FLASH双源CT双能量扫描在肾脏肿瘤低kV扫描技术中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     现如今,多层螺旋CT在临床应用中已经得到了极大的普及及广泛的使用,已经成为临床检查中必不可少的一种检查方法。但是在它给我们带来方便的同时,随之而来的辐射也带给我们很大的危害,其潜在的致癌及致畸风险不容忽视。因此,如何降低CT检查患者所接受到的辐射剂量已经成为当前国内外研究的热点。目前,各种各样的措施和方法被应用的临床中,例如:厂家在硬件方面的改革和软件方面的更新改进,如管电流自动调节技术、智能管电压扫描技术、大螺距扫描、适当减少强化扫描次数、避免敏感器官的照射及敏感器官的屏蔽等等很多很多。但是,很多的研究表明,降低管电压是最直接、最有效的方法。目前,低剂量研究主要集中肺部、鼻窦等,国外在骨骼系统的低剂量研究也较多[1,2],这是因为这些部位的自然对比比较高,适当的降低扫描条件后,即使是图像的噪声增加,信噪比较低到一定的程度也不会影响其在临床中的应用。另外,CT血管成像(Computed Tomography angiography, CTA)也是国内外研究的热点[3],这是由于血管内高浓度的对比剂与周围组织器官的密度对比非常大,略有增加的噪声对图像尤其是疾病诊断的影响并不是很大。而腹部CT检查的低剂量研究较少[4,5,6],这是由于腹部的自然对比较差,各组织器官之间的密度差别不多,尤其是当实质脏器内的病变较小时、与周围正常实质的密度差别不是很大、或者是发现病变而定性困难时,就需要进行多期的动态增强扫描,这在临床中已经成为常规,但这就使得患者所接受的辐射剂量成倍地增加。因此,如何最大程度的降低腹部CT检查的辐射剂量这一问题非常迫切地需要我们解决。对于肾脏来说,肾皮质增强扫描图像强化程度非常强,皮髓质对比鲜明,尤其是肾脏肿瘤,多数是肾细胞癌,富血供,其增强扫描的特点是动脉期明显强化,而实质期或延迟期对比剂快速退出,这些特点为肾脏低kV扫描的研究提供了病理学基础。
     另外,双源CT成像技术已经日趋成熟。双源CT有两套可以同时发射的X线球管及其探测器,分别安装于扫描机架上,互成90。。其管电压多数分别采用80kV和140kV。Siemens医疗公司推出的第二代SOMATOM Definition FLASHCT管电压还可以采用100kV和140kV[7]。双能量扫描每次可以获得以下三组图像:纯80kVp图像(或纯100kVp图像)、纯140kVp图像和融合图像(相当于120kVp的加权图像:是由80kVp图像和140kVp图像采用一定的权重因子产生的,其图像质量类似于120kV管电压条件下得到的图像),所以进行单次的双能量扫描就可从同一患者身上得到不同管电压的三组图像:80(或100) kV、120kV及140kV,并且与单源CT的单次扫描相比辐射剂量还不回增加。另外,利用双能量后处理软件系统,还可以得到虚拟平扫图像、碘图等[8]。因此,双源CT的双能量扫描为我们肾脏低管电压的扫描技术研究提供了便捷的途径。
     本研究就是利用双源CT肾脏的双能量扫描采集到的不同管电压的多组图像数据进行比较、分析,旨在证明利用较低的管电压(80kV、100kV)就可以得到肾脏肿瘤足以满足诊断要求的图像,为以后单源CT低管电压扫描提供依据,从而大大地降低辐射剂量。
     研究目的
     利用双源CT对肾肿瘤患者增强扫描动脉期进行双能量扫描,对分别获得的三组图像(80kV或100kV图像、140kV图像、相当于120kV的融合图像)的图像质量进行比较、分析,研究不同管电压对肾脏动脉期扫描图像质量的影响,从而探讨肾脏肿瘤的低管电压CT扫描的可行性。
     材料与方法
     采用Siemens SOMATOM Definition FLASH双源CT扫描仪。随机选取查体发现肾脏肿瘤或临床怀疑肾脏肿瘤的患者40例作为研究对象。所有的病例均行增强扫描,动脉期均采用双能量扫描。根据高、低管电压采用的数值将研究对象平均分为两组:A组(20例):管电压采用80kV和140kV;B组(20例):管电压采用100kV和140kV。每一位患者的动脉期均能获得三组不同管电压的图像:低管电压(80或100kV)的图像、高管电压的图像(140kV)和融合图像(相当于120kV)。对每三组图像的图像质量分别进行评价,评价的方法分为两种:客观评价和主观评价。
     客观评价:客观评价的指标采用背景噪声(Background noise, BN)、信号噪声比(Signal-noise ratio,SNR)及对比噪声比(Contrast-noise ratio, CNR).信号强度(Signal intensity, SI)采用正常肾皮质的CT值来表示。对每一个病人的不同管电压的3组图像选取肿瘤的最大截面或能体现肿瘤动脉期高强化特点的层面1-3层(根据肿瘤的截面大小来决定选取的层面数),分别来测量图像的背景噪声、肿瘤的明显高强化区域的CT值、同层面脊柱旁肌肉的CT值、对侧正常肾脏高强化的肾皮质的CT值及其同层面图像的背景噪声,并计算CNR、SNR。CNR=(肾肿瘤高强化区域的CT值-同层面脊柱旁肌肉的CT值)/景噪声(BN), SNR=正常肾皮质的CT值(SI)/景噪声(BN)。采用SPSS13.0for Windows统计学软件,对A、B两组研究对象的三组图像所获得的SNR及CNR分别进行统计学分析,统计学方法采用配对T检验进行两两比较,以P<0.05认为差别具有统计学意义。
     主观评价:将A、B两组病例的厚层、薄层图像均传输到工作站,由2位有经验的副主任医师以上的CT诊断医师采用双盲法、在不知扫描条件的情况下单独对两组图像进行软阅片,并使用工作站提供的常规三维后处理方法(主要是MIP, VR)对图像进行重建、测量等分析,要求观察者对肾脏肿瘤的有无进行记录、计算出肿瘤的检出率,分别对三组横轴位图像及相应的三维后处理图像的图像质量进行综合评价并打分。评分标准采用“5级评分法”:1分:很好;2分:较好;3分:一般,但不影响肾肿瘤诊断和对肿瘤的周围侵犯、转移的评估;4分:较差,对诊断有一定的影响;5分:图像质量差,无法诊断。将A、B两组病人分别获得的三组图像的评分结果进行两两比较,采用威尔科克森(Wilcoxon)符号秩和检验进行统计学分析,P<0.05时认为差异具有统计学意义。通过Kappa检验对2位CT诊断医师进行一致性检验,当Kappa值≥0.75时认为诊断一致性较好;当0.75>Kappa值≥0.4时,认为诊断一致性一般;当Kappa值<0.4时,认为诊断一致性较差。结果
     1.客观评价
     1.1A组
     80kV,140kV,融合图像(相当于120kV)共三组图像分别两两比较。
     1.1.1背景噪声的比较
     80kV,140kV,120kV图像的背景噪声分别为:80kV (11.69±3.35)、140kV (10.84±2.99)、120kV (9.08±2.42)。三者分别两两配对比较的结果:80kV (t=3.644, P=0.002<0.05)与140kV(t=4.264, P=0.001<0.05)的图像噪声均大于120kV的背景噪声。80kV与140kV图像的噪声相比较,其差异不具有统计学意义(t=1.030,P=0.318>0.05)。
     1.1.2SNR的比较
     80kV,140kV,120kV三组图像的SNR分别为:80kV(23.17±2.07):120kV (19.87±6.53):140kV(13.11±3.67).三者两两配对比较的结果:其中,80kV(t=4.507, P=0<0.05)与120kV图像(t=4.810,P=0<0.05)的SNR与140kV的相比较,均高于140kV的图像;80kV图像的SNR与120kV图像的相比,80kV的SNR高于120kV的(t=2.226,P=0.040<0.05)。
     1.1.3CNR的比较
     80kV,140kV,120kV三组图像的CNR分别为:80kV(13.53±6.92);140kV(3.58±2.07);120kV(7.46±4.00).三者两两配对比较的结果:其中,80kV(t=10.202, P=0<0.05)与120kV图像(t=6.615,P=0<0.05)的CNR均高于140kV的图像;80kV图像的CNR亦高于120kV的图像(t=5.565,P=0<0.05)。
     1.2B组
     100kV,140kV,融合图像(相当于120kV)共三组图像分别两两比较。
     1.2.1背景噪声的比较
     100kV,140kV,120kV三组图像的背景噪声分别为:100kV(9.56±3.99);140kV(9.05±2.04);120kV(6.66±1.70).100kV,140kV,120kV三组图像的背景噪声两两比较的结果:其中,100kV(t=3.234, P=0.04<0.05)与140kV(t=5.178, P=0<0.05)图像的噪声均高于120kV.100kV与140kV的图像背景噪声比较,其差异不具有统计学意义(t=0.716,P=0.481>0.05)。
     1.2.2SNR的比较
     100kV,140kV,120kV三组图像肾皮质的CT值分别为:100kV(196.25±49.52);140kV(106.56±21.51);120kV(153.73±33.15).SNR分别为:100kV(23.58±5.50),140kV(13.51±3.21);120kV(27.29±8.83).SNR两两比较的结果:100kV和120kV比较,差异无统计学意义(t=1.766,P=0.121>0.05);120kV和140kV的SNR相比,120kV高于140kV的SNR(t=5.914, P=0.001<0.05);100kV和140kV的SNR相比,100kV的SNR高于140kV的(t=6.624,P=0.000<0.05)。
     1.2.3CNR的比较
     100kV,140kV,120kV三组图像的CNR分别为100kV (11.21±6.74);140kV (4.68±3.36);120kV (11.11±7.89)。100kV,140kV,120kV三组图像所获得的CNR分别两两比较的结果:100kV (t=11.701, P=0<0.05)与120kv(t=5.565, P=0<0.05)的CNR都高于140kV;100kV与120kV比较,二者的CNR差异不具有统计学意义(t=0.262,P=0.795>0.05)。
     2主观评价
     2.1A组
     两位CT诊断医师对80kV、140kV、融合图像(相当于120kV)三组图像的质量评价一致性较好(Kappa值分别为0.819、0.954,P<0.05)。对80kV,140kV,融合图像(相当于120kV)三组图像的评分分别两两比较,统计分析比较的结果是:80kV与120kV的图像相比,二者的图像质量无明显差异(P=0.083>0.05);80kV (P=0<0.05)与120kV(P=0<0.05)的图像分别与140kV的图像相比,均比140kV的图像质量好。
     2.2B组
     两位CT诊断医师对100kV、140kV.融合图像(相当于120kV)三组图像的质量评价一致性较好(Kappa值分别为0.769、0.845,P<0.05)。对100kV,140kV,融合图像(相当于120kV)三组图像的评分分别两两比较。统计比较的结果是:100kV与120kV的图像相比,二者的图像质量无明显差异(P=0.157>0.05);100kV (P=0<0.05)与120kV (P=0<0.05)的图像与140kV的相比,均比140kV的图像质量好。
     结论
     1.肾脏CT增强扫描采用80或100kV的低管电压是可行的,可获得能够清晰地显示双肾实质、肾周及腹膜后解剖结构的、满足临床诊断需要的、优良的图像质量;
     2.肾脏肿瘤的CT增强扫描采用80或100kV的低管电压是可行的,肿瘤的检出率均为100%,完全能够获得满足临床诊断需要的优秀图像,能清晰的显示肿瘤的内部结构特征、血供特点、对周围的影响及是否有静脉栓子的形成。
Background
     Nowadays, MDCT has been widespreadly applied in clinical practice, which has became one kind of the indispensable examination method.It brings us convenience greatly, while in the same time the accompanying radiation also brings us a lot of harm. The potential carcinogenic harm and birth defects harm of radiation cannot be ignored absolutely. Therefore, how to reduce the radiation dose received by patients with CT examination has became a hot area of research both at home and abroad. At present, all kinds of measures and methods have been used in clinical practice.For example:the hardware innovation and the software upgrade of the manufacturer, such as tube current automatic regulation technology, intelligent optimal kV scanning technology, big pitch scanning, appropriately decreaseing the scan times of enhancement, avoiding sensitive organs'exposure and screening the sensitive organs, and so on. However, many studies have shown that lower tube voltage is the most direct and effective way. At present, the low dose research mainly concentrates on the lung and sinuse, the skeletal system is more oversea[1,2], because the natural contrast of these places is high. When we appropriately reduce the scanning conditions, the image backgroud noise increases and the signal-noise ratio (signal-noise ratio, SNR)decreases to a certain degree,but that will not affect its application in clinical. In addition, CT angiography (Computed Tomography angiography, CTA) is also research hot spot domestic and overseas[3], that is due to density contrast of the high concentration of contrast medium in blood vessels and surrounding tissues is very hign, a slight increase of noise may not influence the disease diagnosis. There are less low-dose studies about abdominal CT scan[4,5,6]because of the low nature contrast of abdominal organs. When the density difference between organs is not much markedly, especially when the lesion within the solid organ is very small, and the density difference between the lession and the normal parenchyma around the lession is not very apparent, or we find lesion but have difficulties in qualitative diagnosis, multiphase dynamic enhancement CT scan is needed. It has became a routine method in the clinical applications, but this makes the radiation dose increased exponentially. Therefore, how to reduce the abdominal radiation dose of CT examination to the greatest extent needs us to solve very urgently. For kidney, enhancement degree of the renal cortex is very strong, and the contrast between cortex and medulla is very distinct. Especially the majority of kidney tumors are renal cell carcinomas, which blood supply is rich. Compared with kidney parenchyma, the renal carcinoms showed obvious high enhancement in arterial phrase and low enhancement in the substantial period. These features provide pathology basis for the renal low kV scan research.
     In addition, dual-source CT imaging technology has been mature. Dual-source CT has two sets of the X-ray tube and detector system installed on the scanner frame with90°for each other,which can launch x-ray at the same time. The tube voltage is selected to be80kv and140kv most of the time. Siemens medical healthcare introduced the second generation of the DSCT of SOMATOM Definition, which tube voltage can be selected to be100kV and140kV [7]. We can get the following three groups of images from dual energy scanning every time: pure80kVp image (or pure100kVp image), pure140kVp images and fused images (images equivalent to120kVp weighted by80kVp and140kVp images using a such weighting factor, the image quality is similar to the image of120kV tube voltage). So for a single dual energy scan we can obtain three sets of images of the same level at the same time from the same patients:80or100kV,100kV and140kV. In addition, through the dual-energy post-processing software system, we also can get virtual non-contrasted images and iodine map, etc[8]. Therefore, dual energy scanning provides great convenience about the kidney low tube voltage scanning technology for us.
     This study is to use the multiple set of image data obtained from the kidney dual energy scans for comparison and analysis, and aim to prove that using the lower tube voltage (80kV,100kV) we can get images of the renal tumor enough to meet the requirements of diagnosis, thus greatly reduce the radiation dose.
     Objective
     The dual-energy scans in arterial phase of enhancement CT were performed in40renal tumors patients, through which we could got three groups of images(images of80kV or100kV, images of140kV, fused images of120kV). The purpose of this study was to research influence of the different tube voltage on the image quality of renal arterial scaning image, so as to explore the the feasibility of the low kilovoltage kidney tumors CT scan with comparing and analysising the images quality.
     Materials and methods
     40cases of patients found renal tumors with examination or suspected kidney renal tumors clinically were randomly selected to be research objects. All of the patients were examined by the dual-energy scans in arterial phase of enhancement CT. According to the tube voltages, all of the patients were divided into two groups: Group A (20cases)with tube voltage of80kV and140kV; Group B (20cases)with tube voltage of100kV and140kV. Each patient could obtain three sets of images:the lower tube voltage (80or100kV) images, the higher tube voltage images (140kV) and the fused images (be equal to the image of120kV). For each three groups of images, image quality was evaluated respectively. Evaluation methods could be divided into two kinds:the objective evaluation and subjective evaluation.
     Objective evaluation:Objective evaluation index were background noise(Background noise, BN), Signal to noise ratio (Signal-noise ratio, SNR) and contrast to noise ratio (Contrast-noise ratio, CNR). Signal intensity(Signal intensity, SI))was indicated by CT value of the normal renal cortex. We measured the BN, CT value of the tumor area with obvious enhancement, CT value of paraspinal muscle on the same section image that has the maximum cross section of the tumor or where the tumor showed the characteristics of obvious enhancement. The CT value of the contralateral normal renal cortex and background noise were measured on the same section image. At last we calculated the CNR and SNR. CNR=(CT value of renal tumor area with obvious enhancement-CT values of paraspinal muscle)/background noise(BN);SNR=CT value of the normal renal cortex (SI)/background noise (BN).Using SPSS13.0for Windows statistical software, the BN, SNR and CNR of three groups of images were analysised statistically. The paired T test was use to compare the difference of the BN, SNR, and CNR among the three groups of images. A statistically significant difference was defined as a two-sided P less than0.05.
     Subjective evaluation:All the thick and thin layer images of A, B two groups were transmitted to the workstation. The images were read separately by two experienced vice director physicians or above of CT diagnosis by double-blind method under the condition of having no ideas of the scan conditions.The readers can use the regular three-dimensional post-processing methods (mainly MPR, MIP, VR) provided by the workstaion to reconstruct, measure or analysis images. The observers were asked to write down the sum of the kidney tumor and calculate the tumor detection rate, respectively to evaluate and grade the image quality of transverse images and three-dimensional post-processing images between the three groups. The scoring criteria was by the method of five points:1score:very good;2score:better;3score:generally, but not affecting the diagnosis of the kidney tumor and evaluating of the local aggressive and distant metastasis;4score:poor, has a certain influence on diagnosis;5score:the image quality is to poor to diagnose. The scores of the three groups of images in the two groups of patients were compared respectively with the statistical method of Wilcoxon Signed Ranks Test. The difference was statistically significant when p is less than0.05. Through the Kappa consistency test to detect the consistency of the two CT diagnostic doctors, when the Kappa value was equal or greater than0.75the diagnostic consistency was better, when Kappa value was equal or greater than0.4and less than0.75the diagnostic consistency was general; when the Kappa values was less than0.4the diagnostic consistency was poor.
     Results
     1. objective evaluation
     1.1Group A
     80kV,140kV, the fused image (be equal to the image of120kV), three sets of images were compared between any two means.
     1.1.1The comparison of background noise
     The background noise of80kV,140kV,120kV image respectively is: 80kV (11.69±3.35),140kV (10.84±2.99),120kV (9.08±2.42).
     80kV,140kV,120kV three pair of comparative results:The image noise of80kV (t=3.644, P=3.644<0.05) and140kV(t=4.264, P=4.264<0.05) was bigger than120kV. There were no statistically significant difference between the image noise of80kV and140kV(t=1.030, P=1.030>0.05).
     1.1.2The comparison of SNR
     The SNR of80kV,140kV,120kV of three groups of images respectively:80kV (23.17±2.07),120kV(19.87±6.53),140kV(13.11±13.11).Three two paired comparison results was:Among them,80kV(t=4.507, P=0<0.05)and120kV image (t=4.810, P=0<0.05) compared with140kV, the SNR of images were higher than140kV; The SNR of80kV image was higher than that of120kV image (t=2.226, P=0.040<0.05).
     1.1.3The comparison of CNR
     The CNR of the three groups respectively were:80kV (13.53±6.92),140kV (3.58±2.07),120kv (7.46±4.00). Three pair of comparative results:Among them, the CNRs of80kV (t=10.202, P=0<0.05) and120kV (t=6.615, P=0<0.05) were higher than140kV; The CNR of80kV was higher than the CNR of120kV (t=5.565, P=0<0.05).
     1.2Group B
     Among100kv,140kv and fused images (120kV), there were a total of three sets of two two compared images.
     1.2.1The comparison of background noise
     The background noises respectively were:100kV(9.56±3.99);140kV(9.05±2.04);120kV(6.66±6.66). The comparative results of BN of 100kV,140kV,120kV in the three groups:Among them, the noise of the100kV (t=3.234, P=3.234<0.05) and140kV (t=5.178, P=0<0.05) were higher than120kV. There were no statistically significant difference (t=0.716, P=0.716>0.05) between the BN of100kV and140kV.
     1.2.2The comparison of SNR
     The CT value of renal cortex on100kV,140kV,120kV of three groups images respectively were:100kV (196.25±49.52);140kV(106.56±21.51);120kV(153.73±33.15). The SNR respectively was:100kV(23.58±5.50),140kV(13.51±3.21);120kV(27.29±8.83). The three two paired comparative results were:There was no statistically significant difference (t=1.766, P=1.766>0.05)between the SNR of100kv and120kv; Comparing the SNR of120kV to140kV, the SNR of120kV was higher than140kV (t=5.914, P=0.0O1<0.05); Comparing the SNR of100kV and140kV, the SNR of100kV was higher than that of140kV(t=6.624, P=0.000<0.05).
     1.2.3The comparisons of CNR
     The CNR of the100kV,140kV,120kV three groups respectively were:100kV(11.21±6.74);140kV(4.68±3.36);120kV(11.11±7.89). The CNRs of the three groups images of100kV,140kV and120kV respectively were compared:The CNRs of100kV(t=11.701, P=0<0.05) and120kV(t=5.565, P=0<0.05) were higher than140kV; There was no statistically significant difference (t=0.262,P=0.795>0.05) between the CNR of100kV and120kV.
     2subjective evaluation
     2.1Group A
     The image quality assessment consistency of the two CT diagnosis physicians to the80kV,140kV, the fusion image (120kV) of the three groups of images was good (Kappa values respectively were0.819,0.954, P<0.05). The scores of80kV,140kV, fused images (120kV), A total of three sets of images were compared by pairwise comparison. Statistical results was:comparing the score of80kV to120kV there was no obvious difference in image quality with P=0.083>0.05;The image quality of80kv (P=0<0.05)and120kV (P=0<0.05)both were better than that of the140kV.
     2.2Group B
     The image quality assessment consistency of the two CT diagnosis physicians to the100kV,140kV, the fusion image (120kV) was good (Kappa values respectively were0.769,0.845, P<0.05). The scores of100kV,140kV, fused images (120kV), A total of three sets of images were compared by pairwise comparison. Statistical results:Between the image quality of100kv and120kV,there was no obvious difference (P=0.157>0.05);The image quality of100kV (P=0<0.05) and120kV(P=0<0.05) both were better than the image quality of140kV. conclusions
     1. Kidney enhanced CT scanning using low tube voltage of80or100kV is feasible. The excellent image quality meeting the need of clinical diagnosis is available that can clearly show bilateral kidneys, the structures around the kidney and retroperitoneal dissection structures.
     2. The enhanced CT scanning of kidney tumors using80kV or100kV low tube voltage is feasible. We can gain completely excellent images meeting the needs of the clinical diagnosis, which can clearly show the characteristics of internal structure of tumor,
     characteristics of blood supply, the impact on the surrounding and whether there is the formation of venous emboli. The tumor detection rate is100%.
引文
1. Mulkens TH, Marchal P, Dainedds S, et al. Comparison of low-dose with standard-dose multidetector CT in cervical spine trauma. AJNR,2007,28:1444-1450.
    2. Lutz J, Jager V, Hempel MJ, et al. Delineation of temporal bone anatomy:feasibility of low-dose 64-row CT in regard to image quality. Eur Radiol,2007,17:2638-2645.
    3. Hohl C, Mulenbruch G, Wildberger JE, et al. Estimation of radiation exposure in low-dose multislice computed tomography of the heart and comparison with a calculation program. Eur Radiol,2006,16:1841-1846.
    4.唐坤,曹国全,李瑞等.低管电压腹部CT扫描对图像质量及辐射剂量影响的体模实验.中国医学影像技术,2012,28(4):800-804.
    5. Sebastian Leschka, Paul Stolzmann, Stephan Baumuller, et al. Performance of Dual-Energy CT with tin filter technology for the discrimination of renal cysts and enhancing masses. Acad Radiol,2010:17:526-534.
    6. Yoshiharu Nakayama, Kazuo Awai, Yoshinori Funama. Abdominal CT with low tube voltage preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology,2005;237:945-951.
    7. Behrendt FF, Schmidt V, Plumhans C, et al. Image fusion in dual energy computed tomography:effect on contrast enhancement, signal-to-noise ratio and image quality in computed tomography angiography[J]. Invest Radiol,2009,44(1):1-6.
    8. Graser A, Johnson TR, Chandarana H, et al. Dual energy CT:preliminary observations and potential clinical applications in abdomen[J]. Eur Radiol,2009,19(1):13-23.
    9.李清海,严福华,徐鹏举,等.肾嫌色细胞癌的影像学表现与病理对照分析.中华放射学杂志,2007,41(3):259-262.
    10. Kim JK, Kim TK, Ahn HJ, et al. Differentiation of subtype of renal cell carcinoma on helical CT scans. AJR,2002,178:1499-1506.
    11. Sun MR, Ngo L, Genega EM, et al. Renal cell carcinoma:dynamic contrast-enhanced MR imaging for differentiation of tumor subtype:correlation with pathologic findings. Radiology,2009,250: 793-802.
    12.陈学军,高建波,杨学华,等.肾细胞癌螺旋CT征象与病理、微血管密度及血管内皮生长因子表达间关系的研究.中华放射学杂志.2005:39(40):394-398.
    13. Rosenkrantz AB, Niver BE, Fitzqerald EF. Utility of the apparent diffusion coefficient for distinguishing clear cell renal cell carcimoma of low and high nuclear grade. AJR,2010,195:W344-W351.
    14. Emis ES, Butler PF, Applegate KE, et al. American College of Radiology white people on radiation dose in medicine. J Am Coll Radiology,2007,4(5):272-284.
    15. Nickoloff EL, Alderson PD. Radiation exposures to patients from CT:reality, public perception and policy. AJR,2001,176:285-287
    16. Einstein AJ, Henzlova MJ. Rajagopalan S.Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA,2007,298(3):317-323.
    17. Brenner DJ, Hall EJ. Computed tomography-an increasing source of radiation exposure. N Engl J Med.2007,357(22):2277-2284.
    18.袁旭春,王贤主,廖文凌等.前瞻性心电门控在64层CT冠状动脉成像的初步应用.中华放射学杂志,2008,42(10):1053-1055.
    19. Wang M, Qi HT, Wang XM, et al. Dose performance and image quality:Dual source CT versus single source CT in cardiac CT angiography[J]. EJR.2009,72(3):396-400.
    20.张森,杜湘珂,李剑颖,等.心电图调制电流对于容积CT心脏扫描图像质量及曝光剂量影响的评估[J].中华放射学杂志,2006,40(9):974-976.
    21.徐磊,晏子旭,张兆琪,等.双源CT低剂量前瞻性心电触发序列扫描在冠状动脉血管成像的应用[J].中华放射学杂志.2009,43(7):700-703
    22. Rixe J, Conradi G, Rolf A, Schmermund A, et al. Radiation dose exposure of computed tomography coronary angiography:comparison of dual-source,16-slice and 64-slice CT[J]. Heart.2009;95:1337-1342.
    23.张树桐,陈燕浩,金朝林,等.64层螺旋CT低剂量扫描在胸部疾病诊断中的应用价值[J].实用放射学杂志,2009, (7):1064-1066.
    24. Mulkens TH, Marchal P, Dainedds S, et al. Comparison of low-dose with standard-dose multidetector CT in cervical spine trauma. AJNR,2007,28:1444-1450.
    25. Lutz J, Jager V, Hempel MJ, et al. Delineation of temporal bone anatomy:feasibility of low-dose 64-row CT in regard to image quality. Eur Radiol,2007,17:2638-2645.
    26.陈佩珍,陆守曾.关于配对t检验效能的研究.中国卫生统计,1996,6:19-22.
    27.郑钧正.研究电离辐射水平与效应的重要文献——UNSCEAR报告书.中华放射医学与防护杂志,2002,22(01):71-72.
    28. Lee CI, Haima AH, Monico EP, et al. Diagnostic CT scans:assessment of patient, physicians, and radiologist awareness of radiation dose and possible risks. Radiology,2004,23(1):393-398.
    29. Mettler FA, Bhargavan M, Faulkner, et al. Radiologic and nuclear medicine studies in the United States and worldwide:Frequency, radiation dose, and comparison with other radiation source-1950-2007. Radiology,2009,253(2):520-531.
    30. Valentin J, Managing patient dose in computed tomography. Ann ICRP,2007,37:1-79.
    31. Brenner DJ, Estimating cancer risks from pediatric CT:going from the qualitative to the quantitative. Pediatr Radiol,2002,32:228.
    32. Frush DP, Donnelly LF, Rosen NS. Computed tomtography andradiation risk:what pediatric health care proviers should know. Pediarics,2003,112,951-957.
    33.吴光耀,雷皓.CT检查辐射风险的研究进展,临床放射学杂志,2008,27(8):978-980.
    34.丁娟,肖湘生,李惠民,刘士远等.多层螺旋CT胸部低剂量扫描对肺结节或肿块的评价,实用放射学杂志,2005,21(8):809-813.
    35.王利军,孙凯,王志琴等,第二代双源CT Flash模式在儿童胸部低剂量扫描中的应用价值.中国医学创新,2012,9(1):85-86.
    36.张琪丰,彭芸,李剑颖等.64排螺旋CT自动管电流调节技术降低儿童胸部扫描剂量的应用研究[J].中国医学影像技术,2009,25(9):1591-1594.
    37.向葵,干芸根,李萌太等.儿童胸部螺旋CT低剂量扫描参数的探讨[J].中国临床医学影像杂志,2008,19(3):208-209.
    38.白万晶.儿童低剂量CT检查技术的研究进展[J].中华妇幼临床医学杂志(电子版),2009,5(3):78-82.
    39.谢娜,干芸根,束煌等.低剂量螺旋CT扫描在口腔正畸中的应用.中华放射医学与防护杂志,2009,29(4):441-443.
    40.杨智云,严超贵,范森等.64层螺旋CT儿童颞骨低剂量扫描的研究.2009,29(4):443-446.
    41. Ballanti F, Lione R, Fiaschetti V, et al. Low-dose CT protocol for orthodontic diagnosis. Eur J Paediatr Dent,2008,9(2):65-70.
    42.葛全序,毕可森,丛培霞等.80kV 64排多层螺旋CT低辐射剂量肺动脉成像,中华放射医学与防护杂志,2009,29(5):535-539.
    43.晏子旭,张兆琪,徐磊.双源CT低管电压降低冠状动脉CTA辐射剂量.中国医学影像技术,2009,25(9):1614-1616.
    44. Oda S,Utsunomiya D, Funama Y, et al.A low tube voltage technique reduces the radiation dose at retrospective ECG-gated cardiac computed tomography for anatomical and functional analyses. Acad Radiol 2011:18:991-999.
    45.袁庆海,刘建华,韩冰等.应用80kV管电压降低主动脉CT造影射线剂量初探,中华放射医学与防护杂志,2010,30(6):740-743.
    46.唐坤,曹国全,李瑞等.低管电压腹部CT扫描对图像质量及辐射剂量影响的体模实验.中国医学影像技术,2012,28(4):800-804.
    47. Tsapaki V, Rehani M, Saini S. Radiation safety in abdominal computed tomography. Semin. Ultrasound CT MR,2010,31(1):29-38.
    48.赵仲生.肾脏肿瘤分类的研究进展,浙江省病理学年会;2008,8-12.
    49.刘剑羽.偶发性肾脏肿块的CT和MRI评价.中华放射学杂志,2012,(8)46:677-679.
    50.吴阶平.泌尿外科学[M].济南:山东科学技术出版社,2005,898-900.
    51. Prasad SR, Humphrey PA, Catena JR, et al. Common and uncommon histologic subtypes of renal cell carcinoma:imaging spectrum with pathologic correlation[J]. Radiographics,2006,26(6):1795-1806.
    52.郭燕,黄兆明,刘明娟,等.螺旋CT在小肾癌诊断中的应用[J].中华放射学杂志,2001,35(8):627-629.
    53. Yamashita Y, Takahashi M, Watanabe 0, et al. Small renal cell carcinoma:pathologic and radiologic correlation. Radiology,1992,184:493-498.
    54.朱天照,王仪生,夏同礼.小肾癌的CT与病理对照研究.中华放射学杂志,2000,34(10):697-699.
    55.郝楠馨,常时新,刘光华.肾癌的螺旋CT征象与病理对照研究.临床放射学杂志,2005,24(5):406-410.
    56.邱立艳,汪建华,陈波等.35例不同病理亚型的肾癌螺旋CT分析.医学影像学杂志,2010,20(12):1843-1846.
    57.张社年,周俊林,何宁等.螺旋CT动态增强扫描在肾癌亚型诊断中的作用,中国临床医学杂志,2009,20(7):523-526.
    58. Flohr TG, McCollough CH, Bruder H, et al. First performance evaluation of a dual-source CT(DSCT) system[J]. Eur Radiol,2006,16(2):256-268.
    59. Sche Vel H, Alkadhi H, Plass A, et al. Accuracy of dual-source CT coronary angiography:first experience in a high pre-test probability population without heart rate control[J]. Eur Radiol,2006,16(12):2739-2747.
    60. Fiohr TC, McCoIlough CH, Bmder H, er al. First perfomance evaluation of a dual-source CT(DSCT) system. Eur Radiol,2006,16:256-268.
    61.宋少娟,柳澄,王锡明,双源CT的临床应用,实用放射学杂志,2008,24(7):991-993.
    62.李玉华,柏梅,李惠民等,颅颈CT血管造影的低kV评价,中国医学计算机成像杂志,2011,17(6):529-532.
    63.王骏.双源CT及其临床应用,第七届全国医学影像设备学术交流研讨会会刊,34-37.
    64.沈进,阎岚,韩丹.100kV管电压结合电流自动调节技术肺静脉成像的临床应用,中国医学科学院学报,2010,32(6):704-708.
    65.徐卓东.CARE kV-智能最佳kV扫描技术-降低剂量的同时提高图像质量.中国医疗设备,2012,(27)2:120-123.
    66. Itatani R, Oda S, Utsunomiya D, et al. Reduction in radiation and contrast medium dose via optimization of low-kilovoltage CT protocols using a hybrid iterative recontruction algorithm at 256-slice body CT:Phantom study and clinical correlation. Clinical Radiolgy,2012, el-e8.
    67. Nakaura T, Nakamura S, Maruyama N, et al. Low contrast agent and radiation dose protocol for heptic dynamic CT of thin adults at 256-detector row CT:effect of low tube voltage and hybrid iterative reconstruction algorithm on image quality. Radiology 2012,264:445-454.
    68. Uda S,Utsunomiya D, Funama Y, et al. A hybrid iterative reconstruction algorithm that improves the image quality of low-tube-voltage coronary CT angiography. AJR Am J Roentgenol 2012,198:1126-1131.
    69. Namimoto T, Oda S, Utsunomiya D, et al. Improvement of image quality at low-radiation dose and low-contrast material dose abdominal CT in patients with cirrhosis:intra-individual comparison of low tube voltage with iterative reconstruction algorithm and standard tube voltage. J Comput Assist Tomogr,2012,36:495-501.
    70. Huda W, Scalzetti EM, Levin G. Technique factors and image quality as functions of patient weight at abdominal CT. J Radiology,2000,217(2):430-435.
    71.张伟,龚建平,王可武等.低kV-CT扫描参数的优化设计.临床放射学杂志,2008,27(10):1411-1413.
    72. Signal-cinqualbre AB, Hennequin R, Abada HT, et al. Low-kilovoltage multi-detector row chest CT in adults:feasibility and effect on image quality and iodine dose. Radiology,2004,231(1):169-174.
    73. Prasad SR, Wittram C, Shepard JA, et al. Standard-dose and 50% reduced-dose chest CT:comparing the effect on image quality. AJR,2002,179:461.
    74. Tobiss P, Larissa R,Dieter R,et al. Image quality in a low radiation exposure protocal for retrospectively ECG-gated coronary CT angiography. AJR,2009,192(4):1045-1050.
    75. Marin D,Nelson RC,Samei E, et al. Hypervascular liver tumors:low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection-initial clinical experience. Radiology,2009,251:771-779.
    76. Kalra MK, Maher MM, Toth TL, et al. Strategies for CT radiation dose optimization. Radiology,2004,230(3):619-628.
    77. Brix G, Lechel U, Petersheim M, et al. Dynamic contrast-enhanced CT studies:balancing patient exposure and image noise. Invest Radiol,2011,46(1):64-70.
    78. Yu L, Li H, Fletcher JG, et al. Automatic selection of tube potential for radiation dose reduction in CT:a general strategy. Med Phys,2010,37(1):234-243.
    79. Kalendar WA, Deak P, Kellermeier M,et al. Application and patient size-dependent optimization of X-ray spectra for CT. Med Phys,2009,36 (3):993-1007.
    80. Alkadhi H, Schindera ST. State of the art low-dose CT angiography of the body. Eur J Radiol,2011,80(1):36-40.
    81. Bahner ML, Bengel A, Brix G, et al. Improved vascular opacification in cerebral computed tomography angiography with 80 kVp. Invest Radiol,2005,40(4):229-234.
    82. Gleeson TG, Bulugahapitiya S. Contrast-induced nephropathy(Review). AJR,2004,183:1673-1689.
    83.张龙江,祁吉.对比剂肾病:一个值得关注的问题.中华放射学杂志,2007,41(8):882-884.
    84. Katzberg RW, Haller C. Contrast-induced nephrotoxicity:clinical landscape(Review).Kidney Int Suppl,2006,69:S3-S7.
    85. Persson PB, Tepel M. Contrast medium-induced nephropathy:the pathophysiology(Review).Kidney Int Suppl,2006,69:S8-S10.
    86. McCullough P. Outcome of contrast-induced nephropathy:experience in patients undergoing cardiovascular intervention. Catheter Cardiovasc Interv,2006,67:335-343.
    87. Gleeson TG, Bulugahapitiya S. Contrast-induced nephropathy(Review). AJR,2004,183:1673-1689.
    88. Mayo JR, Vvnckier S, Octave-Priqnot M. Pulmonary embolism:radiation dose with multi-detector row CT and digital angiography for diagnosis. Radiology,2006,240(3):690-697.
    89.邢丽娜,王大英,彭文.对比剂肾病的诊治及研究进展.中国临床实用医学,2010,4(2):259-260.
    90.暴婧,吴巍珍,杜湘珂等.计算机体层摄影检查中对比剂肾病的流行病学研究.中国血液净化,2011,10(8):416-420.
    1.郑钧正.研究电离辐射水平与效应的重要文献——UNSCEAR报告书.中华放射医学与防护杂志,2002,22:71-72.
    2. Lee CI, Haima AH, Monico EP,et al.Diagnostic CT scans:assessment of patient, physicians, and radiologist awareness of radiation dose and possible risks. Radiology,2004 (2),231:393-398.
    3. Mettler FA, Bhargavan M, Faulkner, et al. Radiologic and nuclear medicine studies in the United States and worldwide:Frequency, radiation dose, and comparison with other radiation source-1950-2007. Radiology,2009,253(2):520-531.
    4. Valentin J, Managing patient dose in multi-detector computed tomography(MDCT). Ann ICRP,2007,37(1):1-79.
    5. Mettler FA Jr, et al.CT scanning:patterns of use ande dose[J].J Radiol Prot,2000(4):353-361.
    6. Brenner DJ,et al. Computed tomography:an increasing source of radiation exposure[J].N Eng J Med,2007(9):2277-2284.
    7.CT检查中的过度使用研究,雷海潮,胡善联,李刚,中国卫生经济,2002,21(10):23-26.
    8. Donnelly LF. Reducing radiation dose associated with pediatric CT by decreasing unnecessary examinations. Am J Roentgenol,2005,184(2):655-657.
    9. Brenner DJ,Hall EJ. Risk of cancer from diaognostic X-rays. Lancet,2004,36(3):2192.
    10. Brenner DJ, Estimating cancer risks from pediatric CT:going from the qualitative to the quantitative. Pediatr Radiol,2002,32 (4):228-233.
    11. Frush DP, Donnelly LF, Rosen NS.Computed tomtography andradiation risk:what pediatric health care proviers should know. Pediarics,2003,112(4),951-957.
    12. Yoshiharu Nakayama, Kazuo Awai, Yoshinori Funama. Abdominal CT with low tube voltage preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology,2005,237(3):945-951.
    13.吴光耀,雷皓,CT检查辐射风险的研究进展,临床放射学杂志,2008,27(7):978-979.
    14. Emis ES, Butler PF, Applegate KE, et al. American College of Radiology white people on radiation dose in medicine. J Am Coll Radiology,2007,4(5):272-284.
    15. Nickoloff EL, Alderson PD. Radiation exposures to patients from CT:reality, public perception and policy. AJR,2001,177(2):285-287.
    16. Einstein AJ, Henzlova MJ. Rajagopalan S. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA,2007,298(3):317-323.
    17.丁娟,肖湘生,李惠民,刘士远等.多层螺旋CT胸部低剂量扫描对肺结节或肿块的评价.实用放射学杂志,2005,21(8):809-813.
    18.王利军,孙凯,王志琴等,第二代双源CT Flash模式在儿童胸部低剂量扫描中的应用价值.中国医学创新,2012,9(1):85-86.
    19.张琪丰,彭芸,李剑颖等,64排螺旋CT自动管电流调节技术降低儿童胸部扫描剂量的应用研究[J].中国医学影像技术,2009,25(9):1591-1594.
    20.向葵,干芸根,李萌太等.儿童胸部螺旋CT低剂量扫描参数的探讨[J].中 国临床医学影像杂志,2008,19(3):208-209.
    21.白万晶.儿童低剂量CT检查技术的研究进展[J].中华妇幼临床医学杂志(电子版),2009,5(3):78-82.
    22. Mulkens TH, Marchal P, Dainedds S, et al. Comparison of low-dose with standard-dose multidetector CT in cervical spine trauma. AJNR,2007,28(8):1444-1450.
    23. Lutz J, Jager V, Hempel MJ, et al. Delineation of temporal bone anatomy:feasibility of low-dose 64-row CT in regard to image quality. Eur Radiol,2007,17(10):2638-2645.
    24. Hohl C, Muhlenbruch G, Wildberger JE, et al. Estimation of radiation exposure in low-dose multislice computed tomography of the heart and comparison with a calculation program. Eur Radiol,2006,16(8):1841-1846.
    25.葛全序,毕可森,丛培霞等,80kV 64排多层螺旋CT低辐射剂量肺动脉成像,中华放射医学与防护杂志,2009,29(5):535-539.
    26.晏子旭,张兆琪,徐磊,双源CT低管电压降低冠状动脉CTA辐射剂量.中国医学影像技术,2009,25(9):1614-1616.
    27. Oda S, Utsunomiya D, Funama Y, et al.A low tube voltage technique reduces the radiation dose at retrospective ECG-gated cardiac computed tomography for anatomical and functional analyses. Acad Radiol.2011,18(8):991-999.
    28.袁庆海,刘建华,韩冰等,应用80kV管电压降低主动脉CT造影射线剂量初探.中华放射医学与防护杂志,2010,30(6):740-743.
    29.唐坤,曹国全,李瑞等,低管电压腹部CT扫描对图像质量及辐射剂量影响的体模实验.中国医学影像技术,2012,28(4):800-804.
    30. Sebastian Leschka, Paul Stolzmann, Stephan Baumuller, et al.Performance of Dual-Energy CT with tin filter technology for the discrimination of renal cysts and enhancing masses. Acad Radiol,2010,17(4):526-534.
    31. Tsapaki V, Rehani M, Saini S. Radiation safety in abdominal computed tomography. Semin, Ultrasound CT MR.2010,31(1):29-38.
    32. Ware DE, Huda W, Mergo PJ, et al.Radiation effective doses to patients undergoing abdominal CT examination. Radiology,2001,210:645-650;Hall E. Risk and benefit in pediatric radiology. Radiology,1999,210(3):645-650.
    33. International Commission on Radiation Units and Measurements[S]. Phantoms and computational models in therapy, diagnosis and protection Bethesda, Md:International Commission on Radiation Units and Measurements,1992.
    34. Christner JA, Zavaletta VA, Eusemann CD et al.Dose Reduction in Helical CT:Dynamically Adjustable Z-axis X-ray Beam Collimation. AJR,2010,194(1):W49-55.
    35. Primak AN, Ramirez Girado JC, Liu X et al. Improved Dual-energy Material Discrimination for Dual-Source CT by Means of Additional Spectral Filtration. Med Phys,2009,36(4):1359-1369.
    36. Volimar SV,Kalender WA. Reduction of Dose to the Female Breast in Thoracic CT:A Comparison of Stantard-protocol Bismuth-Shielded, Partial and Tube-Current-Modulated CT Examination. Eur Radio,2008,18 (8):1674-1682.
    37.秦维昌,亓恒涛,王巍.接受适度噪声,中华放射学杂志,2009,43(7): 677-678.
    38. Huda W, Scalzetti EM, Levin G. Technique factors and image quality as functions of patient weight at abdominal CT. J Radiology,2000,217(2):430-435.
    39.低kV-CT扫描参数的优化设计,张伟,龚建平,王可武等,临床放射学杂志,2008,27(10):1411-1413.
    40. Signal-cinqualbre AB, Hennequin R, Abada HT, et al.Multi-kilovoltage multi-detector row chest CT in adults:feasibility and effect on image quality and iodine dose. Radiology,2004,231(1):169-174.
    41. Prasad SR, Wittram C, Shepard JA, et al. Standard-dose and 50% reduced-dose chest CT:comparing the effect on image quality. AJR,2002,179(2):461-465.
    42. Kubo T, Lin PJ, Stiller W, et al. Radiation dose reduction in chest CT:a review. AJR Am J Roentgenol.2008,190(2):335-343.
    43. Tack D, De Maertelaer V, Petit W, et al.Multi-detector row CT pulmonary angiography:comparison of stantard-dose and simulated low-dose techniques. Radiology,2005,236(1):318-325.
    44. Gao JH, Sun XC, Li JY, et al. Influence of a post 2 processing filter on image quality of cardiac scans using 64-slice spiral CT[J].Chin J Med Imaging Technol,2007,2(1):73-76.
    45. Tobiss P, Larissa R, Dieter R, et al. Image quality in a low radiation exposure protocal for retrospectively ECG-gated coronary CT angiography. AJR,2009,192(4):1045-1050.
    46. Marin D, Nelson RC, Samei E, et al.Hypervascular liver tumors:low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection-initial clinical experience. Radiology 2009,251(3):771-779.
    47. Itatani R, Oda S, Utsunomiya D, et al. Reduction in radiation and contrast medium dose via optimization of low-kilovoltage CT protocols using a hybrid iterative recontruction algorithm at 256-slice body CT:Phantom study and clinical correlation. Clinical Radiolgy,2012,68(3):e128-135.
    48. Nakaura T, Nakamura S, Maruyama N, et al. Low contrast agent and radiation dose protocol for heptic dynamic CT of thin adults at 256-detector row CT:effect of low tube voltage and hybrid iterative reconstruction algorithm on image quality. Radiology, bo 2012,264(2):445-454.
    49. Oda S, Utsunomiya D, Funama Y,et al.A hybrid iterative reconstruction algorithm that improves the image quality of low-tube-voltage coronary CT angiography. AJR,2012,198(5):1126-1131.
    50. Namimoto T, Oda S, Utsunomiya D, et al. Improvement of image quality at low-radiation dose and low-contrast material dose abdominal CT in patients with cirrhosis:intra-individual comparison of low tube voltage with iterative reconstruction algorithm and standard tube voltage. J Comput Assist Tomogr,2012,36(4):495-501.
    51.徐卓东,CARE kV-智能最佳kV扫描技术-降低剂量的同时提高图像质量,中国医疗设备,2012,(27)2:120-123.
    52. Kalra MK, Maher MM, Toth TL, et al. Strategies for CT radiation dose optimization. Radiology,2004,230(3):619-628.
    53. Brix G, Lechel U, Petersheim M, et al. Dynamic contrast-enhanced CT studies:balancing patient exposure and image noise. Invest Radiol.2011,46(1):64-70.
    54. Yu L, Li H, Fletcher JG, et al. Automatic selection of tube potential for radiation dose reduction in CT:a general strategy. Med Phys.2010,37(1):234-243.
    55. Kalendar WA, Deak P, Kellermeier M, et al. Application and patient size-dependent optimization of X-ray spectra for CT. Med Phys.2009,36(3):993-1007.
    56. Alkadhi H, Schindera ST. State of the art low-dose CT angiography of the body.Eur J Radiol,2011,80(1):36-40.
    57. Bahner ML, Bengel A, Brix G, et al. Improved vascular opacification in cerebral computed tomography angiography with 80 kVp. Invest Radiol,2005,40(4):229-234.
    58.张伟,龚建平,王可武等,低kV-CT扫描参数的优化设计,临床放射学杂志,2008,27(10):1411-1413.
    59. Mayo JR, Vvnckier S, Octave-Priqnot M. Pulmonary embolism:radiation dose with multi-detector row CT and digital angiography for diagnosis. Radiology,2006,240(3):690-697.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700