盲源分离算法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盲源分离是近年来在信号处理领域中出现的一个热点课题。它是指在未知源信号数目、位置和混合过程等先验信息的情况下,仅根据一组传感器信号来估计原始信号。盲源分离是数据分析及信号处理强有力的工具,在许多领域都有很好的应用,如生物医学信号处理、数据挖掘、语音信号处理、模式识别及无线通信等。
     二十几年来,由于广泛的应用和有效的数据处理能力,盲源分离算法吸引了大量学者的研究,并取得了很大进展。本文从语音信号的分离入手,对盲源分离算法进行了深入研究。论文首先对盲源分离算法的发展历史和研究现状进行了概括,并介绍了其在几个重要领域中的应用,接着介绍了盲源分离问题的几类主要算法。
     本文对盲源分离的理论和算法进行了探讨,重点研究了欠定情况下的盲分离问题。主要研究内容有以下几个方面:
     研究了频域盲分离算法中的排序不确定性问题。利用同一个语音信号相邻频点相关性大于两个不同语音信号相邻频点相关性的特点,提出了一个基于相邻频点幅度相关性的排序不确定性消除算法,使得在每个频点进行独立分量分析和排序同步进行。
     研究了欠定情况下的时频域盲分离算法。利用双耳的听觉机理,提出了个基于听觉场景分析的盲分离算法,通过对听觉特征耳间时间差和耳间强度差的聚类,完成对多个源信号混合而成的两个传感器信号的分离。另外,本文还提出了一种用于卷积混合的语音盲分离算法。通过在混合信号时频域的聚类,实现了欠定情况下的卷积盲分离。
     研究了源信号在时频域不充分稀疏情况下的欠定盲分离问题。提出一个新的二阶段式欠定盲分离算法,利用网格和密度聚类的方法,可以更好地估计混合系数矩阵。在源信号恢复时,使用简化的方法求最小l1范数解,网格的使用有效地减少了计算量。
     提出了一种基于匹配追踪的稀疏源信号恢复算法。针对匹配追踪算法在盲源分离的稀疏源信号恢复问题中的具体应用,将匹配追踪算法加以改进,有效地提高了算法的性能。提出的算法在病态混合矩阵的情况下,可以减少匹配失败时所带来误差,具有良好的鲁棒性。
Blind source separation (BSS) is a newly presented and lively area of signal processing domain in recent years, which estimates sources given mixed signals without prior knowledge such as sources number, location and mixing process. BSS is a powerful tool of data analysis and signal processing, and it has been applied in many areas such as biological and medicine signal processing, data mining, speech signal processing, pattern recognition, wireless communication and so on.
     Considering its wide application and ability of data processing, Researchers have paid a great deal of attention to BSS and made a great progress in the past twenty years. This thesis researches the separation algorithms of speech signals. Firstly, a brief introduction of the development history and current research status are summarized, and several applications of the BSS are given. Then, this thesis introduces several kinds of important algorithms of BSS.
     This thesis discusses the theories and algorithms of BSS, and especially researches the underdetermined blind source separation problem. The researches concentrate on the following topics:
     The blind separation problem of convolutive mixtures and delayed mixtures is discussed in this thesis. The separation when there are more sources than mixtures is researched emphatically. The main works of this thesis are as follows:
     The permutation indetermination problem in the frequency domain blind source separation is discussed. By utilizing the characteristic that amplitude correlation between neighbor bins of the same signal is better than that of different signals, an improved method based on the amplitude correlation between neighbor bins to eliminate the permutation indetermination is proposed. It is feasible to implement ICA algorithm and permutation method simultaneously.
     The underdetermined blind source separation algorithms in time-frequency domain are researched. A novel blind source separation algorithm based on computational auditory scene analysis (CASA) is proposed, which can separate several sources from two sensor signals by clustering to interaural time differences (ITD) and interaural intensity differences (IID). A speech blind separation algorithm for convolute mixture is proposed, which can separate convolved mixtures in underdetermined case by clustering in time-frequency domain of mixtures.
     The blind separation problem for sources that are sparse insufficiently is researched. A novel two-step underdetermined blind source separation algorithm is presented, which estimates mixing coefficient more efficiently using clustering algorithm based on grid and density, and it estimates the mixing matrix better. When recovering source signals, a simpler method is used to get l1, norm minimization solution.
     An algorithm of sparse sources recovery based on matching pursuit (MP) is proposed. Considering the application of MP in sparse sources recovery in blind source separation, this paper improves classical MP algorithm and has obtained a better performance. Proposed method works well even the mixing matrix is ill-conditioned by reduce the error when match failed.
引文
[1]Yang J, Gao X M, Zhang D, et al. KernelICA:An alternative formulation and its application to face recognition. Pattern Recognition,2005,38(10):1784-1787P
    [2]Nojun K. Feature extraction for classification problems and its application to face recognition. Pattern Recognition. 2008,41(5):1701-1717P
    [3]Shwartz S, Schechner Y Y, Zibulevsky M. Blind separation of convolutive image mixtures. Neurocomputing.2008,71(10-12): 2164-2179P
    [4]Kocinski J. Speech intelligibility improvement using convolutive blind source separation assisted by denoising algorithms. Speech Communication.2008,50(1):29-37P
    [5]Feng M, Kammayer K D. Application of source separation algorithms for mobile communications environment. Proceedings of International Workshop on Independent Component Analysis and Blind Source Separation (ICA99), Aussois, France.1999: 431-436P
    [6]Cheng H, Guo W, Jiang Y. Multi-channel blind deconvolution algorithm for multiple-input multiple-output DS/CDMA system. Journal of Systems Engineering and Electronics.2007,18(3): 454-461P
    [7]Raja G, Thavasi. Improved ICA based multi-user detection of DS-CDMA. Proceedings of International Conference on Emerging Trends in Engineering and Technology. Nagpur, Maharashtra, India.2008:238-241P
    [8]Seunqjae B, Seokjoo S, Anders H M. Improvement of blind/group-blind multiuser detectors based on CM iteration. IEICE Transaction on Communications.2005, E88-B(7):3062-3064P
    [9]Moosmann M, Eichele T, Nordby H, et al. Joint independent component analysis of simultaneous EEG-fMRI:Principle and simulation. Inernational Journal of Psychophysiology.2008, 67(3):212-221P
    [10]Flexer A, Bauer H, Pripfl J, et al. Using ICA for removel of ocular artifacts in EEG recorded from blind subjects. Neural Networks.2005,18(7):998-1005P
    [11]Taleb A, Jutten C. Source separation in post-nonlinear mixtures. IEEE Trans. on Signal Processing.1999,47(10):2807-2820P
    [12]Jutten C, Herault J. Blind separation of sources, Part I:An Adaptive Algorithm Based on Neuromimetic Architecture. Signal Processing.1991,24(1):1-10P
    [13]Comon P. Blind separation of sources part II:Problem statement. Signal Processing.1991,24(1):11-20P
    [14]Sorouchyari E, Jutten C, Herault J. Blind separation of sources, Part Ⅲ:Stability analysis. Signal Processing.1991,24(1): 21-29P
    [15]Tong L, Liu R W, Soon V C, et al. Indeterminacy and identifiability of blind identification. IEEE Trans Circuits Systems.1991,38(5):499-509P
    [16]Burel G. Blind separation of sources:a nonlinear neural algorithm. Neural Networks.1992,5(6):937-947P
    [17]Comon P. Independent component analysis:A new concept?. Signal Processing.1994,36(3):287-314P
    [18]Cichocki A, Unbehauen R, Moszczynski L, et al. A new on-line
    adaptive learning algorithm for blind separation of source signals. Proceedings of International Symposium on Artificial Neural Networks (ISANN'94), Taiwan.1994:406-411P
    [19]Amari S, Cichocki A, Yang H H. A new learning algorithm for blind signal separation. In:Advances in Neural Information Processing Systems 8 (NIPS), Cambridge.1996:757-763P
    [20]Bell A J, Sejnowski T. An information-maximisation approach to separation and blind deconvolution. Neural Computation.1995, 7(6):1129-1159P
    [21]Matsuoka K, Kawamoto M, Ohya M, et al. A neural net for blind separation of nonstationary signals. Neural Networks.1995, 8(3):411-419P
    [22]Kawamoto M, Iiarros A K, Mansour A, et al. Real world blind separation of convolved nonstationary signals. Proceedings of International Workshop on Independent Component Analysis and Signal Separation, Aussois, Prance.1999:347-352P
    [23]Hyvarinen A, Oja E. A fast fixed-point algorithm for independent component Analysis. Neural Computation.1997,9(7):1483-1492P
    [24]Oja E. The nonlinear PCA learning rule in independent component analysis maximum entropy and minimum mutual information. Neurocomputing.1997,17(1):25-45P
    [25]Karhunen J, Joutsensalo J. Representation and separation of signals using nonlinear PCA type learning. Neural Networks.1994, 7(1):113-127P
    [26]Karhunen J, Oja E, Wang L, et al. A class of neural networks for independent component analysis. IEEE Trans. on Neural Networks. 1997,8(3):486-504P
    [27]Cardoso J F. Informax and maximum likelihood for source separation. IEEE Signal Processing Letters.1997,4(4):109-111P
    [28]Gaeta M, Lacoume J L. Source separation without a priori knowledge:The maximum likelihood solution. Proceedings of the European Signal Processing Conference (EUSIPCO-90), Barcelona, Spain.1990:621-624P
    [29]Pham D T, Garrat P, Jutten C. Separation of a mixture of independent sources through a maximum likelihood approach. Proceedings of European Signal Processing Conference (EUSIPCO-92).1992:771-774P
    [30]Lee T, Girolami M, Sejnowski T. Independent component analysis using an extended informax algorithm for mixed sub-gaussian and super-gaussign sources. Neural Computation.1999,11(2): 409-433P
    [31]Lee T, Girolami M, Bell A J, et al. A unifying information theoretic framework for independent component analysis. Computers & Mathematics with Applications.2003,31(11):1-21P
    [32]张贤达,保铮.盲信号分离.电子学报.2001,29(12A):1766-1771页
    [33]Valpola H. Nonlinear independent component analysis using ensemble learning:Theory. Proceedings of International Workshop on Independent Component Analysis and Blind Signal Separation (ICABSS2000), Helsinki, Finland.2000:251-256P
    [34]Valpola H, Giannakopoulos X, Honkela A, et al. Nonlinear independent component analysis using ensemble learning: Experiments and discussion. Proceeding of International Workshop on Independent Component Analysis and Blind Signal Separation (ICABSS2000), Helsinki, Finland.2000:351-356P
    [35]Cho K S, Lee S Y. Implementation of infomax ICA algorithm with analog COMS Circuits. Proceeding of International Workshop on Independent Component Analysis and Blind Signal Separation
    (ICABSS2001), San Diego, CA, USA.2001:70-73P
    [36]Szu H, Kopriva I. Unsupervised learning with stochastic gradient. Neruocomputing.2005,68():130-160P
    [37]Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis. John Wiley & Sons,2001,5-6P
    [38]Hyvarinen A. A unifying model for blind separation of independent sources. Signal Processing.2005,85(6):1419-1427P
    [39]Hyvarinen A, Oja E. Independent component analysis:algorithms and applications. Neural Networks.2000,13(4-5):411-430P
    [40]Pham D T. Blind separation of instantaneous mixture of sources via an independent component analysis. IEEE Trans. Signal Processing.1996,44(11):2768-2779P
    [41]Choi S, Cichocki A, Belouchrani A, Blind separation of nonstationary sources in noisy mixtures. Electronics Letters. 2000,36(9):848-849P
    [42]Hyvarinen A. Blind source separation by nonstationarity of variance:A cumulant-based approach. IEEE Transaction on Neural Networks.2001,12(6):1471-1474P
    [43]Cardoso J F. Source separation using high order moments. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP1989), Glasgow, Scotland. 1989:2109-2112P
    [44]Linsker R. An application of the principle of maximum information preservation to linear systems. In:Advances in neural information processing systems (NIPS). Denver, Colorada, USA.1988:186-194P
    [45]Bell A J, Sejnowski T. An information-maximisation approach to separation and blind deconvolution. Neural Computation.1995, 7(6):1129-1159P
    [46]Cardoso J F. Infomax and maximum likelihood for source separation. IEEE letters on signal Processing.1997,4(4): 112-114P
    [47]Obradovic D, Deco G. Information maximization and independent component analysis:Is there a difference?. Neural Computation. 1998,10(8):2085-2101P
    [48]Yang H H, Amari S. Adaptive on-line learning algorithms for blind separation:Maximum entropy and minimum mutual information. Neural Computation.1997,9(7):1457-1482P
    [49]Tong L, Soon V C, Huang Y F. et al. AMUSE:a new blind identification algorithm. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS). New Orleans, LA, USA. 1990:1784-1787P
    [50]Choi S, Cichocki A, Belouchrani A. Second order nonstationary source separation. Journal of VLSI Signal Processing.2002, 32(1):93-104P
    [51]Belouchrani A, Cichocki A. Robust whitening procedure in blind source separation context. Electronics Letter.2000,36(24): 2050-2053P
    [52]Belouchrani A, Abed-Merain K, Cardoso J F, et al. A blind source separation technique using second-order statistics. IEEE Trans Signal Processing.1997,45(2):434-444P
    [53]Belouchrani A, Abed-Meraim K, Cardoso J F, et al. Second-order blind separation of correlated sources. Proceedings of International Conference on Digital Signal Processing. Nicosia Cyprus.1993:346-351P
    [54]Jourjine A, Rickard S, Yilmaz 0. Blind separation of disjoint orthogonal signals:Demixing N sources form 2 mixtures. IEEE Conference on Acoustics. Speech and Signal Processing (ICASSP2000). Istanbul.2000:2985-2988P
    [55]Yilmaz 0, Rickard S. Blind separation of speech mixtures via time-frequency masking, IEEE Transaction on Signal Processing. 2004,52(7):1830-1847P
    [56]Araki S, Sawada H, Mukai R, et al. Underdetermined blind sparse source separation for arbitrarily arranged multiple sensonr. Signal Processing.2007,87(8):1833-1847P
    [57]Cardoso J F, Souloumiac A. Blind beamforming for non-gaussian signals. IEE Proceedings Part F:Radar and Signal Processing. 1993,140(6):362-370P
    [58]Molla M, Hirose K, Minematsu N. Separation of Mixed Audio Signals by source lacalization and Binary Masking with Hilbert Spectrum. Lecture Notes in Computer Science.2006,3889:641-648P
    [59]Bofill P, Zibulevsky M. Underdetermined blind source separation using sparse representations. Signal Processing.2001,81(11): 2353-2362P
    [60]Li Y Q, Andrzej C, Amari S. Analysis of sparse representation and blind source separation. Neural Compution.2004,16: 1193-1234P
    [61]Theis F J, Lang W E, Puntonet C G. A geometric algorithm for overcomplete linear ICA. Neurocomputing.2004,56(1-4):381-398P
    [62]Li Y Q, Amari S, Cichocki A, et al. Underdetermined blind source separation based on sparse representation. IEEE Trans. on Signal Processing.2006,54(2):423-437P
    [63]Naini F M, Mohimani G H, Babai-Zadeh M, et al. Estimating the mixing matrix in sparse component analysis (SCA) based on partial k-dimensional subspace clustering. Neurocomputing. 2008,71(10-12):2330-2343P
    [64]Donoho D L, Elad M. Maximal sparsity representation via 1, norm minimization. Proc. Nat. Aca. Sci..2003,100:2197-2202P
    [65]Bellini S. Bussgang techniques for blind deconvolution and equalization. In Blind Deconvolution. Haykin S, ed. Prentice Hall.1994:8-59P
    [66]Platt J C, Faggins F. Networks for the separation of sources that are superimposed and delayed. In:Advances in Neural Information Processing Systems. San Jose, CA.1991:730-737P
    [67]Yellin D, Weinstein E. Multichannel signal separation:methods and analysis. IEEE Trans. Signal Processing.1996,44(1): 106-118P
    [68]Torkkola K. Blind separation of convolved sources based on information maximization. Proceedings of IEEE Wordshop on Neural for Signal Processing. Kyoto, Japan.1996:1-9P
    [69]Lee T, Bell A J, Orglmeister R. Blind source separation of real world signals, Proceedings of IEEE International Conference on Neural Networks (ICNN), Houston, TX, USA.1997:2129-2134P
    [70]Murata N, Ikeda S, Ziehe A. An approach to blind sources separation based on temporal structure of speech signals. Neurocomputing.2001,41(1):1-24P
    [71]Park H M, Dhir C S, Oh S H, at el. A filter bank approach to independent component analysis for convolved mixtures. Neurocomputing.2006,69(16-18):2065-2077P
    [72]Anumuller J, Kollmeier B. Amplitude modulation decorrelation for convolutive blind source separation. Proceedings of the 2th International Workshop on Independent Component Analysis and Blind Signal Separation (ICABSS2000). Helsinki, Finland.2000: 215-220P
    [73]Kurita S, Saruwatari H, Kajita S, et al. Evaluation of blind signal separation method using directivity pattern under reverberant conditions. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP2000). Istanbul, Turkey.2000:3140-3143P
    [74]Ikram M Z, Morgan D R. A beamforming approach to permutation alignment for multichannel frequency-domain blind speech separation. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP2002). Orlando, FL.2002:881-884P
    [75]Reju V G, Ngee Koh S, Ing Yann Soon. A robust correlation method for solving permutation problem in frequency domain blind source separation of speech signals. IEEE Asia Pacific Conference on Circuits and Systems (APCCAS2006), Singapore.2006:1891-1894P
    [76]Sawada H, Mukai R, Araki S, at el. A Robust and precise Method for solving the permutation problem of frequency-Domain blind source separation. IEEE trans. on Speech and audio processing. 2004,12(5):530-538P
    [77]姜卫东,陆佶人,张宏滔等.基于相邻频点幅度相关的语音信号盲源分离.电路与系统学报.2005,10(3):1-4页
    [78]Sabala I, Cichocki A, Amari S. Relationship between instantaneous blind source separation and multichannel blind deconvolution. Neural Networks Proc. of IEEE World Congress on Computational Intelligence.1998,1:39-44P
    [79]Molgedey L, Schuster H G. Separation of a mixture of independent signals using time delayed correlations. Physical Review Letters.1994,72(23):3634-3637P
    [80]Bingham E, Hyvarinen A. A fast fixed point algorithm for independent component analysis of complex valued signals.
    International Journal of Neural Systems.2000,10(1):1-8P
    [81]Hulle M V. Clustering approach to square and nonsquare blind separation. Neural Networks for Signal Processing Ⅸ,1999. Proceedings of the 1999 IEEE Signal Processing Society Workshop. Madison, WI, USA,1999:315-323P
    [82]Meddis R, Omard L P, Lopez-Poveda E. A computational algorithm for computing nonlinear auditory frequency selectivity. Journal of the Acoustical Society of America.2001,109(6):2852-2861P
    [83]Meddis R. Implementation details of a computer model of the inner hair-cell/auditory-nerve synapse. Journal of Acoustical Society of America.1990,87(4):1813-1818P
    [84]Daniel W G, Jae S L, Signal estimation from modified Short-Time Fourier transform. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP83). Boston, Mass, USA.1983:236-243P
    [85]Sun T Y, Liu C C, Hsieh S T, et al. Blind separation with unknown number of sources based on auto-trimmed neural network. Neurocomputing.2008,71(10-12):2271-2280P
    [86]Vielva L, Erdogmus D, Pantaleon C, et al. Underdetermined blind source separation in a time-varying environment. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP2002). Orlando, FL, USA.2002:3049-3052P
    [87]Masahiro Y, Nozomu H. Time-frequency masking method using transform for BSS problem. Proceedings of IEEE Region 10 Annual International Conference. Hong Kong, China.2006:1-4P
    [88]Rickard S, Yilmaz 0. On the W-disjoint Orthogonality of speech. Proceedings of IEEE international Conference on acoustics, Speech, and Signal Processing (ICASSP2002). Orlando,FL.2002: 529-532P
    [89]Hirai N, Matsumoto H, Furukawa T. et al. A consideration of blind source separation using wavelet transform. IEEE International Symposium on Circuits and Symtems (ISCAS). Kobe, Japan.2005: 5722-5725P
    [90]Pachori R B, Sircar P. A new technique to reduce cross terms in the Wigner distribution. Digital Signal Processing.2007,17(2): 466-474P
    [91]Kopriva I, Sersic D. Wavelet packets approach to blind separation of statistically dependent sources. Neurocomputing. 2008,71(7-9):1642-1655P
    [92]Aissa-El-Bey A, Abed-Meraim K, Grenier Y. Blind separation of audio source using modal decomposition. Proceedings of 8th International Symposium on Signal Processing and its Applications (ISSPA). Sydney, Australia.2005:451-454P
    [93]Balocchi R, Menicucci D, Varanimi M. Empirical mode decomposition to approach the problem of detecting sources from a reduced number of mixtures. Annual International Conference of the IEEE Engineering in Medicine and Biology, Cancun, Mexico, 2003:2443-2446P
    [94]Sejdic E, Djurovic I, Jiang J. Time-frequency feature representation using energy concentration:An overview of recent advances. Digital Signal Processing.2009,19(1) 153-183P
    [95]王坚.听觉科学概论.中国科学技术出版社.2005:59页
    [96]Shamma S A. Speech processing in the auditory system Ⅰ:The representation of speech sounds in the responses of the auditory nerve. J A coust Soc Am.1985,78(5):1612-1621P
    [97]Shamma S A. Speech processing in the auditory system Ⅱ:lateral
    inhibition and the central processing of speech evoked activity in the auditory nerve. J A coust Soc Am.1985,78 (5):1622-1632P
    [98]Patterson R D, Holdsworth I, Holdsworth J, et al. An efficient auditory filterbank based on the gammatone functions. Spiral VOS Final Report Part A:The Auditory Filter Bank, Report No.2341. Cambridge:Applied Psychology Unit,1988
    [99]Patterson R D, Robinson K, Holdsworth J, et al. Complex sound and auditory images. In Auditory Physiology and Perception, Oxford.1992:429-446P
    [100]李朝晖,迟惠生.听觉外周计算模型研究进展.声学学报.2006,31(5):449-465页
    [101]赵鹤鸣,王永琦,陈雪勤.听觉模型反演方法及其应用.声学学报.2005,30(6):530-535页
    [102]Lyon R F. A computational model of binaural localization and separation. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP83). Boston, Mass, USA.1983:1148-1151P
    [103]Brown G L, COOKE M. Computational auditory scene analysis. Computer Speech and Language.1994,8(24):297-336P
    [104]Masashi U, Masato A. A method of signal extraction from noisy signal based on auditory scene analysis. Speech Communication. 1999,27(3-4):261-279P
    [105]Roman W, Wang D L. Speech segregation based on sound localization. Proceedings of the International Joint Conference on Neural Networks. Washington, DC.2001:2861-2866P
    [106]赵鹤鸣,葛良,陈雪勤等.基于声音定位和听觉掩蔽效应的语音分离研究.电子学报.2005,33(1):158-160页
    [107]胡可,汪增福.一种基于时频分析的语音卷积信号盲分离方法.电子学
    报,2006,34(7):1246-1254页
    [108]Aissa-El-Bey A, Linh-Trung N, Abed-Meraim K. Underdetermined blind separation of nondisjoint sources in the time-frequency domain signal processing, IEEE Transactions on Signal Processing.2007,55(3):897-907P
    [109]Linh-Trung N, Belouchrani A, Abed-Meraim K, et al. Separating more sources than sensors using time-frequency distributions. EURASIP Journal on Applied Signal Processing.2005,2005(17): 2828-2847P
    [110]Fevotte C, Doncarli C. Two Contributions to blind source separation using time-frequency distributions. IEEE Signal Processing letters.2004,11(3):386-389P
    [111]Georgiev P, Theis F, Cichocki A. Blind source separation and sparse component analysis of overcomplete mixtures, Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP2004), Montreal, Canada.2004,493-496P
    [112]Washizawa Y, Cichocki A. On line K-plane clustering learning algorithm for sparse component analysis, Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP2006), Toulouse, France.2006:681-684P
    [113]Washizawa Y, Cichocki A. Sparse blind identification and separation by using adaptive K-orthodrome clustering. Neurocomputing.2008,71(10):2321-2329P
    [114]Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. Society for Industrial and Applied Mathematics. Journal of Science computing.1998,43(1):33-61P
    [115]Donoho D L, Elad M. Maximal Sparsity Representation via 1, Minimazation, Proc. Nat. Aca. Sci.100.2003:2197-2202P
    [116]Bradley P S, Mangasarian O L. K-Plane Clustering. Journal of Global Optimization.1999,16(1):23-32P
    [117]Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Trans, on Signal Processing.1993,41(12): 3397-3415P
    [118]Georgiev P, Cichocki A. Sparse component analysis of overcomplete mixtures by improved basis pursuit method. Proceedings of IEEE International Symposium on Circuits and Systerms. Piscataway, NJ,2004:V-47-V40P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700