毫米波主被动复合近程探测目标识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毫米波探测技术以其良好的综合性能,成为当前精确探测技术发展的主要方向之一。随着探测技术的发展及探测目标背景的日趋复杂,对目标要了解的信息也越来越多,不仅要获得目标的距离、速度和角度等信息,而且还要对目标进行准确的跟踪和定位。因此,复合探测技术成为发展的必然趋势。本论文的研究基于毫米波主被动复合近程探测技术展开。主动探测采用毫米波近程高分辨力雷达,探测距离较远,可以获得目标的速度、角度、距离等信息;被动探测使用毫米波辐射计,不发射电磁波,因而没有电磁污染和目标闪烁效应,工作比较隐蔽,不易被发现。两种体制相结合构成的主被动复合探测系统,可以使主动和被动探测优势互补,探测目标更为详细的信息,进而提高目标识别率。
     信号处理是精确探测系统一个不可或缺的部分,先进的信号处理技术是提高毫米波探测系统精确性的一个主要因素。论文重点对毫米波主被动复合探测的信号处理进行了深入的分析与研究。主动探测通过不同的波形设计方法,研究了各种高分辨力信号实现高分辨距离像的方法及其优缺点和应用。采用匹配追踪的时频分析方法,选择合适的原子库,对回波信号进行稀疏分解与重构,提取出表示回波信号特征信息的本征量,并利用相关向量机及模糊相关向量机的方法,实现了对毫米波近程高分辨力雷达距离像的目标识别。被动探测在稀疏分解对信号进行去噪处理的基础上,根据波形的时域特征以及频域、时频域特征研究了粗糙集理论和人工神经网络在目标识别中的应用,两者有机结合的粗神经元网络,可接受数据集合的上下边界数据,提高神经网络的性能,在信息处理中发挥了极大的优越性。
     接着,对主被动复合探测信息融合的目标识别进行了研究。基于信息融合理论的体系结构和融合层次,结合毫米波主被动探测系统的特点,提出了一种目标特征的空域-时域融合结构:先利用基于模糊聚类的D-S证据理论对主、被动探测器的信号进行空域融合;然后将系统在不同高度下的空域融合结果作为可测函数,利用模糊积分的方法对每个高度的空域融合结果再进行时域融合,得到更可靠的对目标的一致性描述,进一步提高融合目标识别结果。最后,论文对毫米波主被动复合近程探测系统的目标识别技术实现进行了设计,由于复合探测系统工作模式复杂、信息处理量大,对信号处理的实时性要求高,因此利用高速DSP和FPGA芯片构建了一个信号处理系统。结合二者优点,可兼顾速度和灵活性,给出了信号处理系统的软硬件设计,作了相关测试实验,并根据实际电路,对高速数字设计中信号的完整性作了分析。
As its well synthetical performance, millimeter wave detecting technology has become one of the most current developing directions of precise detection. Along with the development of detecting technology and the complexity of spotting background, more and more information of the target is needed to be required, not only the distance, speed and angle of target, but also the accurate tracking and localizing to the target. Therefore, the compounding detection is an inevitable trend of development. Research of this dissertation is just based on millimeter wave active/passive compounding short-range detecting technology. Active detection adopts MMW short-range high-resolution radar, which has far detecting distance and can access the speed, angle, distance and other information of target. Passive detection uses MMW radiometer, which does not emit electromagnetic wave, has no glitter effect and works snugly. The compounded detecting system, working together by these two systems, can make the advantage to complement each other, so to obtain the more detailed information of target and the higher rate of target identification.
     Signal processing is an indispensable part of a precise detection system. Advanced signal processing technology is a primary factor to improve the accuracy of detecting system. So the dissertation is focus on the thorough analysis and research of target identification system of MMW active/passive compounding detection. For active detection, through the different methods of waveform design, ways to synthesize high-resolution range profiles by different high-resolution signals is researched. And then, based on matching pursuit time-frequency analyzing method and appropriate atomic library, the echo signal is sparse decomposed and restructured to extract the features of the signal. At last, by the way of relevance vector machine and fuzzy relevance vector machine, target identification of the MMW short-range high-resolution radar range profile is realized. In passive detection, the radiation signal of target is denoised by the method of sparse decomposition at first. Then, based on the features of waveform in time domain, frequency domain, and time-frequency domain, target identification by application of rough set theory and artificial neural networks is detailed. The rough neural networks, organically combined of the two methods, may accept the data set with up-and-low boundary, which improves the performance of network and displays enormous superiority in information processing.
     Following above, target identification of active/passive compounded detecting data fusion is discussed. Based on the architecture and the level of information fusion theory, a spatial-temporal fusion structure of target feature is designed, according to the characteristic of MMW active/passive detecting systems. Method of D-S evidence theory based on fuzzy clustering is adopted in space domain fusion for active and passive detecting signal. And then, the space domain fusing results of different heights are taken as the measurable functions, using fuzzy integral approach to secondary time domain fusing. So that, a more reliable consistent description of the target can be achieved, and the fusion results of target identification is improved greatly.
     Finally, the realization of target identification technology in MMW active/passive short-range detection system has been designed in the dissertation. Due to the complexity of working mode, large amount of information processing, and high requirement of real-time processing, high-speed chip DSP and FPGA have been chosen to construct a signal processing system. The design may satisfy the requirement of speed and flexibility synchronously by combining the advantages of DSP and FPGA. The software and hardware design of signal processing system is work out and correlative experiments have been down. Furthermore, based on the actual circuit, signal integrity in high-speed digital circuit design is analyzed to achieve better circuit design.
引文
[1]王稚.21世纪美军先进军事技术和武器系统.北京:解放军出版社,2002
    [2]陈定昌,袁起,范金荣.精确制导武器发展趋向.现代防御技术,2000,28(4):41-47
    [3]毕兰金,刘勇志.精确制导武器在现代战争中的应用及发展趋势.战术导弹技术,2004,(6):1-4
    [4]雷虎民.导弹制导与控制原理.北京:国防工业出版社,2006
    [5]阮成礼.毫米波理论与技术.成都:电子科技大学出版社,2001
    [6]郭修煌.精确制导技术.北京:国防工业出版社,1999
    [7]路远,凌永顺,冯云松.毫米波制导武器及其防护.现代防御技术,2004,32(3):23-26
    [8]刘隆和.多模复合寻的制导技术.北京:国防工业出版社,2001
    [9]郝祖全.弹载星载应用雷达有效载荷.北京:航空工业出版社,2005
    [10]K.J.巴顿,J.C.威尔茨(编),方再根,刁育才(译).毫米波系统.北京:国防工业出版社,1989
    [11]李兴国.毫米波近感技术及其应用.北京:国防工业出版社,1991
    [12]M.E. Clark. High range resolution radar techniques and the wavelet transform. IEE seminar on time-scale and time-frequency analysis and applications.2000,10:1-7
    [13]李强,张焕颖,张守红.高分辨雷达信号分析与比较.火控雷达技术,2005,34(2):67-72
    [14]黄德双.高分辨雷达智能信号处理技术.北京:机械工业出版社,2001
    [15]Donald R. Wehner. High Resolution Radar. Artech House,1987
    [16]Merrill I. Skolnik(著),左群声(译).雷达系统导论.北京:电子工业出版社,2006
    [17]SHAW A.K. Automatic target recognition using eigen-templates. SPIE conference algorithms for SAR imagery V:448-459
    [18]郁文贤,郭桂蓉.ATR的研究现状和发展技术.系统工程与电子技术,1994,16(6):25-30
    [19]陈卫,吕贵洲,梁四洋等.参数化时频分析综述.现代雷达,2008,30(2):61-64
    [20]刘本永.非平稳信号分析导论.北京:国防工业出版社,2006
    [21]Bastiaans M J. A sampling theorem for the complex spectrogram and Gabor's expansion of a signal in Gaussian elementary signals. Opt. Eng.,1981,20:594-597
    [22]I.Daubechies. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Information Theory,1990,36(5):961-1005
    [23]Marmarelis V.Z., et al. High-order signal processing for ultra-wideband radar system. 1995:579-607
    [24]Jhon C.Kirk. Using the fractal dimension to discrimination between targets and clutter. IEEE National Radar Conference,1993:76-78
    [25]张贤达.现代信号处理(第二版).北京:清华大学出版社,2002
    [26]孙亮,禹晶.模式识别原理.北京:工业大学出版社,2009
    [27]Plataniotis K.N., Androutsos D., Venetsanopoulos A.N. Adaptive fuzzy systems for multi-channel signal processing. Proceedings of IEEE,1999 87(9):1601-1622
    [28]孟晓琳.基于模糊理论的雷达信号类型识别.电子信息对抗技术,2006,5(21):19-21
    [29]David J.P., Schmidt W.A. Local correlations an transiationary invarian feature space for target detection. UCNN-90, San Diego.Calif.1990(1):497
    [30]Wang Chia-jiu, Wu Chwan-Hwa. Neural network for target detection. IEEE Int. Symp. Circuit and System. New Orleans, La, May 1-3,1990, (1):1863-1866
    [31]Baran R.H. A collective Computation approach to automatic target recognition. International Joint Conference on Neural Networks, IJCNN,1989, (1):39-44
    [32]Beastal W.D. Recognition of radar signals by neural network.1st IEE Int. Conf. Artif. Neural Networks. London, Oct.16-18.1989:139-142
    [33]Corinna Cortes, V.Vapnik. Support-Vector Network. Machine Learning,1995, (20): 273-297
    [34]刘同明,夏祖勋,解洪成.数据融合技术及其应用.北京:国防工业出版社,1998
    [35]Ren C.L., Michael G.K. Multisensor integration and fusion intelligent systems. IEEE Trans. SMC,1989,19(5):901-931
    [36]何友,关欣,王国宏.多传感器信息融合研究进展与展望.宇航学报,2005,26(4):524-530
    [37]Lefevre E, Colot O, Vannoorenberghe P. Belief function combination and conflict management. Information Fusion,2002, (3):149-162.
    [38]苏涛,蔺丽华.DSP实用技术.西安:西安电子科技大学出版社,2002
    [39]张雄伟.DSP芯片的原理与开发应用.北京:电子工业出版社,2000
    [40]王诚等.Altera FPGA/CPLD设计.北京:人民邮电出版社,2005
    [41]林茂庸,柯有安.雷达信号理论.北京:国防工业出版社,1984
    [42]张明友,汪学刚.雷达系统(第二版).北京:电子工业出版社,2006
    [43]Kramer Struart A. Doppler and Acceleration Tolerances of High-gain Wideband Linear FM Correlation Sonars. Proc. of IEEE,1967,55(5):627-636
    [44]张直中.雷达信号的选择与处理.北京:国防工业出版社,1979
    [45]丁鹭飞,耿富录.雷达原理(第三版).西安:西安电子科技大学出版社,2002
    [46]Pan Yichun, Peng Shirui, Yang Kefeng, Dong Wenfeng. Optimization design of NLFM signal and its pulse compression simulation.2005 IEEE International Radar Conference, 2005.5:383-386
    [47]刘春冉,陈伯孝,李锋林.基于窗函数的非线性调频信号的设计和性能分析.火控雷达技术,2007,36(3):79-83
    [48]孙东延,陶建峰.相位编码信号的多普勒补偿.空军工程大学学报,2000,1(1):47-49
    [49]Dovial R.J., Zrnic D.S. Doppler Radar and Weather Observations. New York: Academin,1993:160-171
    [50]Dimitrios N. Geladakis. Comparison of the step frequency radar with the conventional constant frequency radars:[Master's Thesis]. Monterey CA:Naval Postgraduate School,1996
    [51]毛二可,龙腾,韩月秋.频率步进雷达数字信号处理.航空学报,2002,6(22):16-25
    [52]Nadav Levanon. Stepped-Frequency Pulse-Train Radar Signal. IEE Proc. Radar Sonar Navugation,2002,149(6):198-309
    [53]H.Schimpf, A.Wahlen, H.Essen. High range resolution by means of synthetic bandwidth generated by frequency-stepped chirps. Electronics Letters,2003,39(18)
    [54]姚萍,郑天垚,王贞松.线性调频步进式合成孔径雷达系统的信号处理.系统工程与电子技术,2006,28(2):159-162
    [55]汪敏.毫米波主被动复合探测系统目标识别技术研究.南京:南京理工大学博士学位论文,1999
    [56]David K. Bartoni[著),南京电子技术研究所(译).Radar System Analysis and Modeling.(雷达系统分析与建模).北京:电子工业出版社,2007
    [57]L. Yujiri, M. Shoucri, P. Moffa. Passive Millimeter Wave Imaging, IEEE Microwave Magazine,2003,4(3):39-50
    [58]Robert S. Roeder, John J. Teti Jr. Millimeter wave passive and active sensor for terrain mapping. SPIE,1987,791:114-123
    [59]R.W.Haas, D.H.Brest, R.J.Bowers. Multi-beam millimeter Wave focal plane arrary airborme imaging system. SPIE,1994, (211):302-309
    [60]李兴国,李跃华.毫米波近感技术基础.北京:北京理工大学出版社,2009
    [61]Chen H, Liu Y, Li X. Mathematics of synthesizing range profile. IEEE Trans. on Signal Processing,2007,55(5):1950-1955
    [62]曹敏,付耀文,黄雅静等.弹道目标高分辨一维距离像运动补偿研究.电子与信息学 报,2009,31(3):601-605
    [63]Ma Y B. Velocity compensation in stepped frequency radar. Monterey, California: Master's Thesis, Naval Post-graduate School,1995
    [64]龙腾.频率步进雷达信号的多普勒性能分析.现代雷达,1996,18(2):31-37
    [65]蒋楠稚,王毛路等.频率步进脉冲距离高分辨一维成像速度补偿分析.电子科学学刊,1999,21(5):665-670
    [66]牛涛,陈卫东.脉冲步进频率雷达的一种运动补偿新方法.中国科学技术大学学报,2005,35(2):161-166
    [67]王桂丽,李兴国.频率步进和脉冲多普勒复合测速研究.红外与毫米波学报,2007,27(3):190-192
    [68]Luan Ying-hong, Li Yue-hua. Velocity Measurement of Compound Radar System. Innovative Computing, Information and Control Express Letters,2010,4(1):155-160
    [69]Qun Zhang, Ya-Qiu Jin. Aspects of Radar Imaging Using Frequency-Stepped Chirp Signals. EURASIP Journal on Applied Signal Processing,2006:1-8
    [70]罗鹏,潘健,刘政华.调频步进频雷达信号处理的关键问题分析.现代雷达,2006,28(8):28-31
    [71]Pan Yichun, Peng Shirui, Yang Kefeng, Dong Wenfeng. Optimization design of NLFM signal and its pulse compression simulation.2005 IEEE International Radar Conference,2005,5:383-386
    [72]J.A.Johnston, A.C.Fairhead. Waveform design and Doppler sensitivity analysis for nonlinear FM chirp pulses. Communications, Radar and Signal Processing, IEE ProceedingsF, 1986,133(2):163-175
    [73]鲍坤超,陶海红,廖桂生.基于多项式拟合的非线性调频波形设计.信号处理,2008,24(2):189-191
    [74]M.I.斯科尔尼克.雷达手册(合订本).北京:国防工业出版社,1978
    [75]T.Collins, P.Atkins. Nonlinear frequency modulation chirps for active sonar. IEE Proceedings of Radar, Sonar, Naving.1999,146(6):312-316
    [76]Luan Ying-hong, Li Yue-hua. MMW Hybrid-FM Adaptive Radio Fuze.中国兵工学会第十六届引信学术年会论文集.2009,10:725-729
    [77]刘勇,俞志强,李桂祥.正切调频脉冲信号脉压性能分析.空军雷达学院学报,2001,15(1):9-12
    [78]Zhiqiang Ge, Peikang Huang, Weining Lu. Matched NLFM Pulse Compression Method with Ultra-low Sidelobes. Proceedings of the 5th European Radar Conference,2008, Amsterdam, the Netherlands:92-95
    [79]鲁千红,马晓岩,张荣华.高斯频谱的非线性调频信号脉压性能分析.空军雷达学院学报,2002,16(4):16-18
    [80]陈卫,吕贵洲,何强等.参数化时频分析综述.现代雷达,2008,30(2):61-64
    [81]Arthur P. L, Philipos C. L. Voiced/unvoiced speech discrimination in noise using Gabor atomic decomposition. Proc. of IEEE ICASSP, Hong Kong,2003,Vol Ⅰ:820-828
    [82]R.Coifman, M.Wickerhauser. Entropy-based algorithms for best basis selection. IEEE Trans.Information Theory,1992,38:1713-1716
    [83]S.Mallat, Z.Zhang. Matching pursuit with time-frequency dictionaries. IEEE Trans. On Signal Processing,1993,41(12):3397-3415
    [84]尹忠科,王建英,邵君.基于原子结构特性的信号稀疏分解.西南交通大学学报,2005,40(2):173-178
    [85]S.Chen, D.Donoho, M.Saunders. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing,1999,20:33-61
    [86]I.Daubechies. Time-frequency localization operators:A geometric phase space approach. IEEE Trans. Inform. Theory,1988,34:605-612
    [87]Y.H. Chan. An efficient Weight Optimazation Algorithm for Image Representation using Nonorthogonal Basis Images. IEEE Signal Letter,1998:193-195
    [88]张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分.科学通报,2006,51(6):628-633
    [89]张喜明,黄巍,张红旗.采用时频分析方法进行多目标信号的分辨.现代雷达,2006,28(11):45-47
    [90]Laurent Daudet. Sparse and Structure Decompositions of Signals With the Molecular Matching Pursuit. IEEE Trans. On Audio, Speech and Language Processing,2006,14(5): 1808-1816
    [91]Kennedy J, Eberhart R. Particle swarm optimization. Proc IEEE Int. Conf. on Neural Networks, Perth,1995:1942-1948
    [92]曹志松,朴英.基于混合粒子群算法的PID参数寻优.微计算机信息,2007,23(11):28-30
    [93]Van den Bergh F. An analysis of particle swarm optimizers. South Africa:Department of Computer Science, University of Pretoria,2002
    [94]栾英宏,李跃华,罗磊.基于稀疏分解的高分辨雷达信号特征提取.现代雷达,2010,32(3):32-34
    [95]朱明,金炜东,普运伟,胡来招.基于Chirplet原子的雷达辐射源信号特征提取.红外与毫米波学报,2007,26(4):302-306
    [96]葛哲学,陈仲生.Matlab时频分析技术及其应用.北京:人民邮电出版社,2006
    [97]Hu C W, Lin C J. A comparison of methods for multiclass support vector machines. IEEE Trans on Neural Networks,2002,13(2):415-425
    [98]Filip Mulier. Vapnik-Chervonenkis(VC) learning theory and its applications. IEEE Trans. on Neural Networks,1999,10(5)
    [99]刘江华,程君实,陈佳品.支持向量机训练算法综述.信息与控制,2002,2(1):45-50
    [100]J.C.Burges. A tutorial on support vector machines for pattern recognition. Bell Laboratories, Lucent Technologies,1997
    [101]Burges C. A tutorial on support vector machines pattern recognition. Data Mining and Knowledge Discovery,1998,2(2):1-47
    [102]Tipping M E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research,2001,1(3):211-244
    [103]陈佳,颜学峰,钱锋.基于贝叶斯学习的关联向量机及其在软测量中的应用.华东理工大学学报,2007,33(1):115-119
    [104]Jongcheol Kim, Suga.Y, Won.S. A new approach to fuzzy modeling of nonlinear dynamic systems with noise:relevance vector learning mechanism. Fuzzy Systems,2006, 14(2):222-231
    [105]Xiang-min Xu, Yun-feng Mao, Jia-ni Xiong, Feng-Le Zhou. Classification Performance Comparison between RVM and SVM.2007 IEEE International Workshop on Anti-counterfeiting, Security, Identification,2007:208-211
    [106]D.J.C.Mackay. The evidence framework applied to classification networks. Neural Computation,1992,4(5):720-736
    [107]Silva Catarina, Ribeiro Bernardete. Scaling Text Classification with Relevance Vector Machines. ICSMC'06,2006, (5):4186-4191
    [108]Huang HP, Liu YH. Fuzzy Support Vector Machines for Pattern Recognition and Data Mining. Journal of Fuzzy Systems,2002,4(3):826-835.
    [109]Lin CF, Wan SD. Fuzzy Support Vector Machines. IEEE Trans. On Neural Networks, 2002,13(2):464-471
    [110]杨志民.模糊支持向量机及应用研究.北京:中国农业大学博士论文,2005
    [111]Ding-Fang Li, Wen-Chao Hu, Wei Xiong, Jin-Bo Yang. Fuzzy relevance vector machine for learning from unbalanced data and noise. Pattern Recognition Letters,2008,29: 1175-1181
    [112]边肇祺,张学工.模式识别.北京:清华大学出版社,2000.
    [113]张翔,肖小玲,徐光祐.基于样本之间紧密度的模糊支持向量机方法.软件学报, 2006,17(5):951-958
    [114]栾英宏,李跃华.基于模糊支持向量机的一维距离像识别.南京理工大学学报(自然科学版),2009,33(3):375-378
    [115]F.R.GLINEUR. Pattern Separation Via Ellipsoids and Conic Programming. Master'thesis,2003
    [116]李明,荆竹翠.两种实现模式分类的椭球法.山西大学学报(自然科学版),2005,28(4):355-357.
    [117]Chang S G, Yu B, vetterli M. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans on image Proc.,2000,9(9):1532-1546
    [118]Berkner K, Wells R O. Smoothness estimates for soft-threshold denoising via translation invariant wavelet transforms. Applied and computational harmonic analysis,2002, 12(1):1-24.
    [119]张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解.科学通报,2006,51(6):628-633
    [120]Sallee, Phil Olshausen, Bruno A. Image denoising using learned overcomplete representations. IEEE International Conferencr on Image Processing,2003, v3:381-384
    [121]何世彪,杨士中.3σ准则在小波消噪中的应用.重庆大学学报,2002,25(12):58-61
    [122]栾英宏,李跃华,罗磊.基于稀疏分解的毫米波辐射计信号去噪.制导与引信,2009,30(1):38-41
    [123]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998
    [124]刘粤钳,姚红玉.分数傅立叶变换在信号处理中的应用研究.数值计算与计算机应用,2007,28(3):198-214
    [125]Candan C, Kutay M A, H Ozaktas. The discrete fractional Fourier transform. IEEE Trans. Signal Processing,2000,48(5):1329-1337
    [126]陶然,齐林,王越.分数阶Fourier变换的原理与应用.北京:清华大学出版社,2004
    [127]王飒,郑链.基于Fisher准则和特征聚类的特征选择.计算机应用,2007,27(11):2812-2814
    [128]Pawlak Z. Rough set theory and its applications to data analysis. Cybernetics and Systems,1998,29(1):661-688
    [129]Ren Puli, Zheng Ouwang. Mining Classification Rules Using Rough Sets and Neural Networks. European Journal of Operational Research,2004,157:439-448
    [130]Alvayore G, Bentto M, Roman S. Rough set theory for multi criteria decision analysis. European Journal of Operational Research,2001,129:1-47
    [131]代春艳.粗糙集理论及其应用发展综述.重庆工商大学学报,2004,21(6):576-580
    [132]韩力群.人工神经网络教程.北京:北京邮电大学出版社,2006
    [133]Pawan Lingras. Comparison of Neofuzzy and Rough Neural Networks. Information Sciences,1998,110(3-4):207-213
    [134]张赢,李琛.基于粗糙集理论的神经网络研究及应用.控制与决策,2007,22(4):462-464
    [135]栾英宏,李跃华,卫永平.粗神经元网络在辐射计目标识别中的应用.探测与控制学报,2008,30(5):38-40
    [136]何友,关欣,王国宏.多传感器信息融合研究进展与展望.宇航学报,2005,26(4):524-530
    [137]高隽.智能信息处理方法导论.北京:机械工业出版社,2004
    [138]Lefevre E, Colot O, Vannoorenberghe P. Belief function combination and conflict management. Information Fusion,2002, (3):149-162
    [139]Murphy C K. Combining Belief Functions When Evidence Conflicts. Decision Support Systems,2002,29(1):1-9
    [140]Deng Y, Shi W K, Zhu Z F. Efficient Combination Approach of Conflict Evidence. Journal of Infrared and Millimeter Waves,2004,23(1):27-32
    [141]万树平.多传感器数据的聚类融合方法.系统工程理论与实践,2008,(5):131-135
    [142]张劫,张宗麟,景博,孙勇.基于支持度D-S证据理论与模糊积分的多源节点簇信息时空融合.传感技术学报,2006,19(6):2727-2731
    [143]付耀文.雷达目标融合识别研究.长沙:国防科学技术大学博士学位论文,2003
    [144]张卫宁.DSP原理与应用教程.北京:科学出版社,2008
    [145]杜子妮.基于DSP-FPGA的通用数字信号处理模块设计.雷达与对抗,2006,(4):19-22
    [146]褚振勇,翁木云.FPGA设计及应用.西安:西安电子科技大学出版社,2002
    [147]杨国.3mm波段主被动复合探测技术研究.南京:南京理工大学博士学位论文,2006
    [148]Texas Instruments Incorporated. TMS320C28X系列DSP的CPU与外设(上、下).北京:清华大学出版社,2004
    [149]陈伟,黄秋元,周鹏.高速电路信号完整性分析与设计.北京:电子工业出版社,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700