟踪性能,在轮式移动机器人动力学模型的基础上进一步考虑驱动模型的影响,在以电机电压为控制输入、存在不确定参数和外界干扰时,设计了一种自适应轨迹跟踪控制律,以满足移动机器人的高精度轨迹跟踪要求。
     5、针对未知环境下纯粹的反应式导航算法缺少“预见性”的缺点,设计了一种基于虚拟子目标的轮式移动机器人主动寻径导航算法。该算法利用禁忌搜索算法识别感知域内的优化子目标,并采用模糊控制的方法对子目标进行跟踪,以逐步渐进的方式实现无碰路径优化并到达最终目标。仿真和实验结果验证了所设计导航算法的有效性和正确性。
     6、针对群集运动系统在非规则障碍物的未知环境中运行时容易陷入局部极小的问题,将个体扩展为具有记忆能力的智能个体,提出了一类基于虚拟子目标的Leader-Follower智能群体避障和群集运动控制策略,并通过动力学分析和虚拟力分解使基于智能体的群集控制律转化到多移动机器人系统,实现了多移动机器人在未知障碍物环境下的群集运动控制。
With the development of science and technology, autonomous mobile robotshave attracted many researchers from the control and artificial intelligence community.Recently, modern mobile robots have entered a new research stage, and have beenapplied to many fields, such as industry, agriculture, national defence, service,scientific research and so on. The intelligent mobile robots are capable of performingsome disgusting, heavy or harsh tasks historically assigned to human beings. In thisdissertation, we mainly concentrate on two main control techniques of trajectorytracking and flocking motion for the autonomous navigation of wheeled mobile robots.In the first part, we focus on the modeling and trajectory tracking control of wheeledmobile robot with non-ideal constraint. Moreover, the novel trajectory trackingcontrol algorithms based on kinematic and dynamic model respectively are present toimprove the accuracy of trajectory tracking for the wheeled mobile robot. In thesecond part, we investigate the problem of autonoumous navigation and flockingmotion control in unknown condition. In order to explore new approaches ofautonomous navigation and promote the intelligence of half an autonomous mobilerobot, we introduce the virtual sub-goal and tabu search algorithm to path planningtechniques of mobile robot, and propose the corresponding algorithms of autonomousnavigation and flocking motion control for mobile robots. The main research workand contributions of the dissertation are summarized as follows:
     1. For wheeled mobile robot with two independent driven wheel angularvelocities and non-ideal constraint, the kinematic model, dynamic model and drivenmodel of mobile robot are established for the research purposes and foundation oftrajectory tracking control, autonomous navigation and flocking motion control inunknown environment.
     2. A robot kinematic model with two independent driven wheel angular velocitiesas control inputs is obtained by analyzing the trajectory tracking problem for wheeledmobile robot whose mass centers are not coincidental with the geometrical centers.For the unknown wheel radius and the distance between the two driving wheels, anadaptive sliding-mode tracking control law is proposed by employing backsteppingmethod and sliding-mode control. The global asymptotically stability of the closedloop system is guaranteed by Lyapunov stability theory.
     3. In order to solve the trajectory tracking problem for the dynamic model of mobile robot with non-ideal constraint, an adaptive integral sliding-mode control lawis proposed in this chapter. A virtual control variable is firstly introduced according tothe kinematic model. Then an adaptive sliding-mode controller is designed byemploying backstepping technique and intergral sliding-mode control algorithm,which can realize the trajectory tracking requirements with strong robustness. Finally,the effectiveness and correctiveness of the proposed control law are demonstrated bysimulation examples.
     4. On the basis of the dynamic model for wheeled mobile robot, the driven motordynamics is taken into account further to improve the performance of trajectorytracking. By employing the voltage of motor as control input, an adaptive trajectorytracking control law for mobile robot system with uncertain inertia parameters,uncertain structure parameters and external disturbance is presented for this case toensure robustness to the uncertainty of model parameters. The proposed control lawcan guarantee that the mobile robot will track the desired trajectory accurately.
     5. Due to the lack of predictability by using reactive navigation algorithm inunknown condition, an active routing navigation algorithm based on sub-goal isdesigned for mobile robot. By analyzing the data collected by laser radar and usingtabu search algorithm, the above algorithm can identify the optimized sub-goal. Thenthe mobile robot can realize the free-obstacle and optimization path based on fuzzylogic control method by gradual way. Simulation and experiment results show that theproposed algorithm is correct and effective.
     6. In order to solve the local minimum problem encounted within variousflocking systems in unexpected and irregular obstacle environment, the virtualsub-goal based flocking motion and obstacle avoidance control strategy is proposedby giving individual agents some limited memories. By considering the dynamicanalysis and virtual force decomposition, an overall control algorithm of multi-robotsgroup is devised by transforming the agent-based flocking control strategy. Themulti-robots group can be more effieient to achieve flocking motion in obstacleenvironment.
引文
[1]蔡自兴.机器人学[M].北京:清华大学出版社,2000.
    [2]张毅,罗元,郑太雄.移动机器人技术及应用[M].北京:电子工业出版社,2007.
    [3]蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制理论与方法[M].北京:科学出版社,2009.
    [4]王田苗.走向产业化的先进机器人技术[J].中国制造业信息化,2005,34(10):24-25.
    [5] H. Durrant-Whyte. Where am I? A Tutorial on Mobile Vehicle Localization [J].Industrial Robots,1994,21(2):11-16.
    [6]李磊,叶涛,谭民,等.移动机器人技术研究现状与未来[J].机器人,2002,24(5):475-480.
    [7]徐德,邹伟.室内移动式服务机器人的感知、定位与控制[M].北京:科学出版社,2008.
    [8]郝宗波.家庭移动服务机器人的若干关键技术研究[D].哈尔滨:哈尔滨工业大学,2006.
    [9]何富君.基于多传感器的室内移动机器人环境感知关键技术研究[D].哈尔滨:哈尔滨工业大学,2008.
    [10] N. Nilsson. A Mobile Automation: an Application of Artificial IntelligenceTechniques[C]. Proceedings of the1stInternational Joint Conference on ArtificialIntelligence,1969:233-239.
    [11] A. Behar, F. Carsey, J. Matthews, et al. An Antaretic Deployment of theNASA/JPL Tumbleweed Polar Rover[C]. Proeeedings of the World AutomationCongress,2004:453-460.
    [12] H. Moravee. The Stanford Cart and the CMU Rover in Autonomous RobotVehieles [M]. Springer-Verlag,1990.
    [13] G. Giralt. A Multi-Level Planning and Navigation System for a Mobile: A FirstApproach to HILARE[C]. Proceedings of6thInternational Joint Conference onArtificial intelligence,1979:335-337.
    [14] P. R. Christensen, S. W. Ruff, R. L. Fergason, et al. Initial Results from theMini-TES Experiment in Gusev Crater from the Spirit Rover[J]. Science,2004,305(5685):837-842.
    [15] S. Thrun, S. Thayer, W. Whittaker, et al. Autonomous Exploration and Mappingof Abandoned Mines: Software Architecture of an Autonomous RoboticSystem[J]. IEEE Roboties and Automation Magazine,2004,11(4):79-91.
    [16] Ura Tamaki, Obara Takashi, Nagahashi Kenji, et al. Introduction to an AUV“r2D4” and its Kuroshima Knoll Survey Mission[C]. Proceedings of theMTS/IEEE Conference on Techno-Ocean’04: Bridges across the Oceans,2004:840-845.
    [17] F. Capezio, F. Mastrogiovanni, A. Scalmato, et al. Mobile Robots in HospitalEnvironments: an Installation Case Study[C]. Proceedings of EuropeanConference on Mobile Robots,2011:1-7.
    [18] ActivMedia Robotics Inc. Pioneer3Operations Manual[Z].2004.
    [19] C. Martens, N. Ruchel, O. Lang, et al. A Friend for Assisting HandicappedPeople [J]. IEEE Robotics and Automation Magazine,2001,8(1):57-65.
    [20] F. Mondada, E. Franzi, P. Ienne. Mobile Robot Miniaturization: a Tool forInvestigation in Control Algorithms[C]. Proceedings of the3rdInternationalSymposium on Experimental Robotics,1993:1472-1478.
    [21] Sakagami Yoshiaki, Watanabe Ryujin, Aoyama Chiaki, et al. The IntelligentASIMO: System Overview and Integration[C]. Proceedings of the2002IEEE/RSJ International Conference on Intelligent Robots and Systems,2002:2478-2483.
    [22]张朋飞,何克忠,欧阳正柱,等.多功能室外智能移动机器人实验平台THMR-V[J].机器人,2002,24(2):97-101.
    [23]刘正元,李一平.“CR-02”AUV无动力下潜运动预报[J].机器人,2002,24(5):385-388.
    [24]王荣本,储江伟,冯炎,等.一种视觉导航的实用型AGV设计[J].机械工程学报,2002,38(11):135-138.
    [25]王田苗.国家863计划先进制造与自动化技术领域机器人技术主题发展战略的若干思考[J].机器人技术与应用,2002,(3):2-7.
    [26] http://www.hhrobot.com/nry.asp?id=3340.
    [27] Weidong Chen, Jianqiang Jia, Bo Sun, et al. Frontier-I: An Autonomous MobileRobot for Multi-robot Tasks[C]. Proceedings of the World Congress onIntelligent Control and Automation (WCICA),2004:4676-4680.
    [28]刘海波,顾国昌,张国印.智能机器人体系结构分类研究[J].哈尔滨工程大学学报,2003,24(6):664-668.
    [29] S. Berman, Y. Edan, M. Jamshidi. Navigation of Decentralized AutonoumousAutomatic Guided Vehicles in Material Handling[J]. Robotics and Automation,2003,19(4):743-749.
    [30] I. Kolmanovsky, N. H. Mcclamroch. Developments in Nonholonomic ControlProblems[J]. IEEE Control Systems Magzine,1995,15(6):20-35.
    [31]雷小康.未知环境下移动机器人实时路径规划算法研究[D].西安:长安大学,2009.
    [32]尚文.以视觉传感为主的移动机器人定位导航和环境建模[D].南京:东南大学,2005.
    [33]孙华,杨鹃.多传感器信息融合在移动机器人上的应用[J].工矿自动化,2005,(2):22-25.
    [34]高志军,颜国正,丁国清,等.多机器人协调与合作系统的研究现状和发展[J].光学精密工程,2001,9(2):99-103.
    [35]王越超,谈大龙.协作机器人学的研究现状与发展[J].机器人,1998,20(1):69-75.
    [36] R. W. Brockett. Differential Geometric Control Theory [M]. Boston: Burkhauser,1983.
    [37] A. Astolfi. Exponential Stabilization of a Wheeled Mobile Robot viaDiscontinuous Control[J]. Journal of Dynamic Systems, Measurement, andControl,1999,121(1):121-126.
    [38] N. Marchand, M. Alamir. Discontinuous Exponential Stabilization of ChainedForm Systems[J]. Automatica,2003,39(2):343-348.
    [39] Z. Xi, F. Gang, Z. P. Jiang, et al. A Switching Algorithm for Global ExponentialStabilization of Uncertain Chained Systems[J]. IEEE Transactions on AutomaticControl,2003,48(10):1793-1798.
    [40] Y. Hong, J. Wang, Z. Xi. Stabilization of Uncertain Chained Form Systemswithin Finite Settling Time[J]. IEEE Transactions on Automatic Control,2005,50(9):1379-1384.
    [41]李传峰,王朝立.一类不确定非完整运动学系统的鲁棒镇定[J].北京航空航天大学学报,2007,33(4):427-430.
    [42]李胜,马国梁,陈庆伟,等.一类不确定非完整机器人的不连续自适应镇定[J].哈尔滨工业大学学报,2007,39(1):161-164.
    [43]马海涛,谢圆,王永,等.一类参数不确定非完整移动机器人的鲁棒镇定[J].中国科技大学学报,2009,39(9):990-995.
    [44] Y. Kanayama, Y. Kimura, F. Miyazaki, et al. A Stable Tracking Control Methodfor an Autonomous Mobile Robot[C]. Proceedings of IEEE Conference onRobotics and Automation,1990:384-389.
    [45] G. Walsh, D. Tilbury, S. Sastry, et al. Stabilization of Trajectories for Systemswith Nonholonomic Constrains[J]. IEEE Transactions on Automatic Control,1994,39(1):216-222.
    [46] M. Fliess, J. Levine, P. Martin, et al. Flatness and Defect of Nonlinear Systems:Introductory Theory and Examples[J]. International Journal of Control,1995,61(6):1327-1361.
    [47] D. H. Kim, J. H. Oh. Globally Asymptotically Stable Tracking Control of MobileRobot [C]. Proceedings of the1998IEEE International Conference on ControlApplications,1998: l297-1301.
    [48] Z. P. Jiang, H. Nijmeijer. Tracking Control of Mobile Robots: A Case Study inBackstepping[J]. Automatica,1997,33(7):1393-1399.
    [49]吴卫国,陈辉堂,王月娟.移动机器人的全局轨迹跟踪控制[J].自动化学报,2001,27(3):326-331.
    [50] R. Fierro, F. L. Lewis. Control of a Nonholonomic Mobile Robot: BacksteppingKinematic into Dynamics[C]. Proceedings of IEEE Conference on Decision andConrol,1994:3475-3480.
    [51] B. S. Park, S. J. Yoo, J. B. Park, et al. A Simple Adaptive Control Approach forTrajectory Tracking of Electrically Driven Nonholonomic Mobile Robots[J].IEEE Transactions on Control Systems Technology,2010,18(5):1199-1196
    [52] P. Farzad, P. K. Mattias. Adaptive Control of Dynamic Mobile Robot withNonholonomic Constraints[J]. Computers and Electrical Engineering,2002,28(4):241-253.
    [53]闫茂德,吴青云,贺昱曜.非完整移动机器人的自适应滑模轨迹跟踪控制[J].系统仿真学报,2007,19(3):579-581,584.
    [54]陈晓鹏,李成荣,李功燕,等.基于动力学模型的轮式移动机器人电机控制[J].机器人,2008,30(4):326-332.
    [55]邹细勇,徐德,李子印.非完整移动机器人路径跟踪的模糊控制[J].控制与决策,2008,23(6):655-659.
    [56] J. J. Leonard, H. F. Durrant-Whyte. Directed Sonar Sensing for Mobile RobotNavigation[M]. Dordrecht: Kluwer Academic Publisher,1992.
    [57] S. M. Lavalle. Planning algorithms[M]. Cambridge: Cambridge University Press,2006.
    [58] O. Khatib. Real-time Obstacle Avoidance for Manipulators and Mobile Robots[J].International Journal of Robotics Research,1986,5(1):90-98.
    [59]蔡成涛,朱齐丹.基于模糊控制器的移动机器人路径规划仿真[J].计算机仿真,2008,25(3):182-185,284.
    [60]宗光华.未知环境中移动机器人实时导航与避障的分层模糊控制[J].机器人,2005,27(6):481-485.
    [61]张纯刚,席裕庚.全局环境未知时基于滚动窗口的机器人路径规划[J].中国科学(E),2001,31(1):51-58.
    [62]席裕庚.一种克服振荡与局部极小的机器人实时路径规划方法[J].自动化学报,2003,29(2):197-205.
    [63]仲朝亮,刘世荣.基于虚拟子目标的移动机器人主动寻径导航[J].机器人,2009,31(6):548-555.
    [64]张鑫,闫茂德,刘玉东等.未知环境下基于禁忌搜索的移动机器人自主导航[C].2010年中国控制会议(CCC2010),2010:369-372.
    [65]谭民,王硕,曹志强.多机器人系统[M].北京:清华大学出版社,2005.
    [66]原魁,李园,房立新.多移动机器人系统研究发展近况[J].自动化学报,2007,33(8):785-794.
    [67] C. Reynolds. Flocks, Birds, and Schools: A Distributed Behavioral Model[J].Computer Graphics,1987,21(4):25-34.
    [68] H. G. Tanner, A. Jadbabaie, G. J. Pappas. Stable Flocking of Mobile Agents, PartI: Fixed Topology[C]. Proceedings of the42ndIEEE Conference on Decision andControl,2003:2010-2015.
    [69] H. G. Tanner, A. Jadbabaie, G. J. Pappas. Stable Flocking of Mobile Agents, PartII: Dynamic Topology[C]. Proceedings of the42ndIEEE Conference on Decisionand Control,2003:2015-2021.
    [70] H. G. Tanner. Flocking with Obstacle Avoidance in Switching Networks ofInterconnected Vehicles[C]. Proceedings of IEEE International Conference onRobotics and Automation,2004:3006-3011.
    [71] R. O. Saber. Flocking for Multi-agent Dynamic Systems: Algorithms andTheory[J]. IEEE Transactions on Automatic Control,2006,51(3):401-420.
    [72] Long Wang, Hong Shi, Tianguang Chu. Flocking Control of Groups of MobileAutonomous Agents via Local Feedback[C] Proceedings of the2005IEEEInternational Symposium on Intelligent Control,2005:441-446.
    [73]王冬梅,方华京.基于虚拟领航者的智能群体群集运动控制[J].华中科技大学学报(自然科学版),2008,36(10):5-7.
    [74]胡跃明,周其节,裴海龙.非完整控制系统的理论与应用[J].控制理论与应用,1996,13(1):1-10.
    [75] M. M. Richard, S. Shankar. Nonholonomic Motion Planning: Steering UsingSinusoids[J]. IEEE Transanctions on Automatioc Control,1993,38(5):700-716.
    [76] R. M. Murray, Z. X. Li, S. S. Sastry. A Mathematica Introduction to RoboticManipulation[M]. Boca Raton: CRC Press,1994.
    [77]吴克河,李为,柳长安,等.双轮驱动式移动机器人动力学控制[J].宇航学报,2006,27(2):272-275.
    [78]李胜,王铁卿,陈庆伟,等.一类非完整移动机器人全局轨迹跟踪控制[J].中南大学学报(自然科学版),2007,38(S1):440-444.
    [79] J. E. Slotine, W. Li.应用非线性控制:英文影印版[M].北京:机械工业出版社,2006.
    [80] M. Kristic, I. Kanellakopoulous, P. V. Kokotovic. Nonlinear and AdaptiveControl Design[M]. New York: Wiley,1995.
    [81] M. S. Kim, J. H. Shin, S. G. Hong, et al. Designing a Robust Adaptive DynamicController for Nonholonomic Mobile Robots under Modeling Uncertainty andDisturbances[J]. Mechatronics,2003,13:507-519.
    [82] C. Y. Chen, T. H. S. Li, Y. C. Yeh, et al. Design and Implementation of anAdaptive Sliding-mode Dynamic Controller for Wheeled Mobile Robots[J].Mechatronics,2009,19(2):156-166.
    [83] S. S. Ge, Y. J. Cui. Dynamic Motion Planning for Mobile Robots Using PotentialField Method[J]. Autonomous Robots,2002,13(3):207-222.
    [84]肖本贤,余雷,李善寿,等.逃逸人工势场法局部极小值策略的研究[J].系统仿真学报,2007,19(19):4495-4498.
    [85]于振中,闫继宏,赵杰,等.改进人工势场法的移动机器人路径规划[J].哈尔滨工业大学学报,2011,43(1):50-55.
    [86] J. B. Mbede, X. H. Huang, M. Wang. Fuzzy Motion Planning Among DynamicObstacle Using Artificial Potential Field for Robot Manipulators[J]. Robotics andAutomations Systems,2000,32(1):61-72.
    [87]刘宏林,罗杨宇,李成荣.基于模糊控制器的未知环境下移动机器人导航[J].计算机仿真,2011,28(1):201-205.
    [88]邢军,王杰.神经网络在移动机器人路径规划中的应用研究[J].微计算机信息,2005,21(11):110-112.
    [89]朱毅,张涛,程农,等.动态环境下基于子目标的移动机器人路径规划方法[J].系统仿真学报,2010,22(S1):254-257.
    [90] X. Y. Zou, J. Zhu. Virtual Local Target Method for Avoiding Local Minimum inPotential Field Based Robot Navigation[J]. Journal of Zhejiang University(Science),2003,4(3):264-269.
    [91] K. M. Krishna, P. K. Kalra. Solving the Local Minima Problem for a MobileRobot by Classification of Spatio-temporal Sensory Sequences[J]. Journal ofRobotic Systems,2000,17(10):549-564.
    [92]王立新.模糊系统与模糊控制教程[M].北京:清华大学出版社,2003.
    [93] H. P. Huang, P. C. Lee, A Real-time Algorithm for Obstacle Avoidance ofAutonomous Mobile Robots[J]. Robotica,1992,10(3):217-227.
    [94] I. Kamon, E. Rivlin. Sensory-based Motion Planning with Global Proofs[J].IEEE Transactions on Robotics and Automation,1997,13(6):814-822.
    [95] H. Maaref, C. Barret. Sensor-based Navigation of a Mobile Robot in an IndoorEnvironment[J]. Robotics and Autonomous Systems,2002,38(1):1-18.
    [96] B. H. Krogh, D. Feng. Dynamic Generation of Subgoals for Autonomous MobileRobots Using Local Feedback information[J]. IEEE Transactions on AutomaticControl,1989,34(5):483-493.
    [97] M. H. Mabrouk, C. R. Mclnnes. Solving the Potential Field Local MinimumProblem Using Internal Agent States[J]. Robotics and Autonomous System,2008,56(12):1050-1060.
    [98] C. Zhang, Y. Xi. Robot Rolling Path Planning Based on Locally DetectedInformation[J]. Acta Automatica Sinica,2003,29(1):38-44.
    [99] X. Yang, M. Moallem, R. V. Patealn. A Layered Goal-oriented Fuzzy MotionPlanning Strategy for Mobile Robot Navigation[J]. IEEE Transactions onSystems, Man and Cybernetics,2005,35(6):1214-1224.
    [100] C. Ye, P. Webb. A Sub-goal Seeking Approach for Reactive Navigation inComplex Unknown Environments[J]. Robotics and Autonomous Systems,2009,57(9):877-888.
    [101] M. Wang, J. N. K. Liu. Fuzzy Logic-based Real-time Robot Navigation inUnknown Environment with Dead Ends[J]. Robotics and Autonomous Systems,2008,56(7):625-643.
    [102]王凌,郑大钟. Meta-heuristic算法研究进展[J].控制与决策,2000,15(3):257-262.
    [103] F. Glover, E. Taillard, D. D. Werra. A User’s Guide to Tabu Search[J]. Annalsof Operations Research.1993,41(1):3-28.
    [104] F. Glover. Tabu Search Fundamentals and Uses[R].1995.
    [105] S. Hanafi. On the Convergence of Tabu Search[J]. Journal of Heuristics,2001,7(1):1381-1231.
    [106] E. Masehian, M. R. Amin-Naseri. Sensor-based Robot Motion Planning-A TubaSearch Approach[J]. IEEE Robotics and Automation Magazine,2008,15(2):48-57.
    [107] H. G. Tanner, A. Jadbabaie, G. J. Pappas. Flocking in Fixed and SwitchingNetworks [J]. IEEE Transactions on Automatic Control,2007,52(5):863-868.
    [108] H. Yu, Y. Wang. Stable Flocking Motion of Mobile Agents Following a LeaderInfixed and Switching Networks[J]. Intemational Journal of Automation andComputing,2006,3(l):8-16.
    [109] Dongbing Gu, Zongyao Wang. Leader–follower Flocking: Algorithms andExperiments[J]. IEEE Transactions on Control Systems Technology,2009.17(5):1211-1219.
    [110]王冬梅,方华京.基于虚拟领航者的智能群体群集运动控制[J].华中科技大学学报(自然科学版),2008,36(10):5-7.
    [111]程磊,朱全民,吴怀宇,等.融合沿墙行为的多移动机器人有序化多模态群集运动控制[J].控制与决策,2011,26(3):477-480.
    [112] R. O. Saber, R. M. Murray. Flocking with Obstacle Avoidance: Cooperationswith Limited Communication in Mobile Networks[C]. IEEE Conference onDecision and Control,2003:2022-2028.
    [113] H. Shi, L. Wang, T. Chu. Virtual Leader Approach to Cordinated Control ofMultiple Mobile Agents with Asymmetric Interactions[J]. Physica D,2006,213(1):51-65.
    [114]王冬梅,方华京.全局未知环境下智能群体群集运动与避障控制[J].系统工程与电子技术,2008,30(9):1744-1747.
    [115]任孝平,蔡自兴,陈爱斌.多移动机器人通信系统研究进展[J].控制与决策,2010,25(3):327-332.
    [116] L. Chaimowi. Dynamic Coordination of Cooperative Robots: A Hybrid SystemsApproach[D]. Universidade Federal de MinasGerais,2002.
    [117] L. Chaimowiez, A. Cowley, V. Sabella, et al. A Distributed Framework forMulti-robot Perception and Control[C]. Proceedings of IEEE/RJS IntemationalConference on Intelligent Robots and Systems,2003:266-271.
    [118]陈林星,曾曦,曹毅.移动Ad_Hoc网络—自组织分组无线网络技术[M].北京:电子工业出版社,2006.
    [119]靳洋,张毅.基于无线Ad_Hoc网络的多移动机器人系统[J].重庆邮电学院学报(自然科学版),2006,18(S1):143-144.
    [120]任孝平,蔡自兴,陈爱斌.基于TCP传输的移动自组网路由协议性能分析[J].计算机科学,2008,35(4):74-77.
    [121]刘洛琨,张远,许家栋. AODV与DSDV路由协议性能仿真与比较[J].计算机仿真,2006,23(2):118-120.
    [122]程磊.多移动机器人协调控制系统的研究与实现[D].武汉:华中科技大学,2005.
    [123]程磊,俞辉,吴怀宇,等.一类有序化多移动机器人群集运动控制系统[J].控制理论与应用,2008,25(6):1117-1120,1127.
    [124]黄景博.移动Ad_Hoc网络的节能路由协议研究[D].合肥:中国科技大学,2007.
    [125]樊玮虹,刘云辉,李莹莹,等.基于移动通讯网络和机器人群的分布式主动传感系统实验平台[J].2005,27(6):486-490.
    [126]宋梅萍,顾国昌,张汝波.多移动机器人协作任务的分布式控制系统[J].机器人,2003,25(5):456-460.
    [127]田创建.基于网络的移动机器人远程控制系统研究[D].杭州:浙江工业大学,2005.
    [128]李娜.非完整移动机器人鲁棒轨迹跟踪控制研究[D].北京:中国石油大学,2008.
    [129]陈垚光,毛涛涛,王正林,等.精通MATLAB GUI设计[M].北京:电子工业出版社,2008.
    [130]张志涌.精通Matlab6.5版教程[M].北京:北京航空航天大学出版社,2003.
    [131]高为炳.变结构控制理论基础[M].北京:科学出版社,1996.
    [132] C. Godsil, G. Royle. Algebraic graph theory[M]. Berlin: Springer-Verlag,2001.
    [133] Kurt Konolige. Saphira Tutoria Motion Control: Direct Control and BehavioralActions Software Version8.1(Saphira/Aria),2002.
    [134] Jeanne Dietsch. ActivMedia Robotics Educator’s Guide to Robots[Z],2001.
    [135]易君. Visual C++.NET网络编程[M].中国铁道出版社,2003.
    [136]汪晓平,刘韬. Visual C++6.0开发网络典型应用实例导航[M].人民邮电出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700