测量甲烷浓度的红外激光雷达建模仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲烷是一种易燃易爆气体,是煤矿瓦斯的主要成分。一直以来瓦斯灾害是制约煤炭安全的主要因素。因此,实时准确地检测井下甲烷气体浓度有着十分重要的意义。
     本文研究的是基于光谱吸收的井下检测甲烷气体浓度的红外激光雷达,它可以远距离对甲烷气体进行实时准确的检测。首先,根据红外激光雷达的检测原理和井下环境,分析和建立了红外激光雷达系统模型;其次,根据建立的模型,研究了激光雷达的回波信号统计模型,并研究了斑纹及干扰噪声对回波信号统计模型的影响;然后,提出了应用kalman滤波算法对信号进行信号处理;最后,根据建立的红外激光模型和提出的信息处理算法,利用matlab软件进行仿真研究并建立相应的仿真系统。研究结果表明:建立的雷达系统模型符合实际,提出的信号处理算法能更好地提取甲烷气体浓度。
     通过建立的仿真系统,可以直观方便地评价和分析井下检测甲烷气体浓度的红外激光雷达的性能,有助于井下检测甲烷气体浓度的红外激光雷达的方案制定和性能改进,是一种及科学有经济的研究手段。
Methane is a kind of inflammable and explosive gas, it is the main component of mine gas. The gas disaster is always a main factor that restricts the coal safety. Therefore, an accurate real-time detection of methane concentrations has the extremely vital significance.
     This paper researches an infrared lidar to detect methane concentrations in the down mine based on the spectrum absorption that can remote detect the real-time and accurate methane gas of environment. First of all, according to an infrared lidar detection principle and the environment of the down mine, an infrared lidar system model is analyzed and established. Secondly, according to the model of lidar, the echo signal statistical model is studied, and the influence of the stripes and interference noise is studied for the echo signal statistical model; Then, the kalman filtering algorithm is put forward to process signal, Finally, according to the established infrared laser model and the information processing algorithms, the corresponding simulation system is researched and established by using the matlab software. The results of the study indicate that: the established radar system model accords with the actual and the proposed signal processing algorithm can better extract methane gas concentrations.
     The established simulation system can intuitively and conveniently appraise and analyze the infrared lidar to detection methane gas concentrations in the down mine, and helps the scheme and performance improvement of the infrared lidar, is a kind of science and economic research means.
引文
[1]张宇,王一丁,李黎等.甲烷红外吸收光谱原理与处理技术分析[J].光谱学与光谱分析,2008,28(11):2515-2519.
    [2]张勇.红外甲烷浓度检测系统的设计和开发[D].山东:中国石油大学,2009.
    [3] H.Inaba , T.Kobayasi , M.Hirama , et al. Optical-fiber Network System for Air-pollution Monitoring over a Wide Area by Optical Absorption Method [J].Electronics Letters,1979,23:746-751.
    [4] K.Chan,H.Ito,H.Inaba.10km-Long Fiber Optic Remote Sensing of CH4 Gas by Near Infrared Absorption [J].Applied Physics, 1985, 12:11-15.
    [5] J.P.nakink, C.A.Wadek, D.Pinehbeek. A novel optical fiber methane sensor [J]. J.OPT.Sensors,1987,2:261-267.
    [6] B.Culshaw,G.Stewart,F.Dong. Fiber Optic Techniques for Remote Spectroscopic Methane Detection from Concept to System Realization [J]. Sensors and Actuators B51,1998:25-37.
    [7] D.K.凯林格,A.穆拉迪.光和激光遥感[M].成都:成都电讯工程学院出版社,1987:1-5.
    [8] Philippe Adam,Jean-Louis Duvent,Steven W.Gotoff. Detection and reconnaissance of pollutant clouds by CO2 lidar[J]. Proc SPIE,1997,3127:212-223.
    [9] Daniel C.Senft,Marsha J.Fox,Carla M. Hamilton,et al. Ground test results and analysis advancements for the AFRL airborne CO2 DIAL system[J]. Proc SPIE,1999,3757:113-125.
    [10]郭栓运.差分光谱光纤气体传感器得基本原理[J].应用光学,1989,6: 28-31.
    [11]齐玉明,魏晓明.He-Ne激光差分吸收测量甲烷浓度[J].内蒙古工业大学学报, 1994,13(1):59-65.
    [12]刘云启,柳贺良,刘志国等.基于长周期光栅滤波的全光纤光纤光栅传感器研究[J].传感技术学报,2000,4:241-245.
    [13]王玉田,郭增军,王莉田等.透射式光纤甲烷气体传感器的研究[J].传感技术学报,2001,2:147-151.
    [14]刘泉,林海燕.光纤乙炔气体检测系统的研究[J].传感器技术,2003,4:15-17.
    [15]阚瑞峰,刘文清,张玉钧等.基于可调谐激光吸收光谱的大气甲烷监测仪[J].光学学报,2006,26(1):67-70.
    [16]裴世鑫,崔芬萍.烟雾箱内甲烷气体的强增强吸收光谱[J].西北师范大学学报,2008,44(3):61-65.
    [17]付华,井毅鹏.测量甲烷体积分数的高灵敏度光纤传感器研究[J].传感器与微系统,2010,29(4):15-17.
    [18]代伐.差分吸收激光雷达(DIAL)系统[J].兵器激光,1986,1:6-10.
    [19]孙毅义,李治平.测云偏振激光雷达[J].量子电子学报,1994,ll(1):49-54.
    [20]刘会平,是度芳,贺渝龙等.双端差分吸收激光雷达系统[J].光电工程,2004, 28(3): 40-43.
    [21]洪光烈,张寅超,谭馄等.基于参量振荡探测对流层CO2的差分吸收雷达[J].光电工程,2005,32(3):9-12.
    [22]李国会,叶一东,向汝建等.差分吸收激光雷达测量NO2浓度的实验研究[J].强激光与粒子束,2006,18(5):765-768.
    [23]蔡晓春,胡以华,陶小红.微脉冲差分吸收激光雷达CO2探测性能研究[J].激光技术,2007,31(5):515-517.
    [24]刘厚通,李超.机载大气探测激光雷达人眼安全分析[J].激光与粒子束,2008,20(3):358-362.
    [25]尹青,何金海,张华.激光雷达在气象和大气环境监测中的应用[J].气象与环境学报,2009,25(5):48-53.
    [26] (美)lraN.赖文(Levine,lraN.).分子光谱学[M].北京:高等教育出版社,2005:150-182.
    [27]王迎新.新编化验员工作手册[M].北京:银声音像出版社,2004:820-821.
    [28]马维光.甲烷气体分子高灵敏高分辨吸收光谱的理论与实验研究[D].山西大学,物理电子工程学院,2005: 64-69.
    [29]王艳菊,李东明,王玉田.CH4传感系统微弱光电信号处理电路的研究[J].自动化仪表,2006,27(10):33-38.
    [30]范康年.谱学导论[M].北京:高等教育出版社,2005:46-47.
    [31]尹世荣,王蔚然,李新山.差分吸收激光雷达回波信号统计模型的研究[J].光学学报,2007,2(1):1-5.
    [32]强希文,张辉,屠琴芬等.激光雷达信号大气衰减效应[J].应用光学,2007,21(4): 21-25.
    [33]赵永林,董正超,公茂法.井下粉尘统计参数对粉尘检测的影响[J].煤炭学报,2005,20(5):503-506.
    [34]曹茂永,赵永林,张逸芳.煤矿粉尘光损耗与消光问题的探讨[J].山东矿业学院学报,2008,16(2):183-186.
    [35]王自亮.粉尘消光系数的确定方法[J].煤炭学报,2007,25(4):404-407.
    [36]苏毅,万敏.高能激光系统[M].北京:国防工业出版社,2007:118-121.
    [37]孙鹏举,高卫,汪岳峰.目标激光雷达散射截面的计算方法及应用研究[J].红外与激光工程,2008,35(5):598-607.
    [38]俞宽新,江铁良,赵启大.激光原理与激光技术[M].北京:北京出版社,2001:34.
    [39]戚康男,秦克诚,程路.统计光学导论[M].天津:南开大学出版社,2002:440-442.
    [40] Mark Schmitt,Brian McVey,Brad Cooke,et al. Comprehensive system model for CO2 DIAL[J]. Proc SPIE,2001,27(2):95-103.
    [41]张承栓.国外军用激光仪器手册[M].北京:兵器工业出版社,1999:165-181.
    [42]江文杰,曾学文,施建华.光电技术[M].北京:科学出版社,2009:37-45.
    [43]陈扬骎,杨晓华.激光光谱测量技术[M].上海:华东师范大学出版社,2006:14-17.
    [44]朱若谷.激光应用技术[M].北京:国防工业出版社,2006:49-59.
    [45]付梦印,邓志红,张继伟.kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社, 2003:16-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700