一、抗结肠癌中草药活性成分的分离纯化及其作用机理的研究 二、线虫Haemonchus contortus脂肪酸结合蛋白的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤是威胁人类健康和导致死亡的主要原因之一,在过去的10年间,全球癌症发病率增长了22%,并呈逐年上升的趋势。由于目前对于大多数恶性肿瘤来说还没有根治的方法,因此恶性肿瘤仍将继续威胁人类的健康。结肠癌是消化道中最常见的恶性肿瘤之一,是仅次于肺癌的第四大杀手。目前临床上主要采用手术治疗、放疗和化疗来治疗晚期结肠癌病人,但是放疗或化疗毒副作用太大,驱邪伤正,不仅能杀伤肿瘤细胞,也能大量杀伤正常细胞,从而产生严重的副作用导致治疗失败,具有明显的局限性。这就迫使人们继续去寻找毒性低、副作用小的抗癌药物,而中国传统中草药中丰富的天然产物则是重要的筛选来源。目前应用的抗肿瘤活性药物多数是由来源于中药或植物药的先导化合物改造而来,这些天然产物为设计更理想的新药提供了结构独特的前体。它们通过不同的作用机理发挥治疗或预防肿瘤的作用,使天然产物的多样性发挥出抗癌作用的多样性。因此从中药或植物药中发现有效抗结肠癌的新药具有重要的科学意义和巨大的市场前景。
     水线草为茜草科植物水线草Oldenlandia(Hedyotis)corymbosa L.的全草,又称伞房花耳草、蛇舌草,在我国分布广泛,具有清热解毒,利湿消肿、抗肿瘤以及提高机体免疫力等功效,临床常用于治疗咽喉肿痛、湿热黄疸、毒蛇咬伤以及胃癌、食管癌、肠癌、鼻咽癌等恶性肿瘤。近年来,水线草在抗肿瘤方面的作用引起了药学工作者的关注,也得到了国内外学者部分研究结果的支持。据报道,水线草在传统水线胃安复方中是作为君药用于慢性胃炎、肠道肿瘤等方面的临床治疗,效果显著。另外,水线草也具有抑制植入皮下肿瘤的作用,且能显著促进白细胞放射性损伤后的恢复。本实验的前期工作则发现水线草粗提物可以抑制结肠癌细胞体外的增殖、抑制鸡胚绒毛尿囊膜(CAM)新生血管的生成,显示出明显的抗肿瘤活性。这些研究结果均表明水线草具有抑制肿瘤的作用。目前对水线草中抗肿瘤活性的化学成分知之甚少,对其抗肿瘤作用的研究大部分仍然停留在复合成分阶段,因而,在水线草中获得结构新颖的具有抗结肠癌活性的化合物就成为可能。本实验中,我们在生物活性的指导下对水线草的化学成分进行了分离、纯化及鉴定,并找出了其中具有抗结肠癌活性的单体化合物,为进一步的研究奠定了基础。
     柘木为桑科构棘属(Cudrania tricuspidata(Carr.)Bur)植物,广泛分布于我国各地。柘木的干燥根及木材在传统医学中主要有清热凉血,舒筋活络的作用。除了传统的应用领域外,近代民间开始将柘木用于消化道肿瘤治疗。例如,浙江民间流传用柘木根水煎液来治疗癌症;上世纪70年代柘木被制成糖浆和注射剂用于临床治疗晚期消化道肿瘤,结果显示其能显著减轻化疗药物对免疫功能的抑制和损害从而降低化疗的毒副作用。另外,柘木也是已申请专利的抗癌中成药“生命之星”中的主要药材之一。临床试验证明,柘木对各种癌症均有较好的疗效并且毒副作用较小。柘木全株中含有黄酮类、生物碱及杂蛋白、鞣质、多糖等多种成分。随着柘木在肿瘤治疗上应用的扩大,近年来国内外学者开始投身于柘木化学成分与其药理研究中,并取得了一定进展。Isoalvaxanthone(IAX)和Cudratricusxanthone G(CTXG)是从柘木中分离得到的两个结构新颖的(口山)酮类化合物。前期工作表明,IAX和CTXG显示出明显的抑制消化道癌细胞生长的作用。本实验在前期工作的基础上对柘木的活性成分IAX和CTXG进行了抗结肠癌活性的鉴定并对它们的作用机理进行了研究。
     本论文主要分成以下几个部分:
     一、水线草化学成分的分离、纯化与结构鉴定
     首先,我们采用正、反相柱层析的方法在抗结肠癌活性的指导下对水线草中的化学成分进行了分析、分离及纯化,得到活性单体化合物。其次,利用核磁共振及各种波谱方法对分离所得的单体化合物进行了化学结构的鉴定,共得到了23个化合物,包括3个新的环烯醚萜苷类化合物和20个已知化合物,为进一步研究奠定了基础。
     二、水线草抗结肠癌活性成分的鉴定及作用机理
     首先,通过多种活性鉴定的方法分别检测了不同分离阶段的水线草提取物对结肠癌细胞的存活率、细胞形态、细胞周期分布等多方面的影响,评估了各样品的体外抗结肠癌活性,为活性成分的分离提供了方向。其次,对最后分离得到的23个单体化合物进行了活性鉴定,发现其中有4个化合物具有显著的抗结肠癌活性。它们是槲皮素、香豆素化合物Hedyotiscone A、β-谷甾醇和丁香酸,IC_(50)分别为104.3μg/ml、154.2μg/ml、104.5μg/ml、112.9μg/ml。其中,香豆素化合物HedyotisconeA虽为已知化合物,但尚未有过关于其生物活性的报道。我们分别对这四种化合物的抗结肠癌机理进行了初步研究,结果发现它们均能诱导结肠癌细胞凋亡。其中,经HedyotisconeA处理过的结肠癌细胞HCT-8及RKO的细胞周期被阻断,并出现细胞核染色质皱缩等明显的凋亡特征,说明HedyotiseoneA可能通过诱导细胞凋亡的作用来发挥抗结肠癌活性。同时,半定量PCR实验揭示HedyotisconeA可以抑制HCT-8细胞中bax基因的表达,这说明HedyotisconeA可能通过与bax有关的信号通路来发挥诱导凋亡的作用。
     三、柘木活性成分Isoalvaxanthone的抗结肠癌活性及其机理
     Isoalvaxanthone(IAX)是从柘木中分离得到的一种小分子(口山)酮类化合物,通过检测IAX对细胞存活率的影响及其细胞毒性,我们首先鉴定了IAX在0.1~10μM的浓度下具有抑制结肠癌细胞SW620增殖的作用并在浓度约为1μM时达到半数抑制效果,而在此浓度范围内IAX的细胞毒性则非常小,10μMIAX作用后的细胞存活率仍为88.9%。流式细胞术检测发现IAX可以将SW620细胞阻断在S/G2期。肿瘤相关基因表达谱的检测表明IAX能够影响与肿瘤转移密切相关的基因如CyclinD1,AKT1等的表达上调和RhoB等的表达下调。细胞划痕实验、Borden chamber实验证实了IAX在0.1~10μM的浓度下可以显著抑制结肠癌细胞的迁移和浸润。随后,我们又用GST-Pull Down实验、EMSA实验等证明了IAX可以通过阻止ERK/Rac1/JNK/AP-1的信号传递抑制结肠癌细胞的增殖、迁移和浸润等肿瘤转移的关键步骤,从而发挥其抗结肠癌的活性。
     四、柘木活性成分CTXG的抗结肠癌活性及其机理
     CTXG是另一种从柘木中分离得到的一种小分子(口山)酮类化合物,其结构与IAX十分相似。与研究IAX的过程相似,我们鉴定了CTXG在0.1~10μM的浓度下能够显著抑制结肠癌细胞的生长、迁移和浸润,并在1μM左右达到半数抑制效率。同时,我们也对CTXG抗结肠癌的分子机理进行了研究,结果表明CTXG在0.1~10μM的浓度范围内可以通过阻止ERK/Rac1/JNK/AP-1的信号传递抑制结肠癌细胞的增殖、迁移和浸润等肿瘤转移的关键步骤,从而发挥其抗结肠癌的活性。
     本部分实验得到的结论:
     1.在生物活性的指导下分离得到了23个水线草单体化合物,其中有3个结构新颖,为首次分离得到。
     2.分离纯化得到的水线草化合物中有4个具有显著的抗结肠癌活性,分别是槲皮素、香豆素化合物HedyotisconeA、β-谷甾醇和丁香酸。
     3.证明了槲皮素、香豆素Hedyotiscone A、β-谷甾醇和丁香酸可以通过诱导结肠癌细胞凋亡而发挥抗结肠癌作用,且Hedyotiscone A的诱导凋亡作用与Bax基因的上调有关。
     4.检测了柘木成分IAX的抗结肠癌活性并证明了IAX可以通过ERK/Rac1/JNK/AP-1相关的信号通路抑制肿瘤转移的关键步骤从而发挥抗结肠癌的作用。
     5.检测了柘木成分CTXG的抗结肠癌活性并证明了IAX可以通过ERK/Rac1/JNK/AP-1相关的信号通路抑制肿瘤转移的关键步骤而发挥抗结肠癌的作用。
     许多线虫能够分泌两种独特的脂肪酸结合蛋白NPA(polyproteinallergens/antigens)和FAR(fatty acid-and retinol-binding)。但迄今为止,没有任何证据表明啮齿类动物寄生虫H.contortus也表达这两种蛋白质。在本研究中,我们运用蛋白组学和生物信息学相结合的手段证实了H.contortus成虫的分泌物中含有这两种脂肪酸结合蛋白。我们的分析首先确定了H.contortus ESP中含有与O.ostertagiNPA和FAR蛋白的同源物。随后用O.ostertagi NPA和FAR以及C.elegansFAR蛋白对H.contortusEST和基因组DNA数据库的搜索发现其中有许多DNA是NPA和FAR的编码序列。对这些序列的分析也揭示了H.contortusNPA和FAR蛋白的多样性,同时提示应对ESP产物进行进一步的基因组学分析。我们将H.contortusDNA数据库中编码NPA和FAR的序列全部翻译成蛋白质序列后构建了一个包含有大量来源于H.contortus的蛋白质信息的数据库,并用此数据库对MS/MS的数据重新进行分析。这一轮的分析为H.contortusNPA和FAR蛋白提供了更多的肽序列证据,特别是对应与NPA的肽序列增加了有数十倍之多。最后的结果是本研究中鉴定的肽序列在H.contortusNPA上的氨基酸覆盖率为49-60%,而在H.contortusFAR蛋白上的覆盖率为7-47%。另外,本研究中也对编码H.contortus NPA和FAR的基因序列的结构进行了分析。我们推测H.contortus中至少含有两个hc-npa和六个hc-fur基因,同时也发现hc-far-1,-2,-3-4基因在月H.contortus生活史的不同阶段有差异表达。
Part I
     Research on anti-colon cancer material base and mechanism of Chinese traditional herbs
     Malignant tumor is a serious threat to human health and a leading cause of death from disease. In the past dozens of years, the mobility of cancer has increased by some 22%. Colorectal carcinoma is the fourth most common form of cancer occurring worldwide and a major cause of morbidity and mortality in Western countries. In the year 2000, an estimated 900,000 new cases of colorectal cancer were diagnosed worldwide, with an estimated 490,000 deaths. While early stage colorectal cancer is frequently curable with surgery, unresectable metastatic disease is uniformly fatal. At present, treatments for colorectal cancer mainly involve fluorouracil-based chemotherapy and innotecan, and then, more recently, oxaliplatin. However, clinical chemotherapy cases show that these cytotoxic agents can do harm to the health of patients. There are essentially no established treatment options with demonstrated efficacy. Thus, it is urgent to find anti-colon cancer drugs with slender cytotoxity. Recently, natural compounds in Chinese traditional herbs as sources of drug screening raise much attention because of their diversity in structures. At present, many effective anti-cancer drugs are designed and synthesized based on the structure of natural products. Therefore, analysis on the material base of anti-cancer herbs became more and more urgent.
     According to many references and a lot of clinical cases in China, Oldenlandia (Hedyotis) corymbosa L. is a plant which has definite anti-tumor activity. Moreover, Oldenlandia (Hedyotis) corymbosa L. can also improve the immunity of patients without obvious bad effects on human body. In our previous research, we found that extracts from Oldenlandia (Hedyotis) corymbosa L. could induce apoptosis of several cancer cells, such as Hela, SMMC-7721 and Bcap-37. The extracts also could inhibit the angiogenesis of chick embryo choriollantoic (CAM). Until now, there is no report about the anti-cancer material base of Oldenlandia (Hedyotis) corymbosa L., thus, it is highly likely that new anti-cancer drugs with novel structures could be found in this plant. In this research, we isolated and purified the ingredient compounds of Oldenlandia (Hedyotis) corymbosa L. under a guide of their anti-cancer effects, and consequently identified those with highly anti-cancer effects.
     Cudrania tricuspidata (Carr.) Bur. is a Chinese traditional medical plant widely used in anti-tumor therapy. Previous researches demonstrated that there are plenty of anti-cancer compounds such as flavonoids in this plant. Isoalvaxanthone (IAX) and Cudratricusxanthone G (CTXG) are xanthones extracted from Cudrania tricuspidata (Carr.) Bur.. Our previous research revealed that both of these two compounds could significantly inhibit in vitro proliferation of colorectal cancer cells HCT-116, hepatocellular carcinoma cells SMMC-7721 and SGC-7901, and also gastric carcinoma cells BGC-823 cells. In this study, we investigated the anti-colon cancer effects of IAX and CTXG and the underlying mechanisms.
     The paper can be divided into four parts:
     A. Extraction, isolation and purification of chemical constituents with anti-colon cancer activity in Oldenlandia (Hedyotis) corymbosa L.
     In this study, we used various chromatography techniques to isolate the ingredients of Oldenlandia (Hedyotis) corymbosa L. We tested the anti-cancer activity of samples from various isolating steps and then extracted the chemical constituents of Oldenlandia (Hedyotis) corymbosa L. step by step from those effective samples. We identified 23 compounds including 3 novel secoiridoid compounds and 20 known compounds using NMR and chromatography technologies.
     B. Investigation of anti-colon cancer activity of compounds from Oldenlandia (Hedyotis) corymbosa L. and the underlying mechanism.
     We estimated the anti-colon cancer activity of extracts from Oldenlandia (Hedyotis) corymbosa L. by investigating the effect of samples on cell proliferation, cell cycle, and developed guidance for the isolation of chemical constituents. We also tested the anti-colon cancer activity of the 23 compounds from Oldenlandia (Hedyotis) corymbosa L. and identified 4 compounds with significant effects. Those 4 effective compounds are Quercetin, Hedyotiscone A, P-sitosterol and Syringic acid, with IC_(50) 104.3μg/ml, 154.2μg/ml, 104.5μg/ml and 112.9μg/ml respectively. We identified Hedyotiscone A as an anti-cancer agent for the first time. We also found that these 4 compounds could significantly induce cell apoptosis. Especially, Hedyotiscone A could inhibit the processing of cell cycle and induce apoptosis in colon cancer cell HCT-8 and RKO. Result of RT-PCR assay revealed that Hedyotiscone A may induce cell apoptosis through Bax signaling pathway.
     C. Investigation on effects and mechanisms of the anti-colon cancer activity ofIAX.
     IAX was extracted from medical plant Cudrania tricuspidata (Carr.) Bur. and belongs to a group of small compound termed xanthone. At concentration of 0.1~10μM, IAX could significantly inhibit cell proliferation, achieving the half-maximum effect at~1μM. In addition, IAX exhibits low cytotoxity, with cell viability around 88.9% at 10μM treatment. FACS analysis revealed that IAX could block cell cycle processing at S/G2 control point. Microarray analysis revealed that the effects of IAX refer to genes involved in tumor metastasis, such as Cyclin D1, AKT1, RhoB. Results of wound healing assay and borden chamber assay confirmed that IAX could significantly inhibit cell migration and invasion at 0.1~10μM. We also demonstrated the underlying mechanism of anti-colon cancer effect of IAX by gelatin zymography analysis, GST-Pull Down assay, EMSA assay. Results indicate that IAX may exert its anti-colon cancer effects by inhibiting cell proliferation, migration, invasion through ERK/Rac1/JNK/AP-1 signaling pathways.
     D. Investigation on effects and mechanisms of the anti-colon cancer activity ofCTXG.
     Another small xanthone compound extracted from Cudrania tricuspidata (Carr.) Bur., CTXG, has similar structure as IAX. We first identified that CTXG exerted significant inhibitory effects on cell proliferation, migration and invasion at 1~10μM and achieved the half-maximum effect at~1μM. We also investigated the underlying mechanism of its anti-cancer effects. Results reveal that CTXG could exerts its anti-colon cancer effects by inhibiting cell proliferation, migration, invasion through ERK/Racl/JNK/AP-1 signaling pathways.
     From all the above, we can conclude that:
     I. Twenty three compounds, including 3 novel compounds, were obtained bybio-function guided isolation from Oldenlandia (Hedyotis) corymbosa L..
     II. Four compounds out of 23 which exert significant anti-colon cancer effects areQuercetin, Hedyotiscon A, P-sitosterol and syringic acid.
     III. Quercetin, Hedyotiscon A,β-sitosterol and Syringic acid exert their anti-colon cancer effects by inducing apoptosis. Hedyotiscon A may induce cell apoptosis through Bax signaling pathway.
     IV. IAX exerts its anti-colon caner effects by inhibiting cell proliferation, migration and invasion through ERK/Rac1/JNK/AP-1 signaling pathway.
     V. ITXG exerts its anti-colon cancer effects by inhibiting cell proliferation, migrationand invasion through ERK/Rac1/JNK/AP-1 signaling pathway.
     Part II
     Research on fatty-acid binding proteins in Haemonchuscontortus
     Two different classes of small nematode specific lipid binding proteins, the nematode polyprotein allergens/antigens (NPA) and the fatty acid- and retinol-binding (FAR) proteins, are secreted by helminth parasites. Until now, there was no evidence of the expression or secretion of these two families of proteins in H. contortus. In this study, we applied proteomic and bioinformatic tools in an iterative manner to investigate these fatty acid binding proteins in the excretory/secretory products (ESP) of adult H. contortus. Initial examination of the mass spectra of ESP fractions against standard databases returned nine peptides mapping to O. ostertagi NPA and FAR sequences. Searches of the H. contortus EST and genomic contig databases with the O. ostertagi and C. elegans homologues retrieved sequences encoding H. contortus NPA and FAR proteins. The retrieved sequences revealed the diversity of these families in H. contortus, and encouraged further proteomic analysis of ESP fractions. Concurrently, the new sequences were integrated into a customized database and a new search of the mass spectra achieved a 10-fold improvement in coverage of the predicted H. contortus NPAs. The retrieved predicted sequences were also used as search strings for a further search of H. contortus ESTs and genomic contigs and the new sequences were added to the customized database. The final analyses of the mass spectra achieved 49-60% coverage of H. contortus NPAs and 7-47% coverage of H. contortus FARs. Moreover, the structures of the encoding genes were assembled by combining the genomic sequence data with predicted protein sequences confirmed by the peptide evidence. We predict there are at least two hc-npa and six hc-far genes in H. contortus, and life stage expression of the hc-far-1 to -4 genes revealed unique expression patterns for each of these four genes.
引文
[1]中国科学院中国植物志编辑委员会.中国植物志第七十一卷第一分册.北京:科学出版社,1999,27.
    [2]《全国中草药汇编》编写组.全国中草药汇编下册.北京:人民卫生出版社,1996,296-297.
    [3]Takagi S,Yamaki M,Masuda K,Nishihama Y,Sakina K.Studies on the herb medical materials used for some tumors.Ⅱ.On the constituents of Hedyotis coryrabosa Lam.Yakugaku Zasshi,1981,101(7):657-659.
    [4]Otsuka H,Yoshimura K,Yamasaki K,Cantoria MC.Isolation of 10-acyl iridoid glucosides from a Philippine medicinal plant,Oldenlandia corymbosa L.(Rubiaceae).Chemical & Pharmaceutical Bulletin,1991,39(8):2049-2052.
    [5]Cameron DW,Feutrill GI,Perlmutter P,Sasse JM.Iridoids of Garrya elliptica as plant growth inhibitors.Phytochemistry,1984,23(3):533-535.
    [6]Jensen SR.Iridoids in Rothmannia globosa.Phytochemistry,1983,22(8):1761-1765.
    [7]Shibuya H,Takeda Y,Zhang RS,Tanitame A,Tsai YL,Kitagawa I.Indonesian medicinal plants.Ⅳ.On the constituents of the bark of Fagara rhetza(Rutaceae).(2).Lignan glycosides and two apioglucosides.Chemical & Pharmaceutical Bulletin,1992,40(10):2639-2646.
    [8]Yusuke S,Jae-Hak M,Kanzo S,Naoharu W.Effects of structure on radical-scavenging abilities and antioxidative activities of tea polyphenols:NMR analytical approach using 1,1-diphenyl-2-picrylhydrazyl radicals.Journal of Agricultural and Food Chemistry,2005,53(9):3598-3604.
    [9]Mahmoud ZF,Abdel SNA.Coumarins of Euphorbia terracina L.and Euphorbia paralias L.growing in Egypt.Pharmazie,1979,34:446-447.
    [10]谢韬,梁敬钰,刘净,王敏,魏秀丽,杨春华.滨蒿化学成分的研究.中国药科大学学报,2004,35(5):401-403.
    [11]Chen YH,Chang FR,Wu CC,Yen MH,Liaw CC,Huang HC,Kuo YH,Wu Y C.New cytotoxic 6-oxygenated 8,9-dihydrofurocoumarins,hedyotiscone A-C,from Hedyotis biflora.Planta Medica,2006,72(1):75-78.
    [12]Norio S,Kenjiro T,Seckin O,Toshio H.Acylated delphinidin glycosides in the blue-violet flowers of Consolida armeniaca.Phytochemistry,1996,41(6):1599-1605.
    [13]Shengmin S,Karen L,Woo-Sik J,Paul AL,Chi-Tang H,Robert TR. Antioxidative phenolic compounds isolated from almond skins(Prunus amygdalus Batsch).Journal of Agricultural and Food Chemistry,2002,50(8):2459-2463.
    [14]Yukihiro G,Masaaki S,Ushio S.Inhibitors of prostaglandin biosynthesis from Mucuna birdwoodiana.Chemical & Pharmaceutical Bulletin,1987,35(7):2675-2677.
    [15]Ludwig BCA,Hassan MS,Robert JJCL,Hubert T,Cornelis AS.Isolation of vomifoliol and dihydrovomifoliol from Cannabis.Phytochemistry,1976,15:830-831.
    [16]Rolf A,Lennart NL.Monoaryl and cyclohexenone glycosides from needles of Pinus sylvestris.Phytochemistry,1988,27(2):559-562.
    [17]Holger K,Cornelia W,Jurgen G,Peter W.2-Hydroxy-2,6,10,10-tetramethyl-1-oxaspiro[4.5]dec-6-en-8-one:precursor of 8,9-dehydrotheaspirone in white-fleshed nectarines.Journal of Agricultural and Food Chemistry,1997,45(4):1309-1313.
    [18]杨燕军,舒惠一,闵知大.巴戟天和恩施巴戟的蒽醌化合物.药学学报,1992,27(5),358-364.
    [1]沈麒麟,王佩芳.自拟水线肠愈方治疗溃疡性结肠炎118例.上海中医药杂志,1995,(2):22-23.
    [2]王佩芳,沈辉,唐红敏.“水线胃安”治疗慢性胃炎.中国中医药信息杂志,1998,5(4):50-51.
    [3]Yang JJ,Hsu HY,Ho YH,Lin CC.Comparative study on the immunocompetent activity of three different kinds of Peh-Hue-Juwa-Chi-Cao,Hedyotis diffusa,H.corymbosa and Mollugo pentaphylla after sublethal whole body X-irradiation.Phytotherapy Research,1997,11(6):428-432.
    [4]Takagi S,Yamaki M,Masuda K,Nishihama Y,Sakina K.Studies on the herb medical materials used for some tumors.Ⅱ.On the constituents of Hedyotis corymbosa Lam.Yakugaku Zasshi,1981,101(7):657-659.
    [5]Yang JJ,Lin CC,Hsu HY.The possible use of Peh-Hue-Juwa-Chi-Cao as an antitumor agent and radioprotector after therapeutic irradiation.Phytotherapy Research,1997,11(1):6-10.
    [6]Otsuka H,Yoshimura K,Yamasaki K,Cantoria MC.Isolation of 10-acyl iridoid glucosides from a Philippine medicinal plant,Oldenlandia corymbosa L.(Rubiaceae).Chemical & Pharmaceutical Bulletin,1991,39(8):2049-2052.
    [7]丛蓉,旷丽莎,冯静,侯爱君,白美蓉,钱旻.水线草初提物药理作用的初步研究.华东师范大学学报(自然科学版),2007,2:137-140.
    [8]梅兵等,水线草提取物药理作用的初步研究,中草药,2000,31(增刊):107-109.
    [1]江苏新医学院,中药大辞典(下册)[M]上海:上海科学技术出版社,1998:15021
    [2]柘木糠浆——上海中药制药二厂[J].中草药通讯,1977,(12):36.
    [3]曹根生.抗肿瘤新药2柘木注射液[J].中成药研究,1980,(1):34-35.
    [4]丁红花,陈栋晖,朱莉菲.柘木糖浆治疗胃癌疗效观察[J].中成药,2001,23(2):151-152.
    [5]毕盛.抗癌中成药——生命之星[P].中国专利:A61K35P78,1996203213.
    [6]缪春辉,顾正兵,杨根金.柘木化学成分研究[J].中成药,2002,24(3):211-212.
    [7]戴明,野村太郎.柘木成分研究(译)[J].国外医学(中医中药分册),1983,NO.4:53-54.
    [8]Fujimoto T,hano Y,Nomura T.Componets of Root Bark of Cudrania tficuspidata Structures of Four New Isoprenylated Xanthones,Cudraxanthones A,B,C and D[J].Planta medica,1984,218-221.
    [9]Hano Y,Matsumoto Y,Sun JY,et al.Structures of three new isoprenylated xanthones,cudraxanthones E,F,and G[J].Planta med,1990,(56):399-402.
    [10]Hano Y,Matsumoto Y,Sun JY,et al.Structures of four new isoprenylated xanthones,cudraxanthones H,I,J,and K[J].Planta med,1990,(56):478-481.
    [11]Hano Y,Matsumoto Y,Shinohara K,et al.Cudraflavones C and D,two new prenylflavones from the boot bark of Cudrania tricuspidata(carr.) bur[J].Heterocycles 1990,31(7):1339-1344.
    [12]Hano Y,Matsumoto Y,Shimnohara K,et al.Structures of four new isoprenylated xanthones,cudraxanthones L,M,N,and O from Cudrania tficuspidata[J].Planta Med 1991,(57):173-175.
    [13]张月华,任宛微,万树文等.柘木的化学成分研究[J].1980,(3):15-20.
    [14]Lee IK,Kim CJ,Song KS,Kim HM.Cytotocic benzyl dihydro favonols from Cudrania tricuspidata[J].Phytochem,1996,41(1):213-216.
    [15]Lee IK,Kim CJ,Song KS,et al.Two benzylated dihydroflavonols from Cudrania tricuspidata[J].J Natu Products,1995,58(10):1614-1617.
    [16]Nomura T,Hano Y,Fujimoto T.Three new isoprenylated xanthones,cudraxanthone A,B,C from the boot of Cudrania tricuspidata(carr.) bur[J].Heterocycle s,1983,20(2):213-218.
    [17]Fujimoto T,Hano Y,Nomura T,et al.Components of root bark of Cudrania tricuspidata structures of two new isoprenylated flavones,cudraflavones A and B[J].Planta Medica.1983:161-163.
    [18]Fujimoto T,Nomura T.Components of root bark of Cudrania tricuspidata isolation and structure studies on the flavonoids[J].Planta Medica,1985,190-193.
    [19]Hou AJ,Fukai T,Shimazaki M,Sakagami H,Sun liD,Normura T.Benzophenones and Xanthones with Isoprenoid Groups from Cudrania cochinchinensis[J].J Nat Prod,2001,64:65-70.
    [20]Zou YS,Hou AJ,Zhu GF.Isoprenylated Xanthones and Flavonoids from Cudrania cochinchinensis[J].Chem Biodivers,2005,2:131-138.
    [1]江苏新医学院,中药大辞典(下册)[M].上海:上海科学技术出版社,1998,15021
    [2]戴明,野村太郎.柘木成分研究(译)[J].国外医学(中医中药分册),1983,NO.4:53-54.
    [3]Hano Y,Matsumoto Y,Shimnohara K,et al.Structures of four new isoprenylated xanthones,cudraxanthones L,M,N,and O from Cudrania tricuspidata[J].Planta Med,1991,(57):173-175.
    [4]张月华,任宛微,万树文等.柘木的化学成分研究[J].1980,(3):15-20.
    [5]Kim TJ,Han HJ,Hong SS,et al.Cudratricusxanthone A isolated from the root bark of Cudrania tricuspidata inhibits the proliferation of vascular smooth muscle cells through the suppression of PDGF-receptor beta tyrosine kinase.[J].Biol Pharm Bull,2007,30(4):805-809.
    [6]Hano Y,Matsumoto Y,Sun JY,et al.Structures of three new isoprenylated xanthones,cudraxanthones E,F,and G[J].Planta Med,1990,(56):399-402.
    [7]Hano Y,Matsumoto Y,Sun JY,et al.Structures of four new isoprenylated xanthones,cudraxanthones H,I,J,and K[J].Planta Med,1990,(56):478-481.
    [8]Hano Y,Matsumoto Y,Shinohara K,et al.Cudraflavones C and D,two new prenylflavones from the boot bark of Cudrania tricuspidata(carr.) bur[J].Heterocycles,1990,31(7):1339-1344.
    [9]Fujimoto T,hano Y,Nomura T.Componets of Root Bark of Cudrania tricuspidata Structures of Four New Isoprenylated Xanthones,Cudraxanthones A,B,C and D[J].Planta Med,1984,218-221.
    [10]Sheng S,Qiao M,Pardee AB,Metastasis and AKT activation[J].J Cell Physiol,2009,218:451-454.
    [11]Dashevsky O,Varon D,Brill A.Platelet-derived microparticles promote invasiveness of prostate cancer cells via upregulation of MMP-2 production[J].Int J Cancer,2009,124:1773-1777.
    [12]Hung SH,Shen KH,Wu CH,Liu CL,Shih YW.α-mangostin suppresses PC-3human prostate carcinoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen expression through the JNK signaling pathway[J].J Agric Food Chem,2009,57:1291-1298.
    [13]Bogenrieder T,Herlyn M.Axis of evil:molecular mechanisms of cancer metastasis[J].Oncogene,2003,22:6524-6536.
    [14]Vihinen P,Kahari VM.Matrix metalloproteinases in cancer:prognostic markers and therapeutic targets[J].Int J Cancer,2002,99:157-166.
    [15]Wennerberg K,Der CJ,Rho-family GTPases:it's not only Rac and Rho(and I like it)[J].J Cell Sci,2004,117:1301-1312
    [16]Ridley AJ.Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking[J].Trends Cell Biol,2006,16:522-529.
    [17]Sen CK,Packer L,Antioxidant and redox regulation of gene transcription[J].FASEB J,1996,10:709-720.
    [18]Eferl R,Wagner EF.AP-1:a double edged sword in tumorigenesis[J].Nat Rev Cancer,2003,3:859-868.
    [1] Newton SE, Meeusen EN. Progress and new technologies for developing vaccines against gastrointestinal nematode parasites of sheep. Parasite Immunol, 2003, 25: 283-296.
    [2] Rathore DK, Suchitra S, Saini M, Singh BP, Joshi P. Identification of a 66 kDa Haemonchus contortus excretory/secretory antigen that inhibits host monocytes. Vet Parasitol, 2006,138:291-300.
    [3] Anbu KA, Joshi P. Identification of a 55 kDa Haemonchus contortus excretory/secretory glycoprotein as a neutrophil inhibitory factor. Parasite Immunol, 2008,30:23-30.
    
    [4] Barrett J. Biochemistry of parasitic helminths. Macmillian. London. 1981.
    [5] Kennedy MW. Structurally novel lipid-binding proteins. In: Kennedy MW and Harnett W (Ed.), Parasitic Nematodes: Molecular Biology, Biochemistry, and Immunology. CABI, New York, 2001, pp. 309-330.
    [6] Kennedy MW. The polyprotein lipid binding proteins of nematodes. Biochim Biophys Acta, 2000,1476:149-164.
    [7] Albers GA, Burgess SK. Serial passage of Haemonchus contortus in resistant and susceptible sheep. Vet Parasitol, 1988,28:303-306.
    [8] Rabilloud T, Carpentier G, Tarroux P. Improvement and simplification of low-background silver staining of proteins by using sodium dithionite. Electrophoresis, 1988, 9:288-291.
    [9] Garofalo A, Rowlinson MC, Amambua NA, Hughes JM, Kelly SM, Price NC, Cooper A, Watson DG, Kennedy MW, Bradley JE. The FAR protein family of the nematode Caenorhabditis elegans. Differential lipid binding properties, structural characteristics, and developmental regulation. J Biol Chem, 2003b, 278:8065-8074.
    [10] de Graaf DC, Peelman LJ, Claerebout E, Hilderson H, Schallig HDFH, Vercruysse J. Cloning and sequencing of an excretory/secretory antigen from Ostertagia ostertagi fourth-stage larvae containing multiple tandem repeats. Mol Biochem Parasitol, 1995, 72:239-241.
    
    [11] Britton C, Moor, J, Gilleard JS, Kennedy MW. Extensive diversity in repeat unit sequences of the cDNA encoding the polyprotein antigen/allergen from the bovine lungworm Dictyocaulus viviparus. Mol Biochem Parasitol, 1995, 72:77-88.
    [12]McDermott L,Cooper A,Kennedy MW.Novel classes of fatty acid and retinol binding protein from nematodes.Mol Cell Biochem,1999,192:69-75.
    [13]Garofalo A,Klager SL,Rowlinson MC,Nirmalan N,Klion A,Allen JE,Kennedy MW,Bradley JE.The FAR proteins of filarial nematodes:secretion,glycosylation and lipid binding characteristics.Mol Biochem Parasitol,2002,122:161-170.
    [14]Poole CB,Hornstra L J,Benner JS,Fink JR,McReynolds LA.Carboxy-terminal sequence divergence and processing of the polyprotein antigen from Dirofilaria immitis.Mol Biochem Parasitol,1996,82:51-65.
    [1]刘屏,吴镭.当前我国中药基础研究的重要领域与热点[J].中国中药杂志.2002,27(7):489-501.
    [2]张卫东.中药现代化研究新思路——天然药物化学与生物学研究相结合[J].中国天然药物.2008,6(1):2-5.
    [3]杨义芳.中药有效成分提取分离新技术的研究进展[J].亚太传统医药.2008,4(7):29-34.
    [4]廖华军.重要提取新技术研究进展[J].福建分析测试.2008,17(1):25-30.
    [5]胡道德,顾磊,姚慧娟,田丰,刘皋林.中药提取及优化的研究进展.医药导报.2009,28(1):80-83.
    [6]朱大元.中药活性成分研究是中药现代化的重要组成部分[J].化学进展.2009,21(1):24-29.
    [7]杨秀伟.天然药物化学发展的历史性变迁.北京大学学报(医学版).2004,36(1):9-11.
    [8]Cheng L,Zhou X J.Review on anticancer mechanism of some plant alkaloid[J].中草药.2004,35(2):216-221.
    [9]杨松,张万年.高喜树碱——极具开发价值的拓扑异构酶Ⅰ抑制剂[J].药学学报.2004,39(5):396-400.
    [10]张彦,陈燕忠.生物碱类抗肿瘤药物及其新剂型的研究进展[J].药品评价.2006,3(4):264-266.
    [11]徐积恩.抗肿瘤长春花生物碱的研究进展[J].上海医药情报研究.1993,(2):8-11.
    [12]李振涛,朱奇,纪宇.植物生物碱抗肿瘤作用机制的研究进展[J].药学进展.2005,29(5):193-197.
    [13]刘新迎,周联,王培训.小檗碱抗肿瘤机制研究进展[J].中医药学刊.2006,24(8):2-4.
    [14]黄林清,陈传福.小檗碱抗肿瘤作用实验研究[J].中国药理学通报.1997,13(2):1189-1190.
    [15]医用药理缩写组,医用药理学[M].北京:人民卫生出版社.1987:668.
    [16]Mitani N,Murakami K,Yamaura T et al.Inhibitory effect of berberine on the mediastinal lymph node metastasis produced by orthotopic implantation of Lewis lung carcinoma[J].Cancer Lett,2001,165(1):35-42.
    [17]黄丽波,徐石海,岑颖洲.海绵中抗肿瘤抗病毒生物活性的生物碱研究进展[J].广州医药.2001,32(1):3-5.
    [18]刘家峰,郭松坡,姜标.海洋溴吡咯生物碱的研究进展[J].有机化学.2005,25(7):788-799.
    [20]季宇彬,池文杰.海鞘中抗肿瘤活性物质的研究[J].哈尔滨商业大学学报(自然科学版).2005,21(1):6-10.
    [21]胡艳红,张庆林,王正平.海洋微生物生物活性代谢物研究进展及技术问题[J].科学技术与工程.2004,4(2):160-163.
    [22]胡东,陈燕.食物来源单萜类物质紫苏醇的抗癌作用[J].临床血液学杂志.2001,14(4):141-143.
    [23]Karlson J,Borg K,Anna K.Inhibition of tumor cell growth by monoterpenes in vitro:evidence of a ras-independent mechanism of action[J].Anti-Cancer Drugs,1996,7(4):422-429.
    [24]窦德强,靳玲,陈英杰.人参的化学成分及药理活性的研究进展与展望[J].沈阳药科大学学报.1999,16(2):151-156
    [25]李欣,万红贵,卢定强,等.人参皂甙的抗肿瘤研究进展[J].生物加工过程.2003,1(2):13-17.
    [26]Nakata M,Uto N,Maruyama I,et al.Nitric oxide induces apoptosis via Ca2+-dependent processes in the pancreatic beta-cell line MIN6[J].Cell Struct Funct,1999,24(6):451-455.
    [27]Bentz BG,Chandra R,Haines GK 3 rd,et al.Nitric oxide and apoptosis during human head and neck squamous cell carcinoma development[J].Am J Otolaryngol,2002,23(1):4-11.
    [28]高船舟,曲淑贤,吕广艳,等.20(R)2GS2gg3对K562/ADM细胞凋亡诱导的研究[J].大连医科大学学报.2001,23(3):171-173.
    [29]姜淑华,李颖,刘基巍,等.GS2Rg3诱导人肝癌细胞凋亡作用的研究[J].中国医师进修杂志.2006,29(2):14-16.
    [30]Kim ND,Kang SY,Kim MJ,et al.The ginsenoside Rg3 evokes endothelium-independent relaxation in rat aortic rings:role of K~+ channel[J].Eur J Pharmacol,1999,367(1):51-57.
    [31]尚西亮,傅华群,刘佳,等.三七总皂苷对人肝癌细胞的抑制作用[J].中国临床康复.2006,10(23):121.
    [32]李晓红,董作仁,郝洪岭,等.三七皂苷对NB_4细胞促凝活性及诱导分化的影响[J].中国中西医结合杂志.2004,24(1):63.
    [33]王国俊,周黎明,王莉,等.三七皂苷R1诱导HL-60细胞凋亡的初步研究[J].四川生理科学杂志.2004,26(1):14.
    [34]黄清松,李红枝,张咏莉,等.三七皂苷Rgl抗突变和抗肿瘤研究短篇论著[J].临床和实验医学杂志.2006,5(8):1124.
    [35]史亦谦,田同德.三七总皂苷体外逆转K562/VCR细胞多药耐药的实验研究[J].中国中医药科技.2005,12(5):292.
    [36]常徽.植物黄酮抗肿瘤研究进展.国外医学卫生学分册.2006,33(5):296-300.
    [37]Giuseppe G,Peter J.Potential toxicity of flavonoids and other dietary phenolics:significance for their chemopreventive and anticancer properties[J].Free Radic Biol Med.2004,37(3):287-303.
    [38]Michels G,Watjen W,Niering P,et al.Pro-apoptotic effects of the flavonoid luteolin in rat H4IIE cells[J].Toxicol,2005,206(3):337-348.
    [39]Chen C,Shen C,Chow M,et al.Flavone inhibition of tumor growth via apoptosis in vitro and in vivo[J].Int J Oncol,2004,25(3):661-670.
    [40]Pan H,Lai S,Hsu C,et al.Acacetin induces apoptosis in human gastric carcinoma cells accompanied by activation of caspase cascades and production of reactive oxygen species[J].J Agric Food Chem,2005,53(3):620-630.
    [41]Bestwick S,Milne L,Pirie L,et al.The effect of short-term kaempferol exposure on reactive oxygen levels and integrity of human(HL-60) leukaemic cells[J].Biochim Biophys Acta,2005,1740(3):340-349.
    [42]Montero M,Lobaton D,Hernandez E,et al.Direct activation of the mitochondrial calcium uniporter by natural plant flavonoids[J].Biochem J,2004,384(1):19-24.
    [43]Dorta J,Pigoso A,Mingatto E,et al.The interaction of flavonoids with mitochondria:effects on energetic processes[J].Chem Biol Interact,2005,152(223):67-78.
    [44]Virgili F,Acconcia F,Ambra R,et al.Nutritional flavonoids modulate estrogen receptor alpha signaling[J].IUBMB Life,2004,56(3):145-151.
    [45]Vajragupta O,Boonchoong P.Morris GM,et al.Active site binding modes of curcumin in HIV-1 protease and integrase[J].Bio Med Chem Lett,2005,15:3364.
    [46]Kumar A,Dhawan S,Aggerwal BB.Emodin(3-methyl-1,6,8-trihydroxyan-thrauinone) inhibits TNF-induced NF-κB activation,IκB degradation,and expression of cell surface adhesion proteins in human vascular endothelial cells[J].Oncogene,1998,17(7):913-918.
    [47]Cheng YW,Kang JJ.Emodin-induced muscles contraction of mouse diaphragm and the involvement of Ca~(2+) influx and Ca~(2+) release from sarcoplasmicr eticulum[J].Br J Pharmacol,1998,123(5):815-820.
    [48]Luan F,Yao XJ,Zhang HX,et al.3D-QSAR study on a series of acridine derivatives as DNA-binding potential anti-tumor agents using CoMFA and CoMSIA[J].J of Lanzhou University(Natural Sciences),2006,42(4):71-78.
    [49]Eliane S,Nakamura,Fumiya Kurosaki,et al.Cancer chemopreventive effects of constituents of Caesalpinia ferrea and related compounds[J].Cancer Letters,2002,3:119-124.
    [50]Zou YS,Hou AJ,Zhu GF.Isoprenylated Xanthones and Flavonoids from Cudrania cochinchinensis[J].Chem Biodivers,2005,2:131-138.
    [51]何峰,刘宗潮,罗一帆,等.抗肿瘤药鬼臼毒素衍生物构效关系的研究[J].癌症.2001,20(4):368-372.
    [52]Toru A,Hiroyuki N,Yoshimasa U,et al.Design,synthesis and biological evaluation of aminoboronic acids as growth-factor receptor inhibitors of EGFR and VEGFR-1 tyrosine kinases[J].Chem Bio Chem,2004,5(4):483-490.
    [53]毕黎琦,李红军,张玉华.中药天花粉蛋白对黑色素瘤细胞凋亡及细胞周期的影响[J].中国中西医结合杂志.1998,18(1):358.
    [54]黄韧敏,袁淑兰,宋毅,等.丹参酮诱导HL—60细胞凋亡的研究[J].癌症.1998,17(3):164-166.
    [55]HashimotoS,JingY,KawazoeN,et al.Bufal induces the level of topoisomerase Ⅱin human leukemia cells and affects the cytotoxicity of anticancer drugs[J].Leuk Res,1997,21(9):875-883.
    [56]Oh SH,Lee BH.A ginseng saponin metabolite-induced apoptosis in HepG2 cells involves a mitochondria-mediated pathway and its downstream caspase-8activation and Bid cleavage.Toxicol Appl Pharmacol,2004,194(3):221-229.
    [57]Swamy SM,Huat BT.Intracellular glutathione depletion and reactive oxygen species generation are important in alpha-hederin-induced apoptosis of P388cells.Mol Cell Biochem,2003,245(1/2):127-139.
    [58]Shieh DE,Chen YY,Yen MH,et al.Emodin-induced apoptosis through p53-dependent pathway in human hepatoma cells.Life Sci,2004,74(18):2279-2290.
    [59]Kuo PL,Chiang LC,Lin CC.Resveratrol- induced apoptosis is mediated by p53-dependent pathway in Hep G2 cells.Life Sci,2002,72(1):23-34.
    [60]Chiang LC,Ng LT,Lin IC,Kuo PL,Lin CC.Anti-proliferative effect of apigenin and its apoptotic induction in human Hep G2 cells.Cancer Lett,2006,237(2):207-214.
    [61]Lee SM,Li ML,Tse YC,et al.Paeoniae Radix,a Chinese herbal extract,inhibit hepatoma cells growth by inducing apoptosis in a p53 independent pathway.Life Sci,2002,71(19):2267-2277.
    [62]Fei XF,Wang BX,Li TJ,et al.Evodiamine,a constituent of Evodiae Fructus,induces anti-proliferating effects in tumor cells.Cancer Sci,2003,94(1):92-98.
    [63]Zeng XL,Tu ZG.In vitro induction of differentiation by ginsenoside Rh2 in SMMC-7721 hepatocarcinoma cell line.Pharmacol Toxicol,2003,93(6):275-283.
    [64]Chen YY,Chang HM.Antiproliferative and differentiating effects of polysaccharide fraction from fu-ling(Poriacocos) on human leukemic U937 and HL-60 cells.Food Chem Toxicol,2004,42(5):759-769.
    [65]梁勇,羊裔明,袁淑兰,等.丹参酮ⅡA对初治、复发及耐药人急性早幼粒细胞白血病细胞体外诱导分化作用.中华血液学杂志.2000,21(1):23-26.
    [66]Liao HF,Chou CJ,Wu SH,et al.Anticancer Drugs,2001,12(10):841-846.
    [66]王彦刘,吴爱娇,许楠等.复方丹参对高转移性人肺癌细胞与血管内皮细胞粘附及粘附分子表达的影响[J].中国现代应用药学杂志.2003,5(20):343-345.
    [67]赵洪敏,朱庆均,郑广娟等.白术提取物对人肺癌PG细胞体外侵袭作用的影响[J].山东中医药大学学报.2005,29(6):465-486.
    [68]王长秀,马润娣,于立坚.土贝母皂昔对人高转移巨细胞肺癌PGCL3细胞侵袭行为的影响[J].中国临床药理学与治疗学.2006,11(1):39-44.
    [69]张志勇,刘德山,宿学家等.益气活血中药对肺癌上皮细胞粘附分子表达及侵袭的影响[J].实用医药杂志.2006,23(3):325-328.
    [70]曲迅,郑广娟,刘德山,等.体外罗勒多糖抗人高转移肺癌细胞侵袭转移作用及机制探讨.中国病理生理杂志.2005,21(7):1345-1348.
    [71]娄金丽,林洪生,邱全瑛等.威脉宁抗小鼠Lewis肺癌转移作用及分子机制的研究.中国病理生理杂志.2004,20(4):627-631.
    [72]钱晓萍,刘宝瑞.中药抗肿瘤血管生成分子机理研究进展.现代肿瘤医学.2007,15(6):878-882.
    [73]陈明伟,倪磊,赵小革等.人参皂甙Rg3对肿瘤血管生成调控因子蛋白表达抑制作用的研[J].中国中药杂志.2005,30(5):357-360.
    [74]Stanley G,Harvey K,Jiang J,et al.Ganodumlucidum suppresses angiogenesis th orugh the inhibition of secretion of VEGF and GTF-beta 1 form porsate cancer cells[J].Bicohem Biophys Res Commun,2005,330(1):46-52.
    [75]Bukowski RM.AE-941,a multifunctional antiangiogenic compound:trials in renal cell carcinoma[J].Expert Opin Investig Drugs,2003,12(8):1403-1411.
    [76]Beliveau R,Gingras D,Kruger EA,et al.The antiangiogenic agent neovastat (AE-941) inhibits vascular endothelial growth factor mediated biological effects[J].Clin Cancer Res,2002,8(4):1242-1250.
    [77]Berbari P,Thibodeau A,Cemrain L,et al.Antiangioegnic effects of the oral administration of liquid cartilage extract in human[J].J Surg Res,1999,87(1):108-113.
    [78]Fan YZ,Fu JY,Zhao ZM,et al.Effect of norcantharidin on proliferation and invasion of human gallbladder carcinoma GBC-SD cells[J].World J Gastroenterol 2005,11(16):2431-2437.
    [79]Wartenberg M,Budde P,De Marees M,et al.Inhibition of tumor-induced angiogenesis and metrix-metalloproteinase expression in confrontation cultures of embryoid boides and tumor spheorids by plant ingredients used in tadritional Chinese medicine[J].Lab Invest,2003,83(1):87-98.
    [80]Kim MH.Flavonoids inhibit VEGF/bFGF-induced angiogenesis in vitro by inhibiting the matrix-degrading porteases[J].J Cell Biochem,2003,89(3):529-538.
    [81]余小平,糜漫天,朱俊东.三经异黄酮对HER-2/neu高表达乳腺癌细胞血管生成相关因子表达的影响[J].实验生物学报.2004,37(3):251-253.
    [82]Cardenas C,Quesada AR,Medina MA.Effects of ursolic acid on different steps of the angiogenic process[J].Biochem Biophys Res Commun,2004,320(2):402-408.
    [83]Shishodia S,Majumdar S,Banerjee S,et al.Ursolic acid inhibits nuclear factor-kappa B activation induced by carcinogenic agents through suppression of IκB alpha kinase and p65 phosphoryl-action:correlation with down-regulation of cycleooxygenase 2,matrix metalloproteinase 9,and cyclin D1[J].Cancer Res,2003,63(15):4375-4383.
    [84]Kim MS,Back JH,ParkJA,et al.Wilfoside KIN isolated from Cynanchum wilfordii inhibits angiogenesis and tumor cell invasion[J].Int J Oncol,2005,26(6):1533-1539.
    [85]Chen HH,Zhou HJ,Wu GD,et al.Inhibitory effects of artesunate on angiogenesis and on expressions of vascular and endothelial growth factor and VEGF receptor KDB/fik-1[J].Pharmacology,2004,71(1):1-9.
    [86]Woo MS,Jung SH,Kim SY,et al.Curcumin suppresses phorbol ester-induced matrix metalloproteinase-9 expression by inhibiting the PKC to MAPK signaling Pathways in human astroglioma cells[J].Biochem Biopbys Res Commun,205,335(4):1017-1025.
    [87]黄春丽.论虚实补泻与免疫.福建中医学院学报.1997,7(1):46.
    [88]郭凤丽.白术对小鼠淋巴细胞增殖、IL-2和抗体产主的影响.中国中医药杂志.2003,(2):85.
    [89]余上才.枸杞子和白尤免疫调节的实验研究.上海免疫学杂志.1994,1(14):12.
    [90]解庆东.黄芪抗肿瘤机制研究与临床应用.医药导报.2003,2(2):109.
    [91]黄婉,杨耀芳.女贞子及其有效成分的药理及临床研究进展.现代中西医结合杂志.2003,12(7):772.
    [92]高中礼.黄精的药理研究与临床应用.长春中医学院学报.1999,15(2):51.
    [93]张国山.中药及其临床[M].北京:中国医药科技出版社,1991,157,186.
    [94]孙孝洪.补阴方药的研究近况.新医学.1980,11(3):155.
    [95]刘耕陶.冬虫夏草的免疫药理作用.中西医结合杂志.1985,5(10):622.
    [96]齐元富.人参养荣汤的研究进展.国外医学中医中药分册.1999,(1):18.
    [97]花宝金.肿瘤虚证及扶正培本治疗的现代免疫机制研究.中国中医基础医学杂志.2000,6(3):60.
    [98]Fu LW,Zhang YM,Liang YJ,et al.The multidrug resistance of tumour cells was reversed by tetrandrine in vitro and in xenografts derived from human breast adenocarcinoma MCF-7/adr cells.Eur J Cancer,2002,38(3):418-426
    [99]韩艳秋,袁家颖,石永进,等.小檗胺逆转MCF7/ADR细胞耐药性及其机制探讨.中国实验血液学杂志.2003,11(6):604-608.
    [100]Kim SW,Kwon HY,Chi DW,et al.Reversal of P-glycoprotein-mediated multidrug resistance by ginsenoside Rg(3).Biochem Pharmacol,2003,65(1):75-82.
    [101]Zhang S,Yang X,Morris ME.Flavonoids are inhibitors of breast cancer resistance protein(ABCG2)-mediated transport.Mol Pharmacol,2004,65(5):1208-1216.
    [102]王秀丽,孔力,赵瑾瑶等.三氧化二砷逆转人乳腺癌MCF-7/ADM细胞耐药的机制研究.中华肿瘤杂志.2002,24(4):339-343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700