独立分量分析在脑—机接口中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,脑-机接口(Brain-Computer Interface:BCI)作为一种新型的人机交互技术,已成为当今脑科学和生物医学工程领域的热点课题。基于EEG信号的BCI是指在人脑和计算机或者其它电子设备之间建立的一种直接信息交流和控制通道。随着认知神经科学、计算机科学与信号处理技术的飞速发展,脑-机接口技术正在逐步向实用化方法发展。
     独立分量分析(Independent Component Analysis:ICA)是20世纪90年代中期发展起来的一种多维统计分析方法。近年来ICA在脑-机接口中的应用一直倍受关注,但是从目前已报道的研究中可以看出:ICA方法主要还是被作为一种预处理手段,用于消除原始脑电信号中的干扰成分,进而改善脑-机通信的正确识别率。而且在很多情况下均采用的是批处理ICA进行的脑-机接口离线分析。
     考虑到脑电信号具有很强的非平稳性,本论文的研究工作主要是围绕适合非平稳信号的在线ICA算法及其在脑-机接口中的应用问题展开的。论文的主要创新点在于:提出了将基于滑动窗的在线ICA算法应用于信号包络检测的新思路,并成功地将这种思路应用于BCI系统的信号特征提取和分类识别。通过对大量实测数据的分类测试,结果验证了所提方法的有效性。围绕这一创新点,本文在以下几个方面做了一些有特色的工作:
     1.在对ICA基本理论进行分析研究的基础上,重点对Herault-Jutten算法、Cichocki-Unbehauen算法、扩展Infomax算法和峭度极大ICA算法展开了研究,并对这几种算法的批处理和基于单个样本更新的在线形式进行了探讨和性能对比分析,为算法的改进提供了指导方向。
     2.研究了改进的基于滑动窗的在线ICA算法,并分别在非时变混合模型和时变混合模型两种情况下,对滑动窗在线算法的盲分离性能进行了研究分析。仿真实验结果说明滑动窗在线ICA算法能够在一定程度上兼顾批处理算法的稳定性和基于单个样本更新在线算法的自适应跟踪性能,对时变混合情况也能够获得较理想的盲分离结果。并提出了将滑动窗在线ICA算法应用于信号包络检测的新思路。仿真实验结果说明:利用在线算法得到的动态混合矩阵系数对信号进行包络提取是完全可行的。
     3.由于EEG信号的强非平稳性,提出了将适合非平稳性信号分析的Hilbert-Huang变换(HHT)方法引入脑-机接口的思想。通过实测数据分析得到:利用HHT算法中的EMD分解方法可以成功地实现对SSVEP信号的预处理和特征提取。此外,在基于HHT的左右手运动想象分析过程中,提出了一种基于运动想象¨节律包络特性的分类识别思想。实验结果验证了该思路是可行的,并为在线ICA算法在脑-机接口中的应用提供了指导思想。
     4.提出了将在线ICA算法应用于脑-机接口的新思路。大量的实测数据分类结果证明:利用在线ICA算法的包络提取性能,可以成功地实现对左右手运动想象脑电的动态分析和识别。为了验证分类结果的有效性,论文同时采用基于AR+BP、AR+LDA、AR+SVM和二阶矩能量的四种分类方法进行对比分析,结果表明基于在线ICA的分类效果非常理想。而且需要说明的是:在基于在线ICA算法的分类过程中并没有训练的环节,因此这种不经过训练就能获得较好分类结果的在线方法将会对BCI系统的简化提供很大的帮助。
     5.对在线ICA算法在α波检测中的应用进行了研究,结果进一步验证了在线ICA算法对于脑电节律波进行实时包络提取的可行性。
     6.成功地开展了对基于左右手运动想象、SSVEP和α波检测三类BCI系统的自主实验设计和数据采集工作,并获得了大量有效的自主实验数据,为本实验室的后续研究工作提供了数据来源。
In recent years, as a new human-computer interaction technology, Brain-Computer Interface (BCI) has been a hotspot in brain science and biomedical engineering. EEG-based BCI can provide a direct communication and control channel for sending messages and instructions from brain to external computers or other electronic devices. With the rapid development of cognitive brain science, neuroscience, computer science and signal processing, BCI is working up to a practical technology.
     Independent Component Analysis (ICA) is a multi-dimensional statistical analysis method developed in the mid 90's of the 20th century. Recently, the ICA-based BCI research has been attracted more and more researchers'attention. However, from the reported researches, it can be seen that ICA method is mainly used as a preprocessing step for EEG artifact removal and pattern enhancement so as to improve the communication accuracy between brain and computer. And in many cases, only batch ICA as off-line methods are often used for the analysis of BCI system.
     Considering the strong nonstationarity of EEG, the mainly research work of this thesis is about online ICA algorithm which can be used to analyze the nonstationary signals and its application on BCI. The main innovations of thesis are as follows:put forward a new idea of applying online ICA algorithm based on sliding window method to the real-time envelope extraction of signals. And successfully utilize the thought for the feature extraction and classification of BCI system. By using the method to classify a large number of real-world data, the experiment results prove that the proposed approach is effective for BCI research. Based on the innovations, some distinctive research works which have been finished are as follows:
     1. Based on studying the basic theory of ICA, the thesis focuses on the four ICA algorithms, including Herault-Jutten algorithm, Cichocki-Unbehauen algorithm, extended Infomax algorithm and the kurtosis-based ICA algorithm. Then the four block algorithms and their corresponding online algorithms updated with a new input sample are explored, and also the performances of block and online algorithms are comparatively analyzed in order to provide us an idea that is how to improve the current algorithms.
     2. Research on an improved online algorithm based on sliding window ICA. And under the two cases of non-time-varying and time-varying mixing model, the blind separation peformances of the improved online algorithm are respectively explored. Simulation results show that the improved approach not only partly has the stability of the batch algorithm, but also to some extent, it owns the adaptive tracking performance as the online algorithm updated with a new input sample. And for time-varying mixing model, the separation results by the method are also satisfied. In addition, the thesis proposed a novel thought of applying the online silding window ICA algorithm to the signal envelope detection. And simulation results illustrate that using dynamic mixing matrix coefficients got from improved algorithm can do well on the envelope extraction of signal.
     3. As the strong non-stationarity of EEG, the thesis proposes that using Hilbert-Huang transform (HHT) on BCI research. By analyzing the real-life data, the results show that utilizing the EMD method within HHT theory can successfully perform the pre-processing and feature extraction of SSVEP signal. Furthermore, during the HHT-based analysis of left and right hand motor imagery, a new idea is proposed that of emploring theμrhythm envelope as features to identify and classify the motor imagery EEG. Experimental results show that the proposed idea is feasible and can provide us a direction of applying online ICA algorithm on BCI.
     4. Propose to apply online ICA algorithm on BCI. Based on the classification results from large quantities of measured data, it can be identified that using online ICA algorithm to extract theμrhythm envelope can successfully classify the left and right hand motor imagery. To further verify the validity of the classification results, the thesis also uses the other four methods to identify and classify motor imagery EEG, such as AR and BP, AR and LDA, AR and SVM, and energy method based on second moment. By comparing of the results from defferent approachs, it shows that the online ICA algorithm can do well on the classification of motor imagery EEG. Moreover, it must be mentioned here that there is no training process when using online ICA algorithm to classify. Therefore, the method which has good classification peformence without training process will very helpful to simplify the BCI system.
     5. Research the detection of a wave by online ICA algorithm. Experimental results further confirm that using online ICA algorithms for envelope detection of EEG rhythm wave is effective.
     6. Proform by ourselves the experiment design and data collection successfully for three BCI systems, including left and right hand motor imagery based BCI, SSVEP-based BCI and a wave based BCI. Then a great deal of effective data is recorded and it will help us to further study on BCI.
引文
[1]J.J. Vidal. Toward Direct Brain-Computer Communication [J]. Annual Review of Biophysics and Bioengineering,1973,2:157-180.
    [2]Mikhail A. Lebedev, Miguel A.L. Nicolelis. Brain-machine interfaces:past, present and future [J]. TRENDS in Neurosciences,2006,29(9):536-546.
    [3]高上凯.浅谈脑-机接口的发展现状与挑战[J].中国生物医学工程学报,2007,26(6):801-803,809.
    [4]高上凯,张志广,高小榕等.基于脑-机接口技术的新型器械[J].中国医疗器械杂志,2006,30(2):79-82.
    [5]官金安,林家瑞.脑-机接口技术进展与挑战[J].中国医疗器械杂志,2004,28(3):157-161.
    [6]万柏坤,高扬,赵丽等.脑-机接口:大脑对外信息交流的新途径[J].国外医学生物医学工程分册,2005,28(1):4-9.
    [7]E.E. Sutter. The brain response interface:communication through visually induced electrical brain response [J]. Microcomputer Applications,1992,15 (1): 31-45
    [8]L.A. Farwell, E. Donchin. Talking off the top of your head:a mental prosthesis utilizing event-related brain potentials [J]. Electroencephalography and Clinical Neurophysiology,1988,70(1):510-523.
    [9]J.R. Wolpaw, D.J. McFarland, G.W. Neat, et al. An EEG-based brain-computer interface for cursor control [J]. Electroencephalography and Clinical Neurophysiology,1991,78:252-259.
    [10]G. Pfurtscheller, D. Flotzinger, W. Mohl, et al. Prediction of the side of hand movements from single-trial multi-channel EEG data using neural networks [J]. Electroencephalography and Clinical Neurophysiology,1992,82:313-315.
    [11]G.R. McMillan, G.L. Calhoun, M.S. Middendorf, et al. Direct brain interface utilizing self regulation of steady state visual evoked response (ssver) [C]. Proc. 18th Annu. RESNA Conference, Washington, DC,1995:693-695.
    [12]J.R. Wolpaw, N. Birbaumer, W.J. Heetderks, et al. Brain-Computer Interface Technology:A Review of the First International Meeting [J]. IEEE Transactions on rehabilitation engineering,2000,8(2):164-173.
    [13]T.M. Vaughan, W.J. Heetderks, L.J. Trejo, et al. Brain-Computer Interface Technology:A Review of the Second International Meeting [J]. IEEE Transactions on neural systems and rehabilitation engineering,2003,11(2): 94-108.
    [14]T.M. Vaughan, J.R. Wolpaw. The Third International Meeting on Brain-Computer Interface Technology:Making a Difference [J]. IEEE Transactions on neural systems and rehabilitation engineering,2006,14(2):126-127.
    [15]Yijun Wang, Ruiping Wang, Xiaorong Gao, Bo Hong, Shangkai Gao. A Practical VEP-Based Brain-Computer Interface [J]. IEEE Transactions on neural systems and rehabilitation engineering,2006,14(2):234-239.
    [16]Y. Wang, B. Hong, X. Gao and S. Gao. Design of electrode layout for motor imagery based brain-computer interface [J]. Electronics Letters,2007, Vol.43, No.10.
    [17]Yijun Wang, Bo Hong, Xiaorong Gao, and Shangkai Gao. Implementation of a Brain-Computer Interface Based on Three States of Motor Imagery[C]. Proceedings of the 29th Annual International Conference of the IEEE EMBS, Cite Internationale, Lyon, France, August 23-26,2007:5059-5062.
    [18]高上凯.基于节律性脑电信号的脑-机接口[J].生命科学,2008,20(5):722-724.
    [19]高上凯.神经工程与脑-机接口[J].32009,21(2):177-180.
    [20]Xiang Liao, Dezhong Yao. Combining Spatial Filters for the Classification of Single-Trial EEG in a Finger Movement Task [J]. IEEE Transactions on biomedical engineering,2007,54(5):821-831.
    [21]Dezhong Yao. Brain Computer Interface:Today and Tomorrow [J]. Journal of Electronic Science and Technology of China,2009, Vol.7, No.1:1-2.
    [22]陈强,彭虎,冯焕清,江朝晖.独立式脑-计算机接口信号处理和识别方法研究[J].北京生物医学工程,2005,(04):254-257.
    [23]何庆华,彭承琳,吴宝明等.小波变换在视觉诱发电位信号提取中的应用[J].重庆大学学报,2003,26(6):78-80.
    [24]伍亚舟,何庆华,黄华等.基于想象左右手运动脑机接口实验研究及分析[J].生物医学工程学杂志,2008,25(5):983-988.
    [25]方慧娟,王永骥,何际平.脑运动神经系统的非线性建模与辨识[J].华中科技大学学报(自然科学版),2009,37(1):81-84.
    [26]F. Lotte, M. Congedo, A. Lecuyer, et al. A Review of Classication Algorithms for EEG-based Brain-Computer Interfaces [J]. Journal of Neural Engineering,2007, 4:R1-R13.
    [27]T.P. Jung, S. Makeig, C. Humphries, et al. Removing electroencephalographic artifacts by blind source separation [J]. Psychophysiology,2000,37(2):163-78.
    [28]S. Makeig, A.J. Bell, T.P. Jung, and T.J. Sejnowski. Independent component analysis of electroencephalographic data [J]. Advances in Neural Information Processing Systems,1996,8:145-151.
    [29]R Vigario, J. Sarela, V. Jousmaki, M. Hamalainen, E. Oja. Independent component approach to the analysis of EEG and MEG recording [J]. IEEE Trans. Biomed. Eng.2000,47(5):589.
    [30]A. Kachenoura, L. Albera, L. Senhadji, P. Comon. ICA:A Potential Tool for BCI Systems. IEEE Signal Processing Magazine. Jan.2008,57-68.
    [31]J. Onton, S. Makeig. Information-based modeling of event-related brain dynamics [J]. Progress in brain research,2006,159:99-120.
    [32]谭郁玲,侯沂等.临床脑电图与脑地形学[M].北京:人民卫生出版社,1997.
    [33]EEG. http://en.wikipedia.org/wiki/EEG.
    [34]赵仑.ERP实验教程[M].天津:天津社会科学院出版社,2004.
    [35]杨福生,高上凯.生物医学信号处理[M].北京:高等教育出版社,1989.
    [36]Z. Lin, C. Zhang, W. Wu, and X. Gao. Frequency Recognition Based on Canonical Correlation Analysis for SSVEP-Based BCIs [J]. IEEE Transactions on biomedical engineering,2007,54(6):1172-1176.
    [37]M. Pregenzer, G. Pfurtscheller. Frequency Component Selection for an EEG-Based Brain to Computer Interface [J]. IEEE Transactions on rehabilitation engineering,1999,7(4):413-419.
    [38]G. Townsend, B. Graimann, G. Pfurtscheller. A Comparison of Common Spatial Patterns With Complex Band Power Features in a Four-Class BCI Experiment [J]. IEEE Transactions on biomedical engineering,2006,53(4):642-651.
    [39]H.S. Liu, X.R. Gao, F.S. Yang, S.K. Gao. Imagined Hand Movement Identification Based on Spatio-temporal Pattern Recognition of EEG [C]. Proceedings of the 1st International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, March 20-22,2003:599-562.
    [40]H. Lee, S. Choi. PCA-based linear dynamical systems for multichannel EEG classification [C]. Proceedings of the 9th International Conference on Neural Information Processing,2002, Vol.2:745-749.
    [41]R. Vigario, J. Sarela, V. Jousmaki, et al. Independent component approach to the analysis of EEG and MEG recordings [J]. IEEE Trans Biomed Eng,2000,47(5): 589-93.
    [42]C.I. Hung, P.L. Lee, Y.T. Wu, et al. Recognition of Motor Imagery Electroencephalography Using Independent Component Analysis and Machine Classifiers [J]. Annals of Biomedical Engineering,2005,33(8):1053-1070.
    [43]A. Erfanian, A. Erfani. ICA-Based Classification Scheme for EEG-based Brain-Computer Interface:The Role of Mental Practice and Concentration Skills [C]. Proceedings of the 26th Annual International Conference of the IEEE EMBS San Francisco, CA, USA, September 1-5,2004.
    [44]G. Pfurtscheller, C. Neuper, A. Schlogl, etc. Separability of EEG Signals Recorded During Right and Left Motor Imagery Using Adaptive Autoregressive Parameters [J]. IEEE Transactions on rehabilitation engineering,1998,6(3): 316-325.
    [45]K. Inow, D. Mori, K Sugioka, etc. Feature Extraction of EEG Signals During Right and Left Motor Imagery [C]. SICE Annual Conference in Sapporo, August 4,2004,2183-2187.
    [46]胡广书.数字信号处理—理论、算法与实现[M].北京:清华大学出版社,1997.
    [47]周鹏.基于运动想象的脑-机接口的研究[D].天津:天津大学,2007.
    [48]程明.基于脑电信号的脑—计算机接口的研究[D].北京:清华大学,2004.
    [49]李坤.运动意识脑电分类及基于VC++的脑-机接口实验系统[D].安徽:安徽大学,2007.
    [50]王璐.基于脑电的运动想象任务识别及实验研究[D].安徽:安徽大学,2008.
    [51]吴小培,叶中付.基于脑电四阶累积量的运动意识分类研究[J].生物物理学报,2005,21(5):1-8.
    [52]G. Pfurtscheller, C. Brunner, A. Schlogl, and F.H.L. daSilva. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks [J]. Neuroimage,2006,31:153-159.
    [53]T. Wang, J. Deng, B. He. Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns [J]. Clinical Neurophysiology, 2004,115:2744-2753.
    [54]B. Kamousi, Z.M. Liu, B. He. Classification of Motor Imagery Tasks for Brain-Computer Interface Applications by Means of Two Equivalent Dipoles Analysis [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2005,13(2):166-171.
    [55]K. Matthias, M. Peter, G. Ulf. BCI competition 2003-Data Set Ⅱb:support vector machines for the P300 speler paradigm [J]. IEEE Transactions on Biomedical Engineering,2004,51(6):1073-1076.
    [56]边肇祺,张学工等.模式识别(第二版)[M].北京:清华大学出版社,2000.
    [57]F.Sharbrough, GE.Chatrian, R.P. Lesser, et al. American electroencephalographic society guidelines for standard electrode position nomenclature [J]. Clin Neurophysiol,1991,8(2):200-202.
    [58]张贤达.现代信号处理[M].北京:清华大学出版社,1995.
    [59]杨福生,洪波.独立分量分析的原理与应用[M].北京:清华大学出版社,2006.
    [60]周宗潭,董国华等译.独立成分分析[M].北京:电子工业出版社,2007.
    [61]J. Herault and C. Jutten. Space or time adaptive signal processing by neural network models [C]. Neural networks for computing, AIP conference,1986.
    [62]C.Jutten, A. Taleb. Source separation:From dust till dawn[C]. Proc. Int. Symp. Independent Component Analysis and Blind Signal Separation,2000,15-26.
    [63]C. Jutten, J. Herault. Blind separation of sources I:An adaptive algorithm based on neuromimetic architecture [J]. Signal Processing,1991,24:1-10.
    [64]P. Comon. Independent component analysis, A new concept? [J]. Signal Processing,1994,36(3):287-314.
    [65]J.F. Cardoso. Blind signal separation:statistical principles[C]. Proceedings of the IEEE. Special issue on blind identification and estimation, Oct.1998,9(10):2009-2025.
    [66]J.F. Cardoso. Infomax and maximum likelihood for blind source separation [J]. IEEE Signal processing Letters,1997,4(4):112-114.
    [67]S. Amari, A. Cichocki. A new learning algorithm for blind source separation[C]. In Advances in Neural Information Processing, MIT Press, Cambridge, MA, 1996:757-763.
    [68]A. J. Bell and T. J. Sejnowski. An information-maximization approach to blind separation and blind deconvolution [J]. Neural Computation,1995,7: 1129-1159.
    [69]M.Girolami. An alternative perspective on adaptive independent component analysis algorithm.Neural Computer,1998,10(8):2103-2114.
    [70]T. W. Lee, M. Girolami, T. J. Sejnowski. Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources [J]. Neural Computation,1999,11:417-441.
    [71]T. P. Jung, C. Humphries, T. W. Lee, et al. Extended ICA removes artifacts from electroencephalographic data [J]. Advances in Neural Information Processing Systems,1998,10:894.
    [72]Aapo Hyvarinen and Erkki Oja. A fast fixed-point algorithm for Independent Component Analysis. Neural Computation,1997,9:1483-1492.
    [73]Aapo Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis [J]. IEEE Trans. on Neural Networks,1999,10(3):626-634.
    [74]Ella Bingham and Aapo Hyvarinen. A fast fixed point algorithm for Independent Component Analysis of complex valued signals [J]. International Journal of Neural Systems, February 2000,10(1):1-8.
    [75]吴小培,叶中付等.基于滑动窗口的独立分量分析[J].计算机研究与发展,2007,44(1):185-191.
    [76]王宏禹.信号处理相关理论综合与统一法[M].北京:国防工业出版社,2005.
    [77]季忠,秦树人.微弱生物医学信号特征提取的原理与实现[M].北京:科学出版社,2007.
    [78]N.E. HUANG. Computer implicated empirical mode decomposition method, apparatus, and articale of manufacture [P]. U. S. Patent Pending,1996.
    [79]N.E. HUANG, Z. SHEN, S.R. LONG. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc. R. Soc, London,1998, A454:903-995.
    [80]N.E. HUANG, Z. SHEN, S.R LONG. A new view of nonlinear water waves:the Hilbert spectrum [J]. Annual Review of Fluid Mechanics,1999,31:417-457.
    [81]J.P. Zhao, D.J. Huang. Mirror extending and circular spline function for empirical mode decomposition method [J]. Journal of Zhejiang University (Science),2001,2:247-252.
    [82]盖强,张海勇等.几种局域波分解方法的比较研究[J].系统工程与电子技术,2002,24(2):57-59.
    [83]P. Flandrin, G. Rilling, P. Goncalves. Empirical Mode Decomposition as a Filter Bank [J]. IEEE SIGNAL PROCESSING LETTERS,2003.
    [84]J.S. Cheng, D.J. Yu, Y. Yang. A fault diagnosis approach for roller bearings based on EMD method and AR model [J]. Mechanical Systems and Signal Processing,2006:350-362.
    [85]J.C. Nunes, Y. Bouaoune, E. Delechelle, et al. Image analysis by bidimensional empirical mode decomposition[J]. Image and Vision Computing,2003,21: 1019-1026.
    [86]P. Maragos, J.F. Kaiser, T.F. Quatieri. On amplitude and frequency demodulation using energy operators [J]. IEEE Trans on Signal Processing,1993,41(4): 1532-1550.
    [87]Sudipta Mukhopadhyay, G.C. Ray. A new interpretation of nonlinear energy operator and its efficacy in spike detection [J]. IEEE transactions on biomedical engineering,1998,45 (2):180-187.
    [88]Firas Jabloun, A. Enis Cetin, Engin Erzin. Teager Energy Based Feature Parameters for Speech Recognition in Car Noise[J]. IEEE Signal Processing Letters,1999,6(10):259-261.
    [89]董红生,张爱华,郝晓弘.基于非线性能量算子的心电信号R波检测方法[J].计算机测量与控制,2009,17(12):2358-2362.
    [90]Cui SY, Li XL, Ouyang GX, et al. Detection of epileptic spikes with empirical mode decomposition and nonlinear energy operator[C]. ADVANCES IN NEURAL NETWORKS,2005,3498:445-450.
    [91]李辉,郑海起,杨绍普.基于EMD和Teager能量算子的轴承故障诊断研究[J].振动与冲击,2008,27(10):15-22,1-88.
    [92]BCI Competition Ⅱ. http://www.bbci.de/competition/ii/.
    [93]S.Lemm, C. Schafer, G. Curio. BCI Competition 2003-Data Set III: Probabilistic Modeling of Sensorimotor μ Rhythms for Classification of Imaginary Hand Movements [J]. IEEE Transactions on biomedical engineering, 2004,51(6):1077-1080.
    [94]Jianfeng Hu, Zhendong Mu, Jinli Wang. Phase Locking Analysis of Motor Imagery in Brain-Computer Interface[C]. International Conference on BMEI, 2008,478-481.
    [95]Wenyan Jia, Xianghua Zhao, et al.Classification of Single Trial EEG during Motor Imagery based on ERD[C]. Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, USA, September 1-5,2004:5-8.
    [96]BCI Competition Ⅲ. http://www.bbci.de/competition/iii/.
    [97]D.J. McFarland, C.W. Anderson, K.R. Miiller, et al. BCI Meeting 2005-Workshop on BCI Signal Processing:Feature Extraction and Translation [J]. IEEE Transactions on neural systems and rehabilitation engineering,2006,14(2): 135-138.
    [98]B. Blankertz, K.R. Muller, et al.The BCI Competition III:Validating Alternative Approaches to Actual BCI Problems [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, June 2006,14(2):153-159.
    [99]BCI Competition IV. http://www.bbci.de/competition/iv/.
    [100]R. Leeb, F. Lee, C. Keinrath, R. Scherer, H. Bischof, G. Pfurtscheller. Brain-Computer Communication:Motivation, Aim, and Impact of Exploring a Virtual Apartment[C].IEEE Transactions on Neural Systems and Rehabilitation Engineering, December 2007,15(4):473-482.
    [101]Bin Lou, Bo Hong, Xiaorong Gao and Shangkai Gao. Bipolar electrode selection for a motor imagery based brain-computer interface [J]. Journal of Neural Engineering,2008,342-349.
    [102]J. AnemAuller, T. Sejnowski, S. Makeig. Complex independent component analysis of frequency-domain eeg data [C]. Neural Networks,2003,16: 1313-1325.
    [103]A. Yamazaki, T. Tajima, K. Matsuoka. Convolutive Independent Component Analysis of EEG Data [C]. SICE Annual Conference, Fukui University, Japan, August 4-6,2003,1227-1231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700