MIMO移动通信系统中功率控制方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文研究了多输入多输出(MIMO)移动通信系统中的功率控制方法。功率控制的MIMO系统在接收端计算出对信道自适应变化的发送功率,并反馈到发送端,对发送信号作功率加权处理。
     论文首先分析了排序串行干扰抵消检测器(OSICD)的子流误比特率(BER)性能差异,提出一种最小化最大的子流BER准则的天线功率控制(PAPC)的方法。该PAPC方法在保持信息速率和总发送功率恒定时,改善OSICD的最差子流的BER性能以提高平均BER性能。论文在收发信号处理中加入对各天线不等功率的考虑,提出了功率控制的OSICD(P-OSICD)。仿真结果说明,最小均方误差准则(MMSE)的P-OSICD可以在小的功率反馈开销下获得与最大似然检测器(MLD)接近的BER性能,并且,P-MMSE-OSICD的计算复杂度相比MMSE-OSICD的增加不大,比MLD的小。
     由于OSICD存在数值稳定性不好的问题,论文还研究了一种数值稳定性更好的MIMO检测器排序判决反馈检测器(SDFD)。为了进一步提高SDFD的BER性能,论文提出一种最小化SDFD的BLER性能的PAPC方法,以提高平均BER性能。该PAPC方法使QR分解后的R矩阵具有等对角线元素的性质,同时也最大化自由距离的下限。通过性能分析,论文证明了该PAPC方法是在反馈量和检测性能之间折衷的方法。论文在收发信号处理中加入对各天线不等功率的考虑,提出了功率控制的SDFD(P-SDFD)。仿真结果说明,在接收天线多于发送天线的MIMO系统中,P-SDFD可以在小的功率反馈开销和低的计算复杂度下获得与MLD相似的BER性能。
     在蜂窝MIMO移动通信系统中,同信道(CCI)干扰严重恶化了系统性能,论文提出了一种蜂窝MIMO系统中的集中式功率控制(CPC)方法,能够抑制CCI,提高系统的信号干扰比(SIR)中断性能和BER性能。该方法利用了MIMO不同天线发送的数据独立的特点,只调整每个用户发送端的总功率,在用户发送端的不同天线间均分功率的情况下,得到简化的SIR表达式和信道矩阵表达式,并且证明该信道矩阵归一化后满足非负不可约性,可以通过求解归一化的信道矩阵的特征值和特征向量得到平衡的SIR值和相应的发送功率。SIR平衡使系统中最小SIR值最大化。仿真说明了该CPC方法对平均SIR中断概率和平均BER性能的改善。
     CPC方法需要收集所有通信链路的信道信息,系统开销大。因此,论文又提出一种蜂窝MIMO系统中的分布式功率控制(DPC)方法,该方法不需要知道系统中所有信道的信息,仅测量目标信号功率和本地SIR值,通过迭代的方法能够收敛于CPC方法得到的发送功率最优解。论文给出了适用于干扰受限系统的DPC算法1和适用于噪声受限系统的DPC算法2,并描述了算法实现框图。DPC算法1的优化目标是最小化平均SIR中断概率;DPC算法2的优化目标是在满足目标SIR的前提下最小化平均发送功率。仿真说明了DPC方法的迭代收敛性和对性能的改善。
     功率控制可以提高系统的误比特率(BER)性能,且反馈量不大,计算复杂度的增加也不大。论文所作的研究和贡献,对MIMO移动通信系统逐步从理论走向实用具有重要参考意义。
This thesis focuses on the power control approaches in MIMO (Multiple-Input Multiple-Output) mobile communication systems. The power controlled MIMO systems obtain the transmit power which is adaptive to the channel. The transmit power is feedback to the transmitter from the receiver and used to weight the transmit signals.
    The thesis firstly analyses the substrems' BER (Bit Error Rate) difference of the OSICD (Ordered Succesive Interference Cancellation Detector) and proposes a PAPC (Per-Antenna Power Control) approach based on the criterion minimizing the substream's maximum BER. The PAPC approach improves the worst BER performance among substreams to improve the averaged BER performance, while the information rate and total transmit powe keep constant. The thesis takes the unequal antenna power into consideration in MIMO signal process and proposes a P-OSICD (Power controlled OSICD). Simulation results show that the P-MMSE-OSICD (MMSE: Minimum Mean Square Error) can achieve the comparible BER performance to that of the MLD (Maximum Likelihood Detector) at small feedback overhead and lower compelxity. The calculation complexity addition of the P-MMSE-OSICD compared to MMSE-OSICD is small too.
    Because the numerical stabability of the OSICD is not good, the thesis studies another MIMO detector as SDFD (Sorted Decision Feedback Detector) with better numerical stabability. However, the BER performance of the SDFD is not good enough for real MIMO systems. Hence, the thesis proposes a PAPC approach to improve the BER performance by minimizing the BLER (BLock Error Rate) of SDFD. The PAPC approach makes the matrix R have equal-diagonal elements and maximizes the lower bound of the free distance at the same time. By the performance analysis, the thesis proves that the PAPC approach is a tradeoff between feedback overhead and detection performance. The thesis also proposes a P-SDFD (Power controlled SDFD) concerning the unequl transmit power among transmit antennas. Simulation results show that the P-SDFD achieves the comparible BER performance to that of the MLD at small feedback overhead and lower complexity, when receive antenna number is larger than transmit antenna number.
    In MIMO cellular mobile communication systems, CCI (Co-Channel Interference) affects the performance greatly. The thesis proposes a CPC (Centralized Power Control) approach to control the CCI and by so to improve the SIR (Signal to Interference Ratio) outage performance and BER performance. The PAPC approach adjusts each user's total transmit power but keeps queal power levels among antennas of each user. With the fact that signals from multiple transmit antennas are indepedant to each other, a simplified SIR expression and channel matrix expression are derived. The thesis proves that the normalized channel matrix is an irreducible nonnegative matrix. We can obtain the balanced SIR value and the conesponding transmit power by calculation of the eigenvalues and eigenvectors of the normalized channel matrix. SIR balancing maximizes the minimum SIR among users. Simuation results show that the CPC approach can improve the SIR outage probability performance and BER performance.
    The CPC approach needs to collect channel information of all communication links in the system, which costs much system overhead. The thesis then proposes a DPC (Distributed Power Control) approach to lower the CPC's overhead. The DPC approach only measures the local desired signal power and local SIR. In iteration fashion, the DPC approach can also achieve the SIR balance. The thesis gives DPC algorithm 1 for interference-limitted systems to minimize the averaged SIR outage
引文
[1] T.S. Rappaport, Wireless Communications Principles and Practice. New York: PRENTICE HALL, 1998.
    [2] 3GPP, "Physical channels and mapping of transport channels onto physical channels (FDD)," 3G TS 25.211 v 3.7.0, Jun. 2001.
    [3] 3GPP, "Physical layer procedures (FDD)," 3G TS 25.214 v 3.7.0, Jun. 2001.
    [4] H. Yang, "A Road to Future Broadband Wireless Access: MIMO-OFDM-Based Air Interface," IEEE Commun. Magzine, vol. 43, No. 1, pp. 53-60, Jan. 2005.
    [5] G.L. Stuber, J. R. Barry, S. W. Mclaughlin, Y. Li, M. A. Ingrain, and T. G. Pratt, "Broadband MIMO-OFDM Wireless Communications," Porc. of the IEEE, vol. 92, No. 2, pp. 271-294, Feb. 2004.
    [6] I.E. Telatar, "Capacity of multi-antenna Gaussian channels," Bell Labs Tech. J., 1995.
    [7] D. Gesbert, M. Shaft, D. S. Shiu, P. J. Smith, and A. Naguib, "From theory to practice: an overview of MIMO space-time coded wireless systems," IEEE J. on Selected Areas in Commun., vol. 21, No. 3, pp. 281-302, Apr. 2003.
    [8] S.D. Gray, P. Pasanen, and O. Tirkkonen, "Application of Information Theory to the Design of 4th Generation Cellular Communication Systems," Wireless Personal Commun., vol. 26, pp. 203-216, 2003.
    [9] 3GPP, "Physical layer aspects of ultra high speed downlink packet access," 3G TR25.848 v 4.0.0, Apr. 2001.
    [10] 3GPP, "Tx diversity solutions for multiple antennas," 3G TR 25.869 v 1.0.0, Jun. 2001.
    [11] 3GPP, "Multiple-input multiple output antenna processing for HSDPA," 3G TR 25.876 v 1.8.0, Oct. 2005.
    [12] 3GPP, "Practical aspects of multiple architectures for HSDPA," TSGRI#16(00)1219, 2000.
    [13] 3GPP, "MIMO system integration and signalling in HSDPA," TSGRI#19(01)0305, 2001.
    [14] G.J. Foschini, "Layered space-time architecture for wireless communication in a fading environment when using multielement antennas," Bell Labs Tech. J., vol. 1, pp. 41-59, Aug. 1996.
    [15] P.W. Wolniansky, G. J. Forchini, G. D. Golden, and R. A. Valenzuela, "V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel," in the proc. of Signals, Systems, and Electronics 1998, pp. 295-300, 29 Sept. - 2 Oct. 1998.
    [16] G. J. Forchini, G. D. Golden, R. A. Valenzuela, and P. W. Wolniansky, "Simplified Processing for High Spectral Efficiency Wireless Communication Employing Multi-Element Arrays," IEEE J. on Selected Areas in Commun., vol. 17, No. 11, pp. 1841-1852, Nov. 1999.
    [17] S. L. Ariyavisitakul, "Turbo Space-Time Processing to Improve Wireless Channel Capacity," IEEE Trans. Commun., vol. 48, No. 4, pp. 1347-1359, Aug. 2000.
    [18] G. J. Forchini and M. J. Gans, "On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas," Wireless Personal Commun., vol. 6, pp. 311-335, 1998.
    [19] A.J. Goldsmith, S. A. Jafar, N. Jindal, and S. Viswanath, "Capacity Limits of MIMO Channels," IEEE J. on Selected Areas in Commun., vol. 21, No. 5, pp. 684-702, Jun. 2003.
    [20] D.S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, "Fading Correlation and Its Effect on the Capacity of Multielement Antenna Systems," IEEE Trans. Commun., vol. 48, No. 3, pp. 502-512, Mar. 2000.
    [21] D. Chizhik, G. J. Forchini, M. J. Gans, and R. A. Valenzuela, "Keyholes, Correlations, and Capacities of Multielement Transmit and Receive Antennas," IEEE Trans. on Wireless Commun., vol. 1, No. 2, pp. 361-368, Apr. 2002.
    [22] S.L. Loyka and J. Mosig, "Channel capacity of n-antenna BLAST architecture," IEE Elec. Letters, vol. 36, No. 7, pp. 660-661, Mar. 2000.
    [23] S.L. Loyka, "Channel capacity of two-antenna BLAST architecture," IEE Elec. Letters, vol. 35, No. 17, pp. 1421-1422, Aug. 1999.
    [24] D. Chizhik, G. J. Forchini, and R. A. Valenzuela, "Capacities of multi-element transmit and receive antennas: correlations and keyhole," IEE Elec. Letters, vol. 36, No. 13, pp. 1099-1100, Jun. 2000.
    [25] G.D. Golden, G. J. Forchini, R. A. Valenzuela, and P. W. Wolniansky, "Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture," IEE Elec. Letters, vol. 35, No. 1, Jan. 1999.
    [26] A. Benjebbour, H. Murata, and S. Yoshida, "Comparison of Ordered Successive Receivers for Space-Time Transmission," in theproc, of VTC 2001 Fall, vol. 4, pp. 2053-2057, Oct. 2001.
    [27] B. Hassibi, "A fast square-root implementation for BLAST," in the proc. of Asilomar Conf. Signal, Systems and Computers, Monterey, CA, pp. 1255-1259, Nov. 2000.
    [28] M.O. Damen, K. A. Meraim, and S. Burykh, "Iterative QR detection for BLAST," in the proc. of 38th Allerton Conference of Communications, Illinois, Oct. 2000.
    [29] D. Wubben, R. B6hnke, J. Rinas, V. Kuhn, and K. D. Kammeyer, "Efficient Algorithm for Decoding Layered Space-Time Codes," IEE Electronics Letters, vol. 37, No. 22, pp. 1348-1350, Oct. 2001.
    [30] D. Wubben, R. B6hnke, V. Kuhn, and K. D. Kammeyer, "MMSE extension of V-BLAST based on sorted QR decomposition," in theproc, of VTC 2003 Fall, Orlando, USA, vol. 1, pp. 508-512, 2003.
    [31] W.J. Choi, K. W. Cheong, and J. M. Cioffi, "Iterative soft interference cancellation for multiple antenna systems," in the proc. of WCNC 2000, vol. 1, pp. 304-309, 23-28 Sept. 2000.
    [32] A. Matache, C. Jones, and R. Wesel, "Reduced complexity MIMO detectors for LDPC coded systems," in theproc, of MILCOM 2004, vol. 2, pp. 1073-1079, 31 Oct. -3 Nov. 2004.
    [33] K.J. Kim, J. Yue, R. A. Iltis, and J. D. Gibson, "A QRD-M/Kalman Filter-Based Detection and Channel Estimation Algorithm for MIMO-OFDM Systems," IEEE Trans. Wireless Commun., vol. 4, No. 2, pp. 710-721, Mar. 2005.
    [34] M. O. Damen, A. Chkeif, and J. C. Belfiore, "Lattice codes decoder for space-time codes," IEEE Commun. Lett., vol. 4, No. 5, pp. 161-63, May 2000.
    [35] S.W. Kim, "Log-Likelihood Ratio based Detection Ordering for the V-BLAST," in the proc. of GLOBECOM, pp. 292-296, 2003.
    [36] W.J. Choi, R. Negi, and J. M. Cioffi, "Combined ML and DFE Decoding for the V-BLAST System," in the proc. of ICC, Jun. 2000.
    [37] M. Sellathurai and S. Haykin, "Turbo-BLAST for wireless communications: Theory and experiments," IEEE Trans. on Signal Processing, vol. 50, No. 10, pp. 2538-2546, Oct. 2002.
    [38] C. Hermosilla and L. Szczecinski, "Iterative Decoding and Iterative Detection in MIMO Receivers: Complexity and Performance Tradeoffs," in the proc. of Biennial Symposium on Communications, Kingston, Canada, pp. 254-256, Jun. 2004.
    [39] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, "Space-time block coding for wireless communications: performance results," IEEE J. on Selected Areas in Commun., vol. 17, No. 3, pp. 451-460, 1999.
    [40] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, "Space-time block codes from orthogonal designs," IEEE Trans. Inf. Theory, vol. 45, pp. 1456-1467, Jul. 1999.
    [41] S.M. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE J. on Selected Areas in Commun., vol. 16, No. 8, pp. 1451-1458.
    [42] V. Tarokh, N. Seshadri, and A. Calderbank, "Space-time codes for high data rate wireless communication: Performance criterion and code construction," IEEE Trans. Inf. Theory, vol. 44, pp. 744-765, Mar. 1998.
    [43] L. Zheng and D. N. C. Tse, "Diversity and Multiplexing: A Fundamental Tradeoff in Multiple-Antenna Channels," IEEE Trans. Inf. Theory, vol. 49, No. 5, pp. 1073-1096, May 2003.
    [44] L. Zhao and V. K. Dubey, "Detection Schemes for Space-Time Block Code and Spatial Multiplexing Combined System," IEEE Commun. Lett., vol. 9, No. 1, pp. 49-51, Jan. 2005.
    [45] I. E. Telatar, "Capacity of multiantenna Gaussian channels," Eur. Trans. Commun., vol. 10, No. 6, pp. 585-595, 1999.
    [46] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley, 1991.
    [47] F. R. Farrokhi, G. J. Forchini, A. Lozano, and R. A. Valenzuela, "Link-optimal space-time processing with multiple transmit and receive antennas," IEEE Commun. Lett., vol. 5, pp. 85-87, 2001.
    [48] P. Viswanath, D. N. C. Tse, and V. Anantharam, "Asymptotically optimal water-filling in vector multiple-access channels," IEEE Trans. Inf. Theory, vol. 47, pp. 241-267, 2001.
    [49] W. Yu, W. Rhee, S. Boyd, and J. M. Cioffi, "Iterative water-filling for Gaussian vector multiple-access channels," IEEE Trans. Inf. Theory, vol. 50, No. 1, pp. 145-152, Jan. 2004.
    [50] A. Scaglione, P. Stoica, S. Barbarossa, G. B. Giannakis, and H. Sampath, "Optimal designs for space time linear precoders and decoders," IEEE Trans. Signal Processing, vol. 50, pp. 1051-1064, May 2002.
    [51] H. Sampath, P. Stoica, and A. Paulraj, "Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion," IEEE Trans. Commun., pp. 2198-2206, Dee. 2001.
    [52] J. K. Zhang, A. Kavcic, and K. M. Wong, "Equal Diagonal QR Decomposition and its Application to Precoder Design for Successive-Cancellation Detection," IEEE Trans. Inf. Theory, vol. 51, No. 1, pp. 154-172, Jan. 2005.
    [53] J. Akhtar and D. Gesbert, "Extending orthogonal block codes with partial feedback," IEEE Trans. Wire. Commun., vol. 3, No. 6, pp. 1959-1962, Nov. 2004.
    [54] J.C. Roh and B. D. Rao, "Multiple Antenna Channels with Partial Channel State Information at the Transmitter," IEEE Trans. Wire. Commun., vol. 3, pp. 677-688, Mar. 2004.
    [55] S. Vishwanath, S. A. Jafar, and A. J. Goldsmith, "Channel capacity and beamforming for multiple transmit and receive antennas with covariance feedback," in the proc. of ICC, Helsmki, Finland, pp. 2266-2270, 2001.
    [56] S.H. Simon and A. L. Moustakas, "Optimizing MIMO Antenna Systems With Channel Covariance Feedback," IEEE J on Selected Areas in Commun., vol. 21, No. 3, pp. 406-417, Apr. 2003.
    [57] S.T. Chung, A. Lozano, and H. C. Huang, "Approaching Eigenmode BLAST Channel Capacity Using V-BLAST with Rate and Power Feedback," in the proc. of VTC, Atlantic City, N J, pp. 915-919, Oct. 2001.
    [58] K. Zhao, L. Qiu, J. Zhu, and Y. Si, "Low Complexity Power Control Approach Based on MMSE Detection for V-BLAST," in the proc. of 16th PIMRC, Berlin, Germany, Sept. 11-14, 2005.
    [59] S.H. Nam, O. S. Shin, and K. B. Lee, "Transmit power allocation for a modified V-BLAST system," IEEE Trans. Commun., vol. 52, pp. 1074-1079, July 2004.
    [60] 3GPP, "Improving MIMO throughput with per-antenna rate control (PARC)," TSGR1#21(01)0941, Turino, Italy, Aug. 2001.
    [61] H. Zhuang, L. Dai, S. D. Zhou, and Y. Yao, "Low complexity per-antenna rate and power control approach for closed-loop V-BLAST," IEEE Trans. Commun., vol. 51, pp. 1783-1787, Nov. 2003.
    [62] N. Prasad and M. K. Varanasi, "Analysis of Decision Feedback Detection for MIMO Rayleigh-Fading Channels and the Optimization of Power and Rate Allocations," IEEE Trans. Inf. Theory, vol. 50, No. 6, pp. 1009-1025, Jun. 2004.
    [63] S. Sanayei and A. Nosratinia, "Antenna Selection in MIMO Systems," IEEE Commun. Magzine, pp. 68-73, Oct. 2004.
    [64] K. Kim, S. Shim, C. Lee, and Y. Y. Kim, "A Simplified Ordering Scheme Minimizing Average BER for MIMO Systems with Adaptive Modulation," IEICE Trans. Commun., vol. E88-B, No. 11, pp. 4390-4393, Nov. 2005.
    [65] S. Catreux, D. Gesbert, and R. W. Heath, "Adaptive modulation and MIMO coding for broadband wireless data networks," IEEE Commun. Magzine, vol. 40, pp. 108-115, Jun. 2002.
    [66] R.W. Heath and A. Paulraj, "Antenna selection for spatial multiplexing system based on minimum error rate," in theproc, of ICC, Helsinki, Finland, pp. 2276-2280, Jun. 2001.
    [67] S. Catreux, P. F. Driessen, and L. J. Greenstain, "Data throughputs using multiple-input multiple-output (MIMO) techniques in a noise-limited cellular environment," IEEE Trans. Wire. Commun., vol. 1, pp. 226-235, Apr. 2002.
    [68] D.A. Gore, R. W. Heath, and A. Paulraj, "Transmit selection in spatial multiplexing systems," IEEE Commun. Lett., vol. 6, pp. 491-493, Nov. 2002.
    [69] S.T. Chung, H. C. Huang, and A. Lozano, "Low complexity algorithm for rate quantization in extended V-BLAST," in the proc. of VTC 2001 Fall, Atlantic City, NJ, pp. 910-914, Oct. 2001.
    [70] J.M. Aein, "Power Balancing in Systems Employing Frequency Reuse," COMSAT Tech. Review, Vol. 3, No. 2, 1973.
    [71] H. Alavi and R. W. Nettleton, "Downstream Power Control for a Spread Spectrum Cellular Mobile Radio System," in theproc, of Globecom, Miami, FL, pp. 84-88, 1982.
    [72] R.W. Nettleton, "Traffic theory and interference management for a spread spectttrm cellular cellular mobile radio system," in the proc. of ICC, Seattle, WA, Jun. 1980.
    [73] R.W. Nettleton, "Power control for spread specturm cellular mobile radio system," in the proc. of VTC, pp. 242-246, 1983.
    [74] J. Zander, "Performance of optimum transmitter power control in cellular radio systems," IEEE Trans. V. T., vol. 43, No. 1, pp. 57-62, Feb. 1992.
    [75] S.A. Grandhi, R. Vijayan, D. J. Goodman, and J. Zander, "Centralized power control in cellular radio systems," IEEE Tram. V. T., vol. 42, No. 4, pp. 466-468, 1993.
    [76] T. Nagatsu, T. Tsuruhara, and M. Sakamoto, "Transmitter power control for cellular land mobile radio," in thv proc, of VTC, pp. 1430-1434, 1983.
    [77] W.C.Y. Lee, "Overview of cellular CDMA," IEEE Trans. V. T., vol. 43, No. 1, pp. 291-302, 1991.
    [78] R.D. Yates and C. Y. Huang, "Integrated Power Control and Base Station Assignment," IEEE Trans. V. T., vol. 44, No. 3, pp. 638-644, Aug. 1995.
    [79] T.H. Lee, "Downlink power control algorithms for cellular radio systems," IEEE Trans. V. T., vol. 43, No. 1, pp. 89-94, Feb. 1995.
    [80] F.R. Farrokhi, K. J. R. Liu, and L. Tassiulas, "Downlink Power Control and Base Station Assignment," IEEE Commun. Lett., vol. 1, No. 4, pp. 102-104, Jul. 1997.
    [81] K.S. Glihouse, I. M. Jacobs, R. Padovani, A. J. Viterbi, L. A. Weaver, and C. E. Wheatley, "On the Capacity of a Cellular system," IEEE Trans. V. T., vol. 40, No. 2, pp. 303-312, May 1991.
    [82] J. F. Whitehead, "Signal-level-based dynamic power control for co-channel interference management," in theproc, of VTC, Secaucus, NJ, pp. 449-502, May 1993.
    [83] S. Papavassilou and L. Tassiulas, "Improving the capacity in wireless networks through integrated channel base station and power control," IEEE Trans. V. T, vol. 47, No. 2, pp. 417-427, May 1998.
    [84] R. R. Gojji, "Forward link power control in CDMA cellular systems," IEEE Tram. V. T, vol. 43, No. 1, pp. 532-536, Nov. 1992.
    [85] F. R. Farrokhi, L. Tassiulas, and K. J. R. Liu, "Joint Power Control and Beamforming for Capacity Improvement in wireless Networks With Antenna Arrays," in the proc. of Globecom, London, pp. 555-559, Nov. 1996.
    [86] R. D, Yates, "A Framework for Uplink Power Control in Cellular Radio Systems," IEEE J. on Selected Areas in Commun., vol. 13, No. 7, pp. 1341-1347, Sept. 1995.
    [87] J. Zander, "Distributed cochannel interference control in cellular radio systems," IEEE Trans. V. T., vol. 43, No. 1, pp. 305-311, Aug. 1992.
    [88] D. Mitra, "An asynchronous distributed algorithm for power control in cellular radio systems," 4th WINLAB workshop on 3rd generation wireless information networks, 1993.
    [89] S.A. Grandhi, R. Vijayan, and D. J. Goodman, "Distributed power control in cellular radio systems," IEEE Trans. Commun., vol. 41, No. 10, pp. 226-228, 1994.
    [90] S. A. Grandhi and J. Zander, "Constrained power control in cellular radio systems," in the proc. of VTC, Stockholm, Sweden, pp. 824-828, Jun. 1994.
    [91] W.S. Wong, "Distributed power balancing with a sparse information link," in the proc. of VTC, Stockholm, Sweden, pp. 829-832, Jun. 1994.
    [92] J. F. Whitehead, "Performance and capacity of distributed dynamic channel assignment and power control in shadow fading," in theproc, of ICC, Geneva, Switzerland, pp. 910-914, May 1993.
    [93] T. H. Lee and J. C. Lin, "A Fully Distributed Power Control algorithm for Cellular Mobile Systems," IEEE J. on Selected Areas in Commun., vol. 14, No. 4, pp. 692-697, May 1996.
    [94] D. W. Kim, "Efficient distributed power control for mobile cellular systems," IEEE Trans. V. T., vol. 43, No. 1, pp. 313-319, May 1997.
    [95] G. J. Foschini, "A simple distributed autonomous power control algorithm and its convergence," IEEE Trans. V. T., vol. 43, No. 1, pp. 641-646, Nov. 1993.
    [96] C.W. Sung and W. S. Wong, "A distributed fixed-step power control algorithm for mobile cellular systems," IEEE Trans. V. T., vol. 48, No. 2, pp. 553 - 562, Mar. 1999.
    [97] J.G. Proakis, Digital Communications, 4th ed. New York: Prentice Hall, 2000.
    [98] M. kang and M. S. Alouini, "Performance analysis of MIMO systems with cochannel interference over Rayleigh fading channels," in the proc. of ICC, New York, pp. 391-395, 2002.
    [99] R.S. Blum, "MIMO capacity with interference," IEEE J. on Selected Areas in Commun., vol. 21, No. 5, pp. 793-801.
    [100] S. Catreux, P. F. Driessen, and L. J. Greenstain, "Simulation results for an interference-limited multiple-input multiple-output cellular system," IEEE Commun. Lett., vol. 4, No. 11, pp. 334- 336, 2000.
    [101] 3GPP, "Multiplexing and channel coding (FDD)," 3G TS 25.212 v 3.6.0, Jun. 2001.
    [102] S.G. Wilson, Digital Modulation and Coding. New York: Prentice Hall, 1998.
    [103] S. T. Chung and A. J. Goldsmith, "Degrees of Freedom in Adaptive Modulation: A Unified View," IEEE Trans. Commun., vol. 49, No. 9, pp. 1561-1571, Sept. 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700