正交频分复用系统中的峰值抑制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为未来移动通信的主要候选技术,正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)的局限在于信号包络不稳定,具有很高的峰值平均功率比(Peak-to-Average Power Ratio, PAPR,简称峰均比)的发送信号降低了发射端放大器的效率,并可能导致严重的非线性失真和带外辐射。针对OFDM系统的峰值抑制问题,本文从多个角度进行了联合优化,力求在峰均比、传输性能、频谱效率、计算复杂度等因素之间达到较佳的平衡。
     本文首先介绍了OFDM通信系统和峰值抑制技术的发展现状,总结了需要进一步解决的问题,并指出了全文的研究内容。
     本文的第二部分对OFDM信号的峰值波动问题进行了分析,阐明了峰均比的定义、分布以及与功率放大器之间的联系,为后面的章节提供了理论依据。
     限幅法(clipping)是一类应用广泛的峰值抑制预失真算法,为了同时抑制峰值和带外辐射,常用迭代限幅滤波对发射信号进行处理。但传统迭代限幅滤波算法会引入很高的计算复杂度,不利于上行传输。而另一类基于峰值抵消的预失真算法虽然能够降低计算复杂度,其缺陷在于带内失真偏高,峰值回升过大。针对传统预失真算法的缺点,本文在第三部分提出了一种改进的峰值抵消预失真算法。与迭代限幅滤波等传统算法相比,该算法可以在计算复杂度、峰值抑制和带内失真之间取得更佳平衡,且计算复杂度非常低,利于上行传输。针对改进峰值抵消算法所引入的非线性失真,本文还研究了相应的接收信号恢复算法以进一步提升系统的传输性能。此外,峰值抵消预失真算法所引起的非线性失真会对导引符号造成干扰,恶化信道估计性能。针对这个问题,本文讨论了一种低复杂度的基于窗函数优化设计的峰值抵消算法,从而高效地消除位于导引位置的非线性失真,提升系统在衰落信道下的传输性能。
     以部分传输序列(Partial Transmitting Sequence, PTS)为代表的多信号表示法可以无失真地抑制发射信号的峰均比,利于下行传输。但过高的计算复杂度是其实用化的一个障碍。针对这个问题,本文的第四部分研究了一种改进的PTS算法,通过几何内插估计发射信号的最大包络值,从而降低传统PTS法的计算复杂度。PTS的另一个缺点在于发射机需要传输额外的副信息,影响了系统的频谱效
     最后,本文研究了联合多址OFDM系统的峰值抑制技术。对于OFDM-CDMA (Orthogonal Frequency Division Multiplexing Code Division Multiple Access)系统,研究了一种PTS盲检测的改进算法,同时提升频谱效率和优化传输性能;此外,还提出了一种具有更低计算复杂度和更佳峰值抑制性能的多信号表示算法。针对集中式频分多址(Localized Frequency Division Multiple Access, LFDMA)系统,本文分析了信号的PAPR特性,比较了现有的峰值抑制算法在该系统的适用性,并讨论了适用于该系统的低复杂度峰值抵消算法。
As one of the leading candidates for future wireless communication systems, orthogonal frequency division multiplexing (OFDM) suffers from the drawback of high peak-to-average power ratio (PAPR), which would reduce the efficiency of the high power amplifier (HPA) and cause severe in-band nonlinear distortion as well as out-of-band distortion. To tackle PAPR reduction problems in OFDM systems, this dissertation focuses on optimizing total system performance from several perspectives, by seeking a tradeoff among factors like PAPR, transmission performance, spectrum efficiency and computational complexity.
     The first chapter of this dissertation introduces the features of OFDM systems, reviews the state-of-the-art PAPR reduction techniques, summarizes the problems needed to be addressed, and outlines the main contents of this dissertation.
     In the second chapter, this dissertation analyzes the PAPR of OFDM signals, and clarifies the definition and distribution of PAPR models and their relations with HPA, serving as the theoretical base of the latter chapters.
     Clipping methods are a class of widely used peak reduction algorithms. In order to reduce peak values and out-of-band distortion simultaneously, transmitted signals are usually processed by iterative clipping-filtering algorithms. The high computational complexities of the conventional iterative-clipping-filtering algorithms make them unsatisfactory for uplink transmission. While peak cancellation methods have low computational complexities, they would bring problems such as in-band distortion and large peak regrowth. The third part of this dissertation proposes an improved peak cancellation method, which could obtain a better tradeoff among computational complexity, peak reduction and in-band distortion. This method is suitable for uplink transmission for its considerably low computational complexity. Furthermore, a receiver structure with distortion reconstruct scheme is introduced to further improve system performance. The nonlinear distortion introduced by the pre-distortion method would interfer pilots and deteriorate channel estimations. Accordingly, this dissertation presents an improved cancellation algorithm with low complexity, which could effectively eliminate nonlinear distortions on pilots and improve the transmission performance in fading channels.
     Multiple signal representation (MSR), such as partial transmit sequence (PTS), could reduce PAPR without introducing distortion. Therefore MSR is suitable for downlink transmission. However its high computational complexity is the main obstacle of its utilization. The fourth part of the dissertation proposes a modified PTS algorithm, which could efficiently reduce the computational complexity by estimating the maximal envelope of transmitted signals using geometric interpolation. Another drawback of PTS is the requirement of extra side information. To deal with this problem, a blind PTS algorithm is introduced for pilot-aided OFDM systems.
     The last chapter of the thesis investigates PAPR reductions of multiple access combined OFDM systems. For Orthogonal Frequency Division Multiplexing Code Division Multiple Access (OFDM-CDMA) systems, an enhanced blind PTS algorithm is proposed to increase spectrum efficiency and transmission performance. A distortionless peak reduction algorithm with low computational complexity is also introduced. For localized frequency division multiple access (LFDMA) systems, a selection among available peak reduction methods has been made and the advantages of the peak cancellation algorithm proposed by this dissertation have been verified.
引文
[1]A. Goldsmith. Wireless communications. New York:Cambridge University Press,2005
    [2]D. Tse, P. Viswanath. Fundamentals of wireless communication. New York:Cambridge University Press,2005 [3] T. S. Rappaport, A. Annamalai, R. M. Buehrer, et al. Wireless communications:past events and a future perspective. IEEE Commum. Magazine, May 2002,40(5):148-161
    [4]韩斌杰,杜新颜,张建斌.GSM原理及其网络优化.北京:机械工业出版社,2004
    [5]粟欣,肖立民.蜂窝及个人通信系统中的CDMA IS-95-技术、运营和业务.北京:人民邮电出版社,2001
    [6]T. Ojanpera, R. Prasad. An overview of air interface multiple access for IMT-2000/UMTS. IEEE Commum. Magazine,1998,36(9):82-95
    [7]张平.第三代蜂窝移动通信系统-WCDMA.北京:北京邮电大学出版社,2001
    [8]刘宝玲,付长东,张轶凡.3G移动通信系统概述.北京:人民邮电出版社,2008
    [9]李世鹤.TD-SCDMA第三代移动通信系统标准.北京:人民邮电出版社,2003
    [10]张克平.LTE-B3G/4G移动通信系统无线技术.北京:电子工业出版社,2008.
    [11]E. Dahlman, S. Parkvall, P. Beming.3G EVOLUTION-HSPA and LTE for Mobile Broadband. Boston:Academic Press,2007
    [12]张莉,陈洁,董晓鲁,党梅梅,沈嘉,龚达宁.WIMAX技术、标准与应用.北京:人民邮电出版社,2007
    [13]R. W. Chang, R. A. Gibby. A theoretical study of performance of an orthogonal multiplexing data transmission scheme. IEEE Trans. Commum.,1968,16(4):529-540
    [14]B. R. Saltzberg. Performance of an efficient parallel data Transmission System. IEEE Trans. Commum. Tech.,1967,15(6):805-811
    [15]S. B. Weinstein, P.M. Ebert. Data transmission by frequency-division multiplexing using the discrete Fourier transform. IEEE Trans. Commum.,1971,19(5):628-634
    [16]R. Peled, A. Ruiz. Frequency domain data transmission using reduced computational complexity algorithms. IEEE International Conference on Acoustics, Speech, and Signal Processing,1980, LA. USA,964-967
    [17]K. Didem, L. Guoqing, L. Hui. Computationally efficient bandwidth allocation and power control for OFDMA. IEEE Trans. Wireless Commum.,2003,2(6):1150-1158
    [18]I. Cosovic, M. Schnell, A. Springer. Combined equalization for coded uplink MC-CDMA in Rayleigh fading channels. IEEE Trans. Commum.,2005,53(10):1609-1615
    [19]Fazel and S. Kaiser, Multi-carrier and spread spectrum systems:from OFDM and MC-CDMA to LTE and WiMAX (2nd Edition). Hoboken, NJ:Wiley,2008
    [20]M. Umehira, T. Sugiyama. OFDM/CDMA technologies for future broadband mobile communication systems. IEICE Trans. Fund. of Elect.,2002, E85-A(12):2804-2812
    [21]Y. Kishiyama, N. Maeda, K. Higuchi, et al. Transmission performance analysis of VSF-OFCDM broadband packet wireless access based on field experiments in 100-MHz forward link. IEEE Vehicular Technology Conference, L.A. USA,2004,60(5):3328-3333
    [22]S. Hara, R. Prasad, S. Hara. Overview of multicarrier CDMA. IEEE Commum. magazine, Dec.1997,35(12):126-133
    [23]Y. Zhou, T. Ng, J. Wang. OFCDM:a promising broadband wireless access technique. IEEE Commum. Magazine,2008,46(3):38-49
    [24]胡建武,余建国,余重秀,徐大雄.WiMAX与McWiLL技术的分析与比较.无线电技术与信息,2007
    [25]H. Myung, J. Lim, D. Goodman. Single carrier FDMA for uplink wireless transmission. IEEE Veh. Technol. Magazine,2006,1(3):30-38
    [26]B. E. Priyanto, et al. Initial performance evaluation of DFT-spread OFDM based SC-FDMA for UTRA LTE uplink. IEEE 65th Vehicular Technology Conference, Dublin, Ireland, Apr. 2007,3175-3179
    [27]R1-090899. UL Transmission Bandwidth in LTE-Advanced. NTT DoCoMo, Panasonic
    [28]H.H. Seung, H.L. Jae. An overview of peak-to-average power ratio reduction techniques for multicarrier transmission. IEEE Trans. Wireless Commum.,2005,12(2):56-65
    [29]F. H. Raab, P. Asbeck, S. Cripps. Power amplifier and transmitters for RF and microwave. IEEE Trans. Microwave Theory Tech., March 2002,50:814-826
    [30]E. Costa, M. Midrio, S. Pupolin. Impact of amplifier nonlinearities on OFDM transmission system performance. IEEE Commum. Lett.,1999,3(2):37-39.
    [31]F. L. Lin, S. F. Chen, H. R. Chuang. Effects of RF-circuit nonlinear distortion on digitally modulated signals in wireless communications. Micrwave Journal, September 2000,126-138
    [32]D. Dardari, V. Tralli, A. Vaccari. The theoretical characterization of nonlinear distortion effects in OFDM systems. IEEE Trans. Commun.,2000,48(10):1755-1764
    [33]Ahmad R. S. Bahai, Burton R. Saltzberg. Multi-carrier digital communications theory and applications. Berlin:Springer,1999
    [34]S. K. Deng, M.C. Lin. OFDM PAPR reduction using clipping with distortion control. IEEE International Conference on Commum, May 2005, Seoul, Korea,4:2563-2567
    [35]T. Nojima, Y. Okamoto. Predistortion nonlinear compensator for microwave SSB-AM system. Electronics and Communications, Japan,1984,67:57-66
    [36]H. Saeedi, M. Sharif, F. Marvasti. Clipping noise cancellation in OFDM systems using oversampled signal reconstruction. IEEE Commum. Lett.,2002,6(2):73-75
    [37]X. Huang, J. Lu, J. Zheng, et al. Reduction of peak-to-average power ratio of OFDM signals with companding transform. Electron. Lett.,2001,37(8):506-507
    [38]X. Wang, T. T. Tjhung, C. S. Ng. Reduction of peak-to-average power ratio of OFDM system using a companding technique. IEEE Trans. Broadcast.,1999,45(3):303-307
    [39]Huang, J. Lu, J. Zheng, et al. Reduction of peak-to-average power ratio of OFDM signals with companding transform. Electron. Lett.,2001,37(8):506-507
    [40]X. Wang, T. T. Tjhung, Y Wu. On the SER and spectral analyses of A-law companded multicarrier modulation. IEEE Trans. Veh.Technol.,2003,52(5):1408-1412
    [41]T. Jiang, G. Zhu. Nonlinear companding transform for reducing peak-to-average power ratio of OFDM signals. IEEE Trans. Broadcast.,2004,50(3):342-346
    [42]T. G Pratt, N. Jones, L. Smee, et al. OFDM link performance with companding for PAPR reduction in the presence of non-linear amplification. IEEE Trans. Broadcast.,2006,52(2): 261-267
    [43]N. Chaudhary, C. Lei. Non-symmetric decompanding for improved performance of companded OFDM systems. IEEE Trans. Wireless Commum.,2007,6(8):2803-2806
    [44]R. O'Neill, L. B. Lopes. Envelope variations and spectral splatter in clipped multicarrier signals. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Sept.1995, Toronto, Canada,1:71-75
    [45]H. Ochiai, H. Imai. Performance analysis of peak power and band-limited OFDM system with linear scaling. IEEE Trans. Wireless Commum.,2003,2(5):1055-1065
    [46]D. Dardani, V. Tralli, A. Vaccari. Theoretical characterization of nonlinear distortion effect in OFDM systems. IEEE Trans. Commun., Oct.2000,48(10):1755-1764
    [47]J. Armstrong. Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering. Electron. Lett.,2002,38(5):246-247
    [48]H. Ochiai, H. Imai. Performance of the deliberate clipping with adaptive symbol selection for strictly band-limited OFDM systems. IEEE Journal on Selected Areas in Commum., 2000,18(11):2270-2277
    [49]H. Ochiai, H. Imai. Performance analysis of deliberately clipped OFDM signals. IEEE Trans. Commum., Jan.2002,50(1):89-101.
    [50]L.Q. Wang, C. Tellambura. A simplified clipping and filtering technique for PAR reduction in OFDM systems. IEEE Signal Proces. Lett., Jun.2005,12(6):453-456
    [51]H. Saeedi, M. Sharif, F. Marvasti. Clipping noise cancellation in OFDM systems using oversampled signal reconstruction. IEEE Commun. Lett., Feb.2002,6(2):73-75
    [52]H. Chen, A.M. Haimovich. Iterative estimation and cancellation of clipping noise for OFDM signals. IEEE Commun. Lett.,2003,7(7):305-307
    [53]D. Kim, G.L. Stiiber. Clipping noise mitigation for OFDM by decision-aided reconstruction. IEEE Commum. Lett.,1999,3(1):4-6
    [54]H. Zhang, X.G. Xia., Q. Zhang, et al. Iterative decision-aided clipping compensation and its application to scalable video transmission with multiband OFDM. IEEE Trans. Veh. Technol.,2007,56(2):756-765
    [55]M. Colas, G. Gelle, D. Declercq. Analysis of iterative receivers for clipped COFDM signaling based on soft Turbo-DAR. International Symposium on Wireless Communication Systems, Sep.2004, Mauritius,110-114
    [56]Y. Xiao, S.Q. Li, X. Lei, et al. Clipping noise mitigation for channel estimation in OFDM systems. IEEE Commum. Lett.,2006,10(6):474-476
    [57]T. May, H. Rohling. Reducing the peak-to-average power ratio in OFDM radio transmission systems. IEEE Vehicular Technology Conference (VTC), May 1998, Ottawa Canada,3: 2474-2478
    [58]A. Geert Arnout, van N. Richard D., de W. Arnout Hendrik. Transmission system and method employing peak cancellation to reduce the peak-to-avrage power ratio. US Patent 6175551, Issued on January 16,2001
    [59]S. K. Cha, M. H. Park, S. G. LEE, et al. A new PAPR reduction technique for OFDM systems using advanced peak windowing method. IEEE Trans. Consum. Electron.,2008, 54(2):405-410
    [60]G. G. Chen, R. Ansari, Y. W. Yao. Improved peak windowing for PAPR reduction in OFDM. IEEE Vehicular Technology Conference, Apr.2009, Barcelona, Spain
    [61]H. Kuo, S.W. Cheung. Optimization of windowing and peak-windowing techniques for WCDMA systems. IEEE International Conference on Acoustics, Speech and Signal Processing, May 2006, Toulouse France,4:Ⅳ313-Ⅳ316
    [62]O. Vaananen, J. Vankka, K. Halonen. Simple algorithm for peak windowing and its application in GSM, EDGE and WCDMA systems. IEE Proc. Commun.,2005,152(3): 357-362
    [63]K. G. Paterson, V. Tarokh. On the existence and construction of good codes with low peak-to-average power ratio. IEEE Trans. Inform. Theory,2000,46(6):1974-1987
    [64]A. E. Jones, T. A. Wilkinson, S. K. Barton. Block coding scheme for reduction of peak to mean envelope power ratio of multicarrier transmission scheme. Electron. Lett.,1994, 30(22):2098-2099
    [65]S. Fragiacomo, C. Matrakidis, J. J. O'Reilly. Multicarrier transmission peak-to-average power reduction using simple block code. Electron. Lett.,1998,34(10):953-954
    [66]T. Jiang, G. Zhu. Complement block coding for reduction in peak-to-average power ratio of OFDM signals. IEEE Commum. Magazine,2005,43(9):S17-S22
    [67]J. A. Davis, J. Jedwab. Peak-to-mean power control and error correction for OFDM transmission using Golay sequences and Reed-Muller codes. Electron. Lett.,1997,33(4): 67-268
    [68]J. A. Davis, J. Jedwab. Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes. IEEE Trans. Inform. Theory,1999,45(7):2397-2417
    [69]K. G Paterson. Generalized Reed-Muller codes and power control in OFDM modulation. IEEE Trans. Inform. Theory,2000,46(1):104-120 [70] C. V. Chong, V. Tarokh. A simple encodable/decodable OFDM QPSK code with low peak-to-mean envelope power ratio. IEEE Trans. Inform. Theory,2001,47 (7):3025-3029
    [71]J. Tellado. Peak to average power reduction for multicarrier modulation. Ph.D. dissertation, Stanford University,2000
    [72]H. Schmidt, K. Kammeyer. Reducing the peak to average power ratio of multicarrier signals by adaptive subcarrier selection. IEEE International Conference on Universal Personal Communications, Sept.1998, Cambridge U.S.A,2:933-937
    [73]袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社,2001
    [74]E. Lawrey, C.J. Kikker. Peak to average power ratio reduction of OFDM signals using peak reduction carriers. 5th International Symposium on Signal Processing and its Applications, Aug. 1999, Brisbane Australia,2:737-740
    [75]J. Tellado. Peak to average power reduction for multicarrier modulation. Ph.D. dissertation, Stanford Univ., Stanford, CA,2000
    [76]B.S. Krongold, D.L. Jones. An active-set approach for OFDM PAR reduction via tone reservation. IEEE Trans. Inform. Theory,2004,52(2):495-509
    [77]G. B. Dantzig, M. N. Thapa. Linear programming 1:Introduction. Berlin:Springer,1997
    [78]L.Q. Wang, C.Tellambura. Analysis of clipping noise and tone-reservation algorithms for peak reduction in OFDM systems. IEEE Trans. Veh. Technol.,2008,57(3):1675-1694
    [79]A.D.S. Jayalath, C.R.N. Athaudage. On the PAR reduction of OFDM signals using multiple signal representation. IEEE Commum. Lett.,2004,7(8):425-427
    [80]S. H. Muller, J. B. Huber. A novel peak power reduction scheme for OFDM. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications,1997,3: 1090-1094
    [81]S. G. Kang, J. G. Kim, E. K. Joo. A novel subblock partition scheme for partial transmit sequence OFDM. IEEE Trans. Broadcast.,1999,45(3):333-338
    [82]D. W. Lim, J. S. No, C. W. Lim, et al. A new SLM OFDM scheme with low complexity for PAPR reduction. IEEE Signal Proces. Lett.,2005,12(2):93-96
    [83]C. L.Wang, O. Y. Yuan. Low-complexity selected mapping schemes for peak-to-average power ratio reduction in OFDM systems. IEEE Trans. Signal Proces.,2005,53(12): 4652-4660
    [84]J. Jiang, Y. Y. Wu. An overview:peak-to-average power ratio reduction techniques for OFDM signals. IEEE Trans. Broadcast.,2008,54(2):257-268
    [85]C. Tellambura. Improved phase factor computation for the PAR reduction of an OFDM Ssignal using PTS. IEEE Commum. Lett.,2001,5(4):135-137
    [86]H. Kim, J. Li, Y. Lee. The cross-partitioning scheme for an OFDM signal in multiple transmit antenna systems. IEEE International Conference on Communications,2003, Anchorage AK United states,5:3408-3412
    [87]S. H. Han, J. H. Lee. PAPR reduction of OFDM signals using a reduced complexity PTS technique. IEEE Signal Proces. Lett.,2004,11(11):887-890
    [88]L. Q. Wang, C. Tellambura. Analysis of clipping noise and tone-reservation algorithms for peak reduction in OFDM systems. IEEE Trans. Veh. Technol.,2008,57(3):1675-1694
    [89]T. Giannopoulos, V. Paliouras. A low-complexity PTS-based PAPR reduction technique for OFDM signals without transmission of side information. IEEE Workshop on Signal Processing Systems, Oct.2006, Banff AB Canada,434-439
    [90]L. J. Cimini, N. R. Sollenberger. Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences. IEEE Commun. Lett.,2000,4(3):86-88
    [91]X. Lei, S.Q. Li, Y.X. Tang. The optimization arithmetic for power allocation scheme on partial transmit sequences. IEEE Symposium on Personal Indoor and Mobile Radio Commumunications,2003, Beijing China,2:1217-1221
    [92]S. H. Wong, A.S. Madhukumar, F. Chin. Peak-to-average power reduction using partial transmit sequences:a suboptimal approach based on dual layered phase sequencing. IEEE Trans. Broadcast.,2003,49(2):225-231
    [93]G. A. Jr. Baker. Essentials of pade approximants. New York:Academic Press,1975
    [94]M.Garcia, J. Paez-Borrallo, S. Zazo. DFT-based channel estimation in 2d-pilot-symbol-aided OFDM wireless system. IEEE Vehicular Technology Conference, Oct.2001, Atlantic City, 810-814
    [95]M.J.D. Powell.Approximation theory and method. London:Cambridge University Press, 1981
    [96]C. L. Wang, S. J. Ku, C. J. Yang. An improved peak-to-average power ratio estimation scheme for OFDM systems estimation scheme. IEEE Vehicular Technology Conference, 2007, Dublin,3:2827-2831
    [97]A.D.S. Jayalath, C. Tellambura. A blind SLM receiver for PAR-reduced OFDM to reduce PAP of an OFDM signal. IEEE Vehicular Technology Conference,2002-Fall, Birmingham,1: 24-28
    [98]Chen N., Zhou G.T. Peak-to-average power ratio reduction in OFDM with blind selected pilot tone modulation. IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar.2005, USA,3:845-848.
    [99]T. Y. Han, J. H. Choi, N. Kim. An Orthogonal phase-superimposed peak-to-average power ratio reduction technique. Journal of the Korea Electromagnetic Engineering Society, Dec. 2007,7(4):1-8
    [100]M. J. Fernandez-Getino Garcia,0. Edfors, J. M. Paez-Borrallo. Peak power reduction for OFDM systems with orthogonal pilot sequences. IEEE Trans. Wireless Commun., Jan.2006, 5(1):47-51
    [101]T. Y. Han, N. Kim, J. H. Choi, et al. A PTS-OFDM phase-superimposed over pilot symbol. IEEE ICACT, Feb.2008,2:1027-1031
    [102]M. Garcia, J. Paez-Borrallo, S.Zazo. DFT-Based channel estimation in 2D-pilot-symbol-aided OFDM wireless system. IEEE Vehicular Technology Conference, Oct. 2001, Atlantic City,810-814
    [103]B. J. Choi, L. Hanzo. Crest factors of complementary-sequence-based multicode OFDM-CDMA signals. IEEE Trans. Wireless Commun.,2003,2(6):1114-1119
    [104]N. Ohkubo, T. Ohtsuki. A peak to average power ratio reduction of multicarrier CDMA using selected mapping. IEEE Vehicular Technology Conference, Sept.2002, Birmingham,4: 2086-2090
    [105]Y. H. You, W.G. Jeon, et al. Low-complexity PAR reduction schemes using SLM and PTS approaches for OFDM-CDMA signals. IEEE Trans. Consumer Elec.,2003,49(2):284-289
    [106]M. H. Cho, S. J. Lee, J. Y. Jin. A study on the PAPR using variable code sets (VCS) in multi-user OFDM-CDMA system. IEEE Vehicular Technology Conference (VTC), IEEE, L.A.USA,2004,60(5):3448-3451
    [107]S. S. Liu, L. L. Dan, Y. Xiao. PAPR reduction based on improved VCS scheme in MC-CDMA system. IEEE Vehicular Technology Conference,2007, Dublin,2672-2676
    [108]W. L. Bai, Y. Xiao, S. Q. Li. The peak-to-average power ratio distribution of LFDMA signals. IEEE 4th International Conference on Commum. and Networking in China (CHINACOM), Aug.2009, China,1:945-948
    [109]S. Y. Hui, K. H. Yeung. Challenges in the migration to 4G mobile systems. IEEE Commum. Magazine,2003,41(12):54-59
    [110]F. S. Al-Kamali, M. I. Dessouky, F. Shawki, et al. Transceiver scheme for single-carrier frequency division multiple access implementing the wavelet transform and peak-to-average-power ratio reduction methods. IET Communications,2010,4(1):69-79
    [111]G. Berardinelli, De Temino, Luis Angel Maestro Ruiz, et al. OFDMA vs. SC-FDMA: performance comparison in local area IMT-A scenarios. IEEE Wireless Commun., Oct., (15)5:64-72
    [112]H. Nyquist. Certain topics in telegraph transmission theory. Trans. AIEE, Apr.1928,47: 617-644
    [113]H. Ochiai, H. Imai. On clipping for peak power reduction of OFDM signals. IEEE Global Tele.Commum. Conference,2000, CA. USA,2:731-735
    [114]D. Wulich, N. Dinur, A. Glinowiecki. Level clipped high-order OFDM. IEEE Trans. Commun.,2000,48(6):928-930
    [115]H. E. Rowe. Memoryless nonlearities with gaussian input:elemenary results. Bell Syst. Tech. J.,1982,61(7):1519-1525
    [116]R. S. Symons. Tubes:Still vital after all these years. IEEE Spectrum,1998,35(4):52-63
    [117]H. Atarashi, M. Nakagawa. A computational cost reduction sheme for a post-distortion type nonlinear distortion compensator of OFDM signals. IEICE Trans. Commum.,1998, E81-B(12):2334-2342
    [118]L. Sivan. Microwave Tube Transmitters. Berlin:Springer,1994
    [119]R. Price. A useful theorem for nonlinear devices having gaussian inputs. IRE Trans. Theory, June 1958, (IT-4):69-72,
    [120]R. van Nee, R. Prasad. OFDM for wireless multimedia commum. London:Artech House, 2000
    [121]C. Tellambura. Uper bound on peak factor of N-multiple carriers. Electron. Lett.,1997, 33(19):1608-1609
    [122]J. Tao, G. Mohsen. Derivation of PAPR distribution for OFDM wireless systems based on extreme value theory. IEEE Trans. Wireless Commum.,2008,17(4):1298-1305
    [123]R1-040642. Comparison of PAR and Cubic Metric for Power De-rating.3GPP RAN WG1 #37, Montreal,2004
    [124]A. Behravan, T. Eriksson. Some statistical properties of multicarrier signals and related measures IEEE Vehicular Technology Conference, May 2006, Melbourne Australia,4: 1854-1858
    [125]D. J. G. Mestdagh, P. Spruyt, B. Biran. Analysis of clipping effect in DMT-based ADSL systems. IEEE Internetioanl Conference on Communications,1994, LA. USA,1:293-300
    [126]P. Cheng, Y. Xiao, L. L. Dan, et al. Improved SLM for PAPR reduction in OFDM system. IEEE International Symposium on Personal, Indoor and Mobile Radio Commum, Sept.2007, Greece,1828-1834
    [127]N. Ahmed, K. R. Rao. Orthogonal transforms for digital signal processing. Berlin: Springer-Verlag,1975
    [128]M. Golay. Complementary series. IEEE Trans. Inform. Theory,1961,2(7):82-87
    [129]B. Wu, S. Cheng, H. Wang. Clipping effects on channel estimation and signal detection in OFDM. IEEE Conference on Personal Indoor and Mobile Radio Commumunications, Beijing, Jan.2003,1:531-534
    [130]C.W. Rhodes. Measuring peak and average power of digitally modulated advanced television systems. IEEE Trans. Broadcast.,1992,38(4):197-201
    [131]D.C. Chu. Polyphase codes with good periodic correlation properties. IEEE Trans. Inform. Theory,1972, IT-18(4):531-531
    [132]ETSI.Communication of the European communities:digital land mobile radio communication-COST207. ETSI,1989
    [133]N. Ohkubo, T. Ohtsuki. Design criteria for phase sequences in selected mapping. IEICE Trans. Commun.,2003, E86-B(9):2628-2636

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700