认知无线电系统中若干关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信技术的飞速发展,可供使用的频谱资源越来越匮乏。为了解决频谱资源不足的问题,采用机会方式频谱接入机制的认知无线电技术得到了人们的重视。认知无线电技术从根本上颠覆了传统的固定频谱分配方式,它可以感知周围环境的变化,并通过改变传输功率、调制方式、载波频率等传输参数适应这种变化,从而提高频谱资源的利用率。频谱分配问题是认知无线电系统中一个关键问题,它对可使用的频谱资源进行分配,以保证较高的频谱利用率。为了检测频谱资源是否可以由认知无线电系统使用,需要使用频谱感知算法来检测频谱,如果主用户出现在由次用户占用的频段中,次用户必须及时切换到其他频段,或者保证对主用户的干扰小于临界值。为了保证次用户对主权用户的干扰小于临界值,认知无线电系统需要检测主用户接收机附近的干扰功率,因此需要对主用户进行定位。
     本文对认知无线电系统中的频谱分配、频谱感知和主用户定位问题进行了深入研究,主要贡献如下:
     (1)针对认知无线电系统中的频谱分配问题,提出了一种固定速率认知用户和变速率认知用户并存情况下的动态频谱分配算法。该算法以最小化每比特发射功率为目标,应用最小最大优化准则与分步求解的方法,对系统目标函数予以简化,在最大公平意义上对认知小区的空闲频谱资源进行动态分配。
     (2)针对在感知周期中次用户不能发射信号而导致的资源利用率降低的问题,提出了基于循环平稳信号分析的频谱感知算法。首先,根据次用户的循环平稳特征估计出次用户和主用户的接收功率,然后通过将主用户的接收功率和判决门限进行比较来判定主用户是否存在。该算法可以在主用户与次用户同时占用信道的情况下感知主用户的存在,从而提高了频谱利用率。
     (3)针对认知无线电系统的频谱感知问题,提出了一种联合能量相关检测算法。利用大部分接收信号具有相关性的特点,综合考虑接收信号的能量和自相关函数,推导出了联合概率密度函数,并得到了联合能量相关检测器的假设检验公式。
     (4)基于随机集的高斯混合概率假设密度滤波算法是一种典型的多目标跟踪算法,它可以在目标数目和出现未知的情况下进行多目标跟踪,本文提出了一种改进的高斯混合概率假设密度滤波算法,并将该算法应用于认知无线电系统的主用户跟踪问题。该算法利用双向预测的方式对检测结果进行估计,即使用正向预测算法来估计现存主用户的位置,然后采用后向预测算法来搜索新生的主用户并估计出新生主用户的位置。本文提出的算法在主用户的数目、出现的时间和起始位置均未知的情况下,仍可以有效地跟踪主用户。
With the development of wireless communications technology, the spectrum resources are increasingly scarce. In order to solve the problem of insufficient spectrum resources, the cognitive radio technology based on the opportunity spectrum access mechanism plays a more important role. Cognitive radio technology subverts the traditional fixed spectrum allocation fundamentally. It can sense changes of the environment by the sensing node, and change the transmission power, modulation, carrier frequency and other transmission parameters to improve the efficiency of spectrum. Spectrum allocation is a key technology in cognitive radio systems. It can allocate the free spectrum resources and ensure a higher spectrum efficiency. The spectrum sensing technology is used to make sure that the spectrum is not used by the primary user. The cognitive radio system must detect the interference power nearby the primary user's receiver to ensure the interference power from the secondary user is less than a threshold. So the cognitive radio system must know the location information of the primary user.
     In this dissertation, we research on the spectrum allocation, spectrum sensing and primary user tracking problems in the cognitive radio system. The main contributions of the dissertation are as follows:
     (1) A new spectrum allocation algorithm for cognitive radio is proposed based on the analysis of the OFDM based cognitive radio system. For this system that the constant rate users and the variable rate users are coexistence with each other, the proposed algorithm is minimizing the transmitted power per bit, allocating the free spectrum in the cognitive radio cell dynamically in a sense of fair maximization. The system object function is simplified by using the min-max criterion and the step by step approach.
     (2) A cyclo-energy detector is proposed for the spectrum sensing problem based on the cyclostationary signal analysis. It can determine whether there exists primary user by estimating the primary user's received power according to the cyclostationarity of the secondary user. By using this detector, the secondary user need not stop transmitting when sensing the frequency spectrum.
     (3) By using the features which most of the received signals are correlated, a joint energy and autocorrelation based spectrum sensing algorithm is proposed. The hypothesis testing formula has been derived, and the detection probability of the primary user has been improved.
     (4) The primary user location problem is a key issue of the cognitive radio system. Locating the primary user's accurate position can provide a better service for the users. The random set based Gaussian mixture probability hypothesis density filter algorithm is a typical multi-target tracking algorithm. It can track multiple targets when the number of the targets is unknown. In this dissertation, a modified Gaussian mixture probability hypothesis density filter is developed for multi-target tracking problem because the traditional Gaussian mixture probability hypothesis density filter can not work well when where the targets will appear is unknown. And the proposed algorithm is applied to track the primary users in the cognitive radio systems. A double side prediction algorithm is adopted to solve this primary user tracking problem. First, the forward prediction algorithm is used to estimate the locations of the existed primary users, and then the backward prediction algorithm is used to search the new primary users. The proposed algorithm can be used when we do not know how many primary users exist, and when and where they will appear. Simulation results show that the proposed algorithm can track the primary users even in a high false detection environment.
引文
[1]FCC ET. Facilitating opportunities for flexible, efficient, and reliable spectrum use employing cognitive radio technologies, Docket No.03-108 [R]. Washington DC:2003.
    [2]CHEN K-C, PRASAD R,许方敏.认知无线电网络[M].北京:机械工业出版社,2010.
    [3]MITOLA III J, MAGUIRE JR G Q. Cognitive radio:making software radios more personal [J]. IEEE Personal Communications,1999,6(4):13-18.
    [4]冯志勇,张平,郎保真.认知无线电网络理论与关键技术[M].北京:人民邮电出版社,2011.
    [5]MITOLA J. Cognitive radio:an integrated agent architecture for software defined radio [J]. Doctor of Technology, Royal Inst. Technol. (KTH), Stockholm, Sweden,2000,271-350.
    [6]FCC ET. Notice of inquiry and notice of proposed rule making, Docket No.03-237 [R]. Washington DC:2003.
    [7]王军,李少谦.认知无线电:原理、技术与发展趋势[J].中兴通讯技术,2007,13(3):1-4.
    [8]HAYKIN S. Cognitive radio:brain-empowered wireless communications [J]. IEEE Journal on Selected Areas in Communications 2005,23(2):201-220.
    [9]MITOLA J, Ⅲ. Cognitive radio for flexible mobile multimedia communications. IEEE International Workshop on Mobile Multimedia Communications [C]. San Diego, USA,1999:3-10.
    [10]CLANCY C, HECKER J, STUNTEBECK E. Applications of machine learning to cognitive radio networks [J]. IEEE Transactions on Wireless Communications,2007,14(4):47-52.
    [11]FETTE B,赵知劲,郑适链.认知无线电技术[M].北京:科学出版社,2008.
    [12]肖维民,许希斌,朱健.软件无线电综述[J].电子学报,1998,26(2):65-70.
    [13]MITOLA Ⅲ J. Software radios:survey, critical evaluation and future directions [J]. IEEE Aerospace and Electronic Systems Magazine,1993,8(4):25-36.
    [14]MITOLA J. The software radio architecture [J]. IEEE Communications Magazine,1995,33(5): 26-38.
    [15]王金龙,吴启晖,龚玉平.认知无线电网络[M].北京:机械工业出版社,2010.
    [16]AKYILDIZ I F, LEE W Y, VURAN M C. NeXt generation/dynamic spectrum access/cognitive radio wireless networks:a survey [J]. Computer Networks,2006,50(13):2127-2159.
    [17]MANGOLD S, ZHUN Z, CHALLAPALI K. Spectrum agile radio:radio resource measurements for opportunistic spectrum usage. Global Telecommunications Conference [C]. Dallas, USA,2004: 3467-3471.
    [18]周贤伟,王建萍,王春江.认知无线电[M].北京:国防工业出版社,2008.
    [19]NIYAT0 D, HOSSAIN E. Cognitive radio for next-generation wireless networks:an approach to opportunistic channel selection in IEEE 802.11-based wireless mesh [J]. IEEE Transactions on Wireless Communications,2009,16(1):46-54.
    [20]CORDEIRO C, CHALLAPALI K, BIRRU D. IEEE 802.22:an introduction to the first wireless standard based on cognitive radios [J]. Journal of communications,2006,1(1):38-47.
    [21]周小飞,张宏纲.认知无线电原理及应用[M].北京:北京邮电大学出版社,2007.
    [22]SHERMAN M, MODY A N, MARTINEZ R. IEEE standards supporting cognitive radio and networks, dynamic spectrum access, and coexistence [J]. IEEE Communications Magazine,2008,46(7): 72-79.
    [23]GHOSH A, WOLTER D R, ANDREWS J G. Broadband wireless access with WiMax/802.16:current performance benchmarks and future potential [J]. IEEE Communications Magazine,2005,43(2): 129-136.
    [24]ANDREWS J G, GHOSH A, MUHAMED R. Fundamentals of WIMAX [M]. Boston:Prentice-Hall,2007.
    [25]BEREZDIVIN R, BREINIG R, TOPP R. Next-generation wireless communications concepts and technologies [J]. IEEE Communications Magazine,2002,40(3):108-116.
    [26]BULJORE S, HARADA H, FILIN S. Architecture and enablers for optimized radio resource usage in heterogeneous wireless access networks:the IEEE 1900.4 working group [J]. IEEE Communications Magazine,2009,47(1):122-129.
    [27]PRASAD R V, PAWELCZAK P, HOFFMEYER J A. Cognitive functionality in next generation wireless networks:standardization efforts [J]. IEEE Communications Magazine,2008,46(4):72-78.
    [28]ZHU J, LIU K J R. Dynamic spectrum sharing:a game theoretical overview [J]. IEEE Communications Magazine,2007,45(5):88-94.
    [29]AKYILDIZ I F, WON-YEOL L, VURAN M C. A survey on spectrum management in cognitive radio networks [J]. IEEE Communications Magazine,2008,46(4):40-48.
    [30]FENG G, QINQIN C, YING W. Cognitive radio:from spectrum sharing to adaptive learning and reconfiguration. IEEE Aerospace Conference [C]. Big Sky, USA,2008:1-10.
    [31]ZHAO Q, SADLER B M. A survey of dynamic spectrum access [J]. IEEE Signal Processing Magazine, 2007,24(3):79-89.
    [32]CABRIC D, O'DONNELL I D, CHEN M S W. Spectrum sharing radios [J]. IEEE Circuits and Systems Magazine,2006,6(2):30-45.
    [33]NIYATO D, HOSSAIN E. Competitive pricing for spectrum sharing in cognitive radio networks: dynamic game, inefficiency of Nash equilibrium, and collusion [J]. IEEE Journal on Selected Areas in Communications,2008,26(1):192-202.
    [34]MYERSON R B. Nash equilibrium and the history of economic theory [J]. Journal of Economic Literature,1999,37(1):1067-1082.
    [35]XING Y, CHANDRAMOULI R, CORDETRO C. Price dynamics in competitive agile spectrum access markets [J]. IEEE Journal on Selected Areas in Communications,2007,25(3):613-621.
    [36]NEEL J 0 D. Analysis and design of cognitive radio networks and distributed radio resource management algorithms [D]. Blacksburg:Virginia Polytechnic Institute and State University, USA,2006.
    [37]FENG T, ZHEN Y. A new algorithm for weighted proportional fairness based spectrum allocation of cognitive radios. ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing [C]. Qingdao, China,2007: 531-536.
    [38]李维英,陈东,邢成文.认知无线电系统中OFDM多用户资源分配算法[J].西安电子科技大学学报,2007,34(3):368—372.
    [39]KIVANC D, LI G, LIU H. Computationally efficient bandwidth allocation and power control for OFDMA [J]. IEEE Transactions on Wireless Communications,2003,2(6):1150-1158.
    [40]YUCEK T, ARSLAN H. A survey of spectrum sensing algorithms for cognitive radio applications [J]. IEEE Communications Surveys and Tutorials,2009,11(1):116-130.
    [41]GARDNER W A, NAPOLITANOA, PAURA L. Cyclostationarity:half a century of research [J]. Signal Processing,2006,86(4):639-697.
    [42]DANDAWATE A V, GIANNAKIS G B. Statistical tests for presence of cyclostationarity [J]. IEEE Transactions on Signal Processing,1994,42(9):2355-2369.
    [43]JULIENR, JONATHAN V C, JEAN-MICHEL D. Higher-order cyclostationarity detection for spectrum sensing [J]. EURASIP Journal on Wireless Communications and Networking,2010, Artical ID 721695,10 pages.
    [44]SUTTON P D, NOLAN K E, DOYLE L E. Cyclostationary signatures in practical cognitive radio applications [J]. IEEE Journal on Selected Areas in Communications,2008,26(1):13-24.
    [45]GHASEMI A, SOUSA E S. Spectrum sensing in cognitive radio networks:the cooperation-processing tradeoff [J]. Wireless Communications and Mobile Computing,2007, 7(9):1049-1060.
    [46]GANESAN G, LI Y. Cooperative spectrum sensing in cognitive radio networks. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN) [C]. Baltimore, USA,2005:137-143.
    [47]MISHRA S M, SAHAI A, BRODERSEN R W. Cooperative sensing among cognitive radios. IEEE International Conference on Communications [C]. Istanbul, Turkey,2006:1658-1663.
    [48]ZHANG W, MALLIK R K, BEN LETAIEF K. Cooperative spectrum sensing optimization in cognitive radio networks. IEEE International Conference on Communications [C]. Beijing, China,2008: 3411-3415.
    [49]RUILIANG C, JUNG-MIN P, KAIGUI B. Robust distributed spectrum sensing in cognitive radio networks. IEEE Conference on Computer Communications [C]. Phoenix, USA,2008:1876-1884.
    [50]PENG Q, ZENG K, WANG J. A distributed spectrum sensing scheme based on credibility and evidence theory in cognitive radio context. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications [C]. Helsinki, Finland,2006:1-5.
    [51]DASILVA C R C, BRIAN C, KYOUWOONG K. Distributed spectrum sensing for cognitive radio systems. Information Theory and Applications Workshop [C]. La Jolla, USA,2007:120-123.
    [52]CHUNHUA S, WEI Z, BEN K. Cluster based cooperative spectrum sensing in cognitive radio systems. IEEE International Conference on Communications [C]. Glasgow, UK,2007:2511-2515.
    [53]FETTE B A. Cognitive Radio Technology [M]. Oxford:Academic Press,2009.
    [54]BRAM D, STEFAN D, PAUL H. Range-based localization in mobile sensor networks wireless sensor networks. Proceedings of Third European Workshop on Wireless Sensor Networks [C]. Zurich, Switzerland,2006:164-179.
    [55]HE T, HUANG C, BLUM B M. Range-free localization schemes for large scale sensor networks. International Conference on Mobile Computing and Networking [C]. San Diego, USA,2003: 81-95.
    [56]马志垚,陈巍,曹志刚.认知无线电网络中基于检测概率的主用户定位算法[J].北京邮电大学学报,2009,32(2):14-19.
    [57]BAO LONG L, AHMED K, TSUJI H. Mobile location estimator with NLOS mitigation using Kalman filtering. IEEE International Conference on Wireless Communications and Networking [C]. New Orleans, USA,2003:1969-1973.
    [58]WILD B, RAMCHANDRAN K. Detecting primary receivers for cognitive radio applications. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks [C]. Baltimore, USA,2005:124-130.
    [59]LIU H, TURELI U. A high-efficiency carrier estimator for OFDM communications [J]. IEEE Communications Letters,1998,2(4):104-106.
    [60]ARSLANH. Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems [M]. Berlin: Springer Verlag,2007.
    [61]武林俊,李燕文,多用户多速率OFDM中的子载波分配和功率控制[J].电子与信息学报,2007,29(8):1911-1915.
    [62]唐焕文,秦学志.实用最优化方法[M].大连:大连理工大学出版社,1994.
    [63]YU W, CIOFFI J M. On constant power water-filling. IEEE International Conference on Communications [C]. Helsinki, Finland,2001:1665-1669.
    [64]KEUNYOUNG K, YOUNGNAM H, SEONG-LYUN K. Joint subcarrier and power allocation in uplink OFDMA systems [J]. IEEE Communications Letters,2005,9(6):526-528.
    [65]KOBAYASHI M, CAIRE G. An iterative water-filling algorithm for maximum weighted sum-rate of Gaussian MIMO-BC [J]. IEEE Journal on Selected Areas in Communications,2006,24(8): 1640-1646.
    [66]老大中.变分法基础[M].北京:国防工业出版社,2007.
    [67]佟学俭,罗涛OFDM移动通信技术原理与应用[M].北京:人民邮电出版社,2003.
    [68]HUGHES-HARTOGS D. Ensemble modem structure for imperfect transmission media:USA, Patent No.4679227 [P]. July 7,1987.
    [69]王文博,郑侃.宽带无线通信OFDM技术[M].北京:人民邮电出版社,2007.
    [70]CHOW P S, CIOFFI J M, BINGHAM J A C. A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels [J]. IEEE Transactions on Communications,1995,43(2/3/4):773-775.
    [71]FISCHER R F H, HUBER J B. A new loading algorithm for discrete multitone transmission. IEEE Global Telecommunications Conference [C]. London, UK,1996:724-728.
    [72]GR NHEID R, BOLINTH E, ROHLING H. Adaptive modulation for the HIPERLAN/2 air interface. International OFDM-Workshop [C]. Hamburg, Germany,2000:4-1.
    [73]MARLER R T, ARORA J S. Survey of multi-objective optimization methods for engineering [J]. Structural and Multidisciplinary Optimization,2004,26(6):369-395.
    [74]KIVANC D, LIU H. Subcarrier allocation and power control for OFDMA. Asilomar Conference on Signals, Systems and Computers, Piscatatway [C]. Pacific Grove, USA,2000:147-151.
    [75]GIANNAKIS G B, TSATSANIS M K. Signal detection and classification using matched filtering and higher order statistics [J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1990,38(7):1284-1296.
    [76]CAULFIELD H, HAIMES R. Generalized matched filtering [J]. Applied Optics,1980,19(2): 181-183.
    [77]SUTTON P D, LOTZE J, NOLAN K E. Cyclostationary signature detection in multipath rayleigh fading environments. International Conference on Cognitive Radio Oriented Wireless Networks and Communications [C]. Orlando, USA,2007:408-413.
    [78]URKOWITZ H. Energy detection of unknown deterministic signals [J]. Proceedings of the IEEE, 1967,55(4):523-531.
    [79]罗鹏飞.统计信号处理[M].北京:电子工业出版社,2009.
    [80]MANOLAKIS D G, INGLE V K, KOGON S M. Statistical and Adaptive Signal Processing:Spectral Estimation, Signal Modeling, Adaptive Filtering, and Array Processing [M]. Boston:Artech House,2005.
    [81]张贤达,保铮.通信信号处理[M].北京:国防工业出版社,2000.
    [82]王宏禹,邱天爽,陈喆.非平稳随机信号分析与处理[M].北京:国防工业出版社,2008.
    [83]GLADYSHEV E. Periodically correlated random sequences [J]. Soviet Mathematics,1961,2(6): 385-388.
    [84]HURD H L. Correlation theory of almost periodically correlated processes [J]. Journal of Multivariate Analysis,1991,37(1):24-45.
    [85]TANDRA R, SAHAI A. SNR walls for signal detection [J]. IEEE Journal of Selected Topics in Signal Processing,2008,2(1):4-17.
    [86]ZENG Y, LIANG Y C. Eigenvalue-based spectrum sensing algorithms for cognitive radio [J]. IEEE Transactions on Communications,2009,57(6):1784-1793.
    [87]TANDRA R, SAHAI A. Fundamental limits on detection in low SNR under noise uncertainty. International Conference on Wireless Networks, Communications and Mobile Computing [C]. Maui, USA,2005:464-469.
    [88]ZENG Y, LIANG Y C. Spectrum-sensing algorithms for cognitive radio based on statistical covariances [J]. IEEE Transactions on Vehicular Technology,2009,58(4):1804-1815.
    [89]NIKIFOROV A F, UVAROV V B, BOAS R P. Special Functions of Mathematical Physics [M]. Boston: Birkhauser,1988.
    [90]FORTMANN T, BAR-SHALOM Y, SCHEFFE M. Sonar tracking of multiple targets using joint probabilistic data association [J]. IEEE Journal of Oceanic Engineering,1983,8(3): 173-184.
    [91]BLOM H A P, BAR-SHALOM Y. The interacting multiple model algorithm for systems with Markovian switching coefficients [J]. IEEE Transactions on Automatic Control, 1988, 33(8) : 780-783.
    [92]REID D. An algorithm for tracking multiple targets [J]. IEEE Transactions on Automatic Control, 1979, 24(6) : 843-854.
    [93]BA-NGU V, WING-KIN M. The Gaussian mixture probability hypothesis density filter [J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104.
    [94]PANTA K, CLARK D E, VO B N. Data association and track management for the Gaussian mixture probability hypothesis density filter [J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1003-1016.
    [951 STONE L D, BARLOW C A, CORWIN T L. Bayesian Multiple Target Tracking [M]. Boston: Artech House, 1999.
    [96]BAR-SHALOM Y, TSE E. Tracking in a cluttered environment with probabilistic data association [J]. Automatica, 1975, 11(5) : 451-460.
    [97]权太范.目标跟踪新理论与技术[M].北京:国防工业出版社,2009.
    [98]ROECKER J, PHILLIS G. Suboptimal joint probabilistic data association [J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(2): 510-517.
    [99]FITZGERALD R. Track biases and coalescence with probabilistic data association [J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, 21(6): 822-825.
    [100]GOODMAN I R, MAHLER R P S, NGUYEN H T. Mathematics of Data Fusion [M]. Netherlands: Kluwer Academic, 1997.
    [101]MAHLER R P S. Random sets in information fusion. An overview [J]. Institute for Mathematics and Its Applications, 1997, 97(10): 129-164.
    [102]DALEY D J, VERE-JONES D. An Introduction to the Theory of Point Processes: General Theory and Structure [M]. Berlin: Springer Verlag, 2007.
    [103]STOYAN D, KENDALL W S, MECKE J. Stochastic Geometry and Its Applications [M]. New York: Wiley, 1995.
    [104]GUOLIN S, JIE C, WEI G. Signal processing techniques in network-aided positioning: a survey of state-of-the-art positioning designs [J]. IEEE Signal Processing Magazine, 2005, 22(4): 12-23.
    [105]VO B N, SINGH S, DOUCET A. Sequential Monte Carlo methods for multitarget filtering with random finite sets [J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224-1245.
    [106]VO B, SINGH S, BADDELEY A. Technical aspects of the Probability Hypothesis Density recursion, Docket No. 05-006 [R]. Melbourne University, Melbourne, Australia: 2005.
    [107]MAHLER R P S. Multitarget Bayes filtering via first-order multitarget moments [J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178.
    [108]BAR-SHALOM Y. Tracking and Data Association [M]. San Diego, CA: Academic Press Professional, Inc. , 1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700